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Abstract

Graph Neural Networks (GNNs) is a family of
promising tools for graph semi-supervised learn-
ing. However, in training, most existing GNNs
rely heavily on a large amount of labeled data,
which is rare in real-world scenarios. Unlabeled
data with useful information are usually under-
exploited, which limits the representation power
of GNNs. To handle these problems, we propose
Virtual Overbridge Linking (Violin), a generic
framework to enhance the learning capacity of
common GNNs. By learning to add virtual over-
bridges between two nodes that are estimated to be
semantic-consistent, labeled and unlabeled data can
be correlated. Supervised information can be well
utilized in training while simultaneously inducing
the model to learn from unlabeled data. Discrim-
inative relation patterns extracted from unlabeled
nodes can also be shared with other nodes even if
they are remote from each other. Motivated by re-
cent advances in data augmentations, we addition-
ally integrate Violin with the consistency regular-
ized training. Such a scheme yields node represen-
tations with better robustness, which significantly
enhances a GNN. Violin can be readily extended
to a wide range of GNNs without introducing addi-
tional learnable parameters. Extensive experiments
on six datasets demonstrate that our method is ef-
fective and robust under low-label rate scenarios,
where Violin can boost some GNNs’ performance
by over 10% on node classifications.

1 Introduction

Graph Neural Networks (GNNs) are deemed to be pow-
erful tools to analyze graph-structured data in recent re-
searches, where successful applications are found in tasks
such as traffic predictions [Li et al., 2017], recommenda-
tions [Li et al., 20201, protein analysis [Gligorijevi¢ er al.,
20211, etc. In general, a GNN learns knowledge for tar-
get nodes by aggregating information from neighbors. By
stacking multiple layers, topological features and mutual re-
lationships can be embedded into a node representation. In
semi-supervised settings, by pairing the node representations
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Figure 1: An example about a two-layer GNN. Suppose there is
only a labeled node in the graph. Left: For a common GNN, dur-
ing training, the receptive field only covers the labeled (target) node
and its two-hop neighbors, while leaving others in the graph unob-
served. Some useful but critical information, e.g., a star-shaped hub
structure marked by the pink dot circle, is not perceived. Right: A
GNN enhanced by the proposed Violin framework. The enlarged re-
ceptive field enables the model to incorporate more unlabeled nodes
into training and therefore captures more patterns in the graph.

with their labels, typical GNNs [Kipf and Welling, 2016;
Veli¢kovic er al., 2018] can be trained through backpropaga-
tion. Learned representations can therefore be used for down-
stream tasks such as node classifications or link predictions.

However, in real-world scenarios of semi-supervised learn-
ing, labeled entities are usually the minority since it is expen-
sive to annotate an instance in a graph. It can be the Achilles’
heel of a model because most GNNs rely heavily on labeled
data for training. Such a discrepancy may degrade the repre-
sentation power of a GNN and prevent it from generalizing
to more practical applications. In addition, many unlabeled
instances are usually ignored in training since they are re-
mote from any labeled node, which makes them unobserved
in the aggregation process. (An observed/ unobserved node is
a node inside/ outside the receptive field during training.) An
example on a two-layer GNN is shown in the Left of Figure
1. The drawbacks are obvious: some useful or critical pat-
terns among unlabeled nodes, e.g., the star-shaped structure
marked by the pink dot circle in Figure 1, are not captured,
resulting in learning inferior representations. The model can
also be biased by the limited labeled data, which may lead to
more serious problems about ethics and fairness if applied to
real-world tasks.

To tackle the aforementioned problems, we propose Virtual
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Overbridge Linking (Violin), a generic framework to en-
hance the learning capacity of typical GNN models for graph
semi-supervised learning with limited labels. Instead of fo-
cusing only on labeled instances, we jointly incorporate both
the labeled and unlabeled data into learning. As shown in the
Right of Figure 1, we generate a new graph by adding virtual
overbridges (VOs) between a pair of nodes, which are esti-
mated to be highly-correlated through an adaptive threshold-
ing mechanism. Supervised signals from labeled nodes can
be utilized as auxiliary information to generate embeddings
for unlabeled nodes, while specific patterns that only appear
in unlabeled data can be propagated to labeled nodes and cap-
tured by the model. In this way, we effectively correlate both
the labeled and unlabeled nodes. Learned knowledge can be
shared within the same class of nodes, even if they are remote
from each other in the original graph. Since VOs selectively
extend the receptive field of a GNN towards informative re-
gions, aggregations with VOs can be more discriminative to
task-specific patterns, which substantially improves the repre-
sentation ability of GNNs. In addition, the new graph derived
by Violin can be viewed as an augmentation of the original
graph. Motivated by previous works on graph data augmenta-
tions, we naturally integrate Violin with the consistency reg-
ularized training [Veli¢kovié et al., 2018]. Unlabeled data are
efficiently incorporated into the learning process, which in-
duces the model to yield node representations with better ro-
bustness and further enhances the representation power of a
GNN. Instead of designing more sophisticated network archi-
tectures, we enhance GNNs’ representation power by learn-
ing from all available data appropriately. Thus, Violin can be
readily extended to a wide range of GNNs without introduc-
ing additional learnable parameters. Extensive experiments
on node classification tasks demonstrate the superiority and
effectiveness of Violin over canonical GNN models and other
state-of-the-art enhancement techniques. Codes and the ap-
pendix are available at https://github.com/xslangley/violin.
Our contributions can be summarized as follows:

1. We propose Violin, a generic enhancement scheme for
GNNs on semi-supervised learning. By learning to add
VOs, labeled and unlabeled data are proactively cor-
related. This improves information propagations and
helps extract discriminative patterns, which facilitates
the learning capacity of a GNN.

2. We substantially investigate the applicable conditions/
‘sweet spots’ of Violin (on Appendix C) and empirically
verify that Violin is effective with different number of
VOs and robust to noisy estimations in a wide range.

3. We build a comprehensive framework by integrating Vi-
olin with consistency regularized training and an adap-
tive threshold mechanism. By taking all available nodes
into account, we train a GNN with better data utilization,
which yields more powerful and robust representations.

4. Compared with previous methods, Violin can be readily
applied to a wide range of GNN models with only little
computational overheads. Qualitative and quantitative
experiments demonstrate the effectiveness of Violin over
other state-of-the-art methods.
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2 Related Works

2.1 GNN:s for Graph Semi-supervised Learning

GNNs are widely used for graph semi-supervised learning
in the recent studies. Some works concentrate on learn-
ing powerful representations with specific architectures. For
example, the attention mechanism [Velickovié et al., 2017;
Zhang et al., 2018] is introduced to specify the importance
of neighbors during aggregation. GDC [Klicpera er al.,
2019] and APPNP [Klicpera et al., 2018] leverage graph dif-
fusion to derive a better scheme for message propagation.
Some other methods [Xu et al., 2018a; Xu et al., 2018b;
Corso et al., 2020; Chen et al., 2020b] aim at design-
ing strictly and theoretically more expressive operators for
GNNs. All these works effectively promote the basic capa-
bility of GNN to learn from graph-structured data.

2.2 Learning-Enhancement Techniques for GNNs

In semi-supervised scenarios, a GNN may only extract lim-
ited knowledge from a graph due to few labeled data, even
though it has the potential to learn powerful representations.
To handle this problem, some researchers [Sun et al., 2020;
Li et al., 2018] resort to self-training, where the labels set
is progressively extended by including unlabeled instances
during training. There are also works [Huang et al., 2020;
Klicpera et al., 2018] that enhance GNNs by disentangling
the trainable prediction model from the message passing
framework. Each part can be tuned flexibly, which achieves
lower computational cost. Some works pretrain a GNN based
on unsupervised/ self-supervised mechanisms by graph aug-
mentations [Sun et al., 2019; Xu et al., 2021; You et al., 2021;
You et al., 2020; Zhu et al., 2021; Wan et al., 2020,
Thakoor et al., 2021; Hassani and Khasahmadi, 2020]. Hand-
crafted graph augmentations can therefore be introduced to
assist graph semi-supervised learning [Feng et al., 2020;
Xie et al., 2022; Zhao et al., 2021; Chen et al., 2020a]. Dif-
ferent from previous methods, the augmentation in Violin,
i.e., virtual overbridges, are fully data-driven (instead of rely-
ing on human knowledge). Unlike self-training, unlabeled
instances in Violin are utilized to assist supervised learn-
ing more appropriately without polluting the original labeled/
training set. Violin can also be trained end-to-end (instead
of a multi-stage manner), which is more efficient and yields
task-oriented representations. Detailed comparisons refer to
Appendix A.

3 Motivations and Preliminary Evaluations

3.1 Notations and Problem Formulations

In this paper, we define a graph as G = (V, &, X)), where
V = {v;|i =1,2,..., N} is the node set, £ is the edge set and
X € R¥*din is the node feature matrix. In semi-supervised
settings, V can be further separated as V = {VL , VU}, where
VI and VY are the labeled and unlabeled set respectively.
The labels set YL = {y,|v € VE}, where y, € {0,1}¥
is represented by a one-hot vector indicating one of the K
classes. A general GNN model is to learn a mapping that
takes the graph G as input and generate representations for
each node: H = GNN(G) = [hy,ha,...,hy]T € RV>dn,
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Depth  Cora (5.17%) Citeseer (3.62%) Pubmed (0.30%)
1 23.78 14.29 1.80
2 61.45 32.82 14.19
3 81.91 49.68 46.97

Table 1: The ratio (%) of observed nodes with regard to the depths
(layers) of a GNN (label rate in parentheses).

In this paper, our goal is to learn a GN N to predict the class
label for each node, given the graph and limited labels.

3.2 Rethinking Graph Semi-supervised Learning
Paradigm

In general, we can train a GNN through backpropagation by
measuring the prediction errors on the labeled nodes. For
example, the loss for node classifications is usually measured
by the cross-entropy:

1
Lori = ~r GZVL yylog (pv), pv = Softmaz(h,) (1)

where p,, indicates the confidence vector for node v.

However, in real-world cases, annotation is expensive and
sometimes even difficult for domain experts, which means la-
beled data are usually scarce in a graph. Therefore, following
the general training paradigm, only a small part of data can
be utilized by GNNs, while keeping the majority idle in the
learning process. As shown in the Left of Figure 1, with lim-
ited labels, the receptive field of a two-layer GNN only covers
the neighbors within two-hops of the labeled node. In other
words, most of the data are under-exploited. Such a GNN
only learns limited knowledge from the graph and fail to cap-
ture some important but critical patterns that only appear in
those unobserved unlabeled data. The learning capacity of a
GNN is therefore suppressed, which results in generating less
powerful representations.

To quantify the amount of data under-exploited, we list the
ratio of observed nodes (during training) of three recognized
datasets with different depths (number of layers) of a typical
GNN, e.g., GCN [Kipf and Welling, 2016]. As shown in Ta-
ble 1, the data utilization is at a relatively low level. Even
if we stack three layers to enlarge the receptive field, there
are still more than half of the data in Citeseer and Pubmed
untouched during training. We can stack a deeper model
until the receptive field covers all available data. However,
recent studies reveal that GNNs suffer from over-smoothing
problem in deep layers [Li et al., 2018; Wu et al., 2020;
Rong et al., 2019]. Even if introducing the attention mech-
anism, which is recognized to highlight important neigh-
bors, can hardly help. We empirically demonstrate it in Ap-
pendix B. In addition, the number of neighbors grows ex-
ponentially as the depth/ receptive field goes further away
from the target node. Discriminative information will be at-
tenuated by noisy signals during aggregation. Empirical ex-
periments [Kipf and Welling, 2016; Veli¢kovié et al., 2017,
Wu et al., 2019] also show that shallow GNNs performs better
in few-labeled graphs. Therefore, instead of stacking deeper
GNNs, we should explore other ways to better make use of
those unlabeled but available data.
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3.3 Enhancement via Virtual Overbridges Linking

Following the above analyses, we can observe that the learn-
ing capacity of a GNN model can be restricted by the data
utilization. Therefore, to enhance a GNN model, a natural
next-step is to learn from the rich unlabeled data.

A naive way to incorporate more data into the learning
process is to extend the receptive field of GNNs. However,
enlarging the receptive field omnidirectionally may result in
performance collapse because of over-smoothing. Instead of
stacking a deeper model, our idea is to learn to selectively
add Virtual Overbridges (VOs), which act as special edges
to propagate messages in a graph, within the same class of
nodes. We therefore term this scheme as Virtual Overbridge
Linking (Violin). There are many potential benefits that Vi-
olin can bring to a GNN. On the one hand, VOs naturally
extend the receptive field of a GNN in training, as shown in
the Right of Figure 1. Different from simply stacking more
layers, Violin specifically extends the receptive field towards
the regions related to the target node. This encourages a GNN
to collect class-specific features along VOs, which results in
yielding task-related node representations. On the other hand,
diverse knowledge learned from different nodes can be shared
with other physically-remote instances. Since a graph is an
irregular data structure with complex relationships, the con-
texts (i.e., the local neighborhood information of a node in-
cluding the node/ edge features and the graph topology) of
nodes vary greatly even if they come from the same class. By
adding VOs, the patterns and knowledge learned from dif-
ferent contexts can be propagated to others, encouraging the
model to generate a more comprehensive and robust repre-
sentation that fits the target node and its role.

To verify the enhancement potential of Violin for graph
semi-supervised learning, we conduct a series of experiments
with an ideal setting. Suppose we know the oracles, i.e., the
class labels, of all nodes in the graph. Let V}, be the node set
of the k-th class. The set of all candidate VOs can be formu-
lated as follows:

Evo = {(u,v)|u,v € Vi, k=1,2,..., K} 2)

where (u,v) is an VO between node u and v. For each node,
we randomly pick m other nodes within the same class to
build VOs. These operations are the same as Step 2 in Fig-
ure 2. We denote the set of selected VOs as &,, C &,, and
the new graph after adding VOs as G = (V, &, X)), where
£ = EUE,,. Since VOs only act as an information pathway
to propagate messages from peers, the graph is expected to
keep the same semantics, i.e., the role of each node is kept the
same. We therefore name G as ‘semantics-consistent graph’.
Compared with the original graph, G is more flexible on infor-
mation propagation. We then train and assess a GCN model
on G to investigate its performance for node classifications.
All experimental settings follow the work of GCN [Kipf and
Welling, 2016], except that we replace G with Q . Note that
the semantics-consistent graph is not unique as we can gen-
erate a new Q for each training epoch. The GCN trained on é
with oracles is denoted as GCN-Oyy, -y, where m is the num-
ber of added VOs per node and r is the proportion of noisy
(incorrect) VOs we deliberately add for robustness test.
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Model Cora Citeseer Pubmed
GCN 82.52 71.02 79.16
GCN-O(y,0.3 90.2 (+7.68) 81.64 (+10.62)  84.25 (+5.09)
GCN-O(y,0) 95.68 (+13.16)  89.41 (+18.39) 93.07 (+13.91)

Table 2: Node classifications (%) of Violin with oracles and noises.

Results in Table 2 show a striking improvement over GCN
by adding only one VO per node, even if up to 30% of added
VOs are noisy (r = 0.3). With the new graph (G) created by
Violin, GCN-O has more chances to access nodes that used
to be unobserved. Specific patterns of unobserved data are
now more likely to be captured. As for GCN-O(; (), mes-
sages propagated through VOs are purely class-related fea-
tures without noises, which are highly correlated with the tar-
get node. Such features are informative in the learning pro-
cess and more effective when more correct VOs are added
(refer to Appendix C.1). Furthermore, we investigate the
‘sweet spot’ of Violin with a series of harsher settings and
empirically show in Appendix C.2 that Violin affords up to
70% of noisy VOs and still works if limited VOs are added.
All these observations show the promising power of Violin.

It should be noted that all above experiments are conducted
under ideal settings, i.e., we know the oracles for adding VOs,
which is unfair to compare with other works. However, we
will show in Section 5 with fully comparable experimental
settings on six real-world datasets that Violin substantially
enhances various GNNs and outperforms other works.

4 Violin for Graph Semi-supervised Learning

In this section, we extend Violin to practical scenarios of
graph semi-supervised learning. An overview of Violin’s
pipeline is shown in Figure 2.

4.1 Label Estimations for Ignition

In preliminary experiments, we generate semantics-
consistent graphs via oracles. However, in real-world
scenarios, labels are unavailable for most nodes. To handle
this problem, we propose to use estimated labels to substitute
oracles. Although it can be noisy, it is demonstrated to be
effective by previous self-training works [Sun et al., 2020;
Li et al., 2018]. We have also shown in Table 2 and
Appendix C.2 that Violin is robust to wrong VOs due to
noisy estimations. Specifically, we train a vanilla GNN on
the few-labeled graph following the basic learning paradigm
(Equation 1). The vanilla GNN model can therefore predict
the class of each unlabeled nodes for Violin to ignite. As
shown in the Step 1 of Figure 2, we initialize Violin by
associating each node with its predicted class label. The
graph with predicted labels is termed as label-estimated
graph for clarity. Note that the ground-truth label of training
nodes are given in advance. We use their true labels instead
of their predictions for the label-estimated graph.

4.2 Violin with Adaptive Confidence Threshold

With estimated labels, we can construct semantic-consistent
graphs for Violin. However, the great performance gain
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shown in Table 2 relies on oracles, where most VOs are cor-
rect and unlikely to introduce noises. In contrast, wrong pre-
dictions inevitably exist in the estimated labels. The ‘correct-
ness’ of an VO will be challenged if any of its two end-points
uses untrusted predicted labels. For example, the prediction
accuracy of GCN in the Citeseer dataset is around 70%. Then
the ratio of VOs that both end-points are correctly predicted is
expected to be 49% (0.7 x 0.7). In other words, more than half
of VOs may propagate undesired information, which may
hurt the performance in the worst case.

An intuitive solution for this problem is to selectively pick
trusted nodes for Violin, which reduces the number of incor-
rect VOs. Recall that in Equation 1, each predicted label is
associated with a confidence value. We can therefore set a
confidence threshold for nodes to refine the VO set based on
the prediction results in the validation set. Figure 3 shows an
example of the confidence distribution in Cora. We can em-
pirically set a static threshold, for example, by 0.7, where the
expected prediction accuracy of remaining (qualified) nodes
are perfect (100%).

However, as shown in Appendix E.4, the confidence dis-
tribution will shift in training, where a static threshold cannot
always fit. Our experiments shown in Appendix C.2 also sug-
gest making a balance between the quality (correctness) and
quantity of added VOs. Thus, we propose to adaptively adjust
the confidence threshold during training. The key idea is to
always keep a good enough (expected) accuracy for the qual-
ified nodes (after thresholding) to generate high-quality VOs
and simultaneously add enough VOs to the graph. Specifi-
cally, let p € (0, 1) be a candidate confidence threshold. The
qualified node set based on p can be formulated as follows:

Vp = {U|¢U > P, U (S V} (3)

where ¢, is the confidence value of the predicted label of
node v. The nodes set of the validation set are denoted by V.
The nodes in V that fulfill the threshold are:

V, = {vlgy > p, vEV}, V,=VSUVY )

where f); and f};" are the set of correctly and wrongly pre-
dicted nodes in V. We then derive the optimal threshold by:

p = argmin{ p| [V5l/IV,| > 6) 5)

where 6 € (0,1) is the expected prediction accuracy (set
manually) of qualified nodes and | - | denotes the cardinal-
ity. With p*, we only add VOs for the nodes in V-, as Step
2 of Figure 2.

Based on Equation 5, p* changes dynamically in each
training epoch. Compared with the static thresholding, such
a scheme fits the shifting confidence distribution adaptively,
which helps Violin create high-quality VOs for the graph.
The added VOs encourage the model to collect class-related
information from their remote peers, resulting in generating
more discriminative representations for nodes.

In addition, we regularize Violin by the representations of
the two end-points of added VOs. Since an VO is expected
to link two nodes within the same class, the representations
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Figure 2: The pipeline of Violin. We first train a vanilla GNN model on the few-labeled graph to estimate the class of all unlabeled nodes. With
the label-estimated graph, VOs can be selectively added to a pair of nodes that are predicted to be in the same class. The node representations
learned from the semantics-consistent graph are forced to keep consistent with that of the original graph.

38
0.4 I correct predictions

H wrong predictions
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Figure 3: An example: the confidence distribution of the validation
set on the Cora dataset by GCN. The number of samples in each
interval is shown in the top of each bar.

of its two end-points should align with each other. Specifi-
cally, let H be the node representations generated based on
the semantic-consistent graph G:

H =GNN(G) = [h1,hy, ..., hy]T e RV*4 (6)

where dj, is the dimension of node representations. Then the
VO loss can be defined as follows:

1 ~ ~ -
Evo:ﬁ Z ‘hv_hullv fOT (U,U) egvo (7)
vo (u’v)

L, forces a GNN to keep consistency between the two end-
points, inducing Violin to generate more reasonable VOs dur-
ing training. On the other hand, such a regularization term
prevents the model from overfitting to specific nodes, which
helps yield more generalized representations.

4.3 Augmentations by Semantics Consistency

From the view of data augmentation, the semantic-consistent
graph G is equivalent to an augmentation of the original
graph. The semantics of a node in G should be consistent
with that of it in G. Following the work of [Feng er al., 20201,
we additionally adopt consistency regularization training for
Violin to keep the semantics consistency. Specifically, we de-

note the representations of a node v learned from G and G as
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h, and h,, respectively. We then define the consistency loss
on the unlabeled nodes by the L1-norm as follows:

1 T U
['con:Wzv:|hv_hv|lv vey (8)

By introducing the consistency loss, Violin purposefully
incorporates all unlabeled nodes into training. Compared
with GNNs that only cover instances within the receptive filed
of labeled nodes, Violin is able to learn knowledges from all
nodes. Augmentations on graph topology also encourage Vi-
olin to yield representations with better robustness.

4.4 Model Training for Violin
The overall loss of Violin for training is formulated as:

L= £cls + 7['1)0 + Oélccon (9)

where v and « are hyperparameters to balance the learning.
L5 1s the classification loss derived from labeled nodes. To
better utilize the supervised signals from both the original and
semantics-consistent graph, we define L5 as follows:

1 _
Leis = ~ovE| ( > yllog(p.) + Y yllog (pu)> (10)

vevl vevl

where p, is the prediction confidence vector of node v in the
semantics-consistent graph, as similar to p,,.

In training, we reuse the vanilla model at Step 1 of Figure
2 as the backbone and continue to find-tune it by Equation 9,
which effectively improves the learning efficiency. Estimated
labels for Violin can also be updated at each epoch by the
prediction results of the fine-tuned model, which enables the
Violin to generate more appropriate VOs as the training goes.

5 Experimental Evaluations

5.1 Experimental Setups

Datasets

We evaluate Violin by node classifications on six pub-
lic datasets: Cora, Citeseer, Pubmed, Ogbn-arxiv (Ogbna),
Amazon-Photo (AmzP) and Coauthor-CS (CoCS), where the
first four have publicly-recognized or official splits [Kipf and
Welling, 2016; Wu et al., 2019; Hu et al., 2020]. Statistical
details refer to Appendix D.1 in the supplementary.
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Model Cora Citeseer Pubmed Ogbna
TMLP 58.51+0.80  55.64+0.46  T72.71+0.61  55.5040.23
Tn2y 72.35+41.41  50.8240.96  62.03+1.05  70.07+0.13
DGI 82.30+0.60  71.80+0.70  76.80+0.60 N/A
fMVGRL 82.90+0.70  72.60+0.70  79.40+0.30 N/A
DIMP 83.30+0.50  73.30+0.50  81.40+0.50 N/A
T PNAT T 75.05+3.37 55.04+a.s5  75.91+1.17  69.54+0.58
GIN 78.83+1.45  66.87+0.96  77.83+0.42  63.19+1.57
JK-Net 80.35+0.58  67.29+1.02  78.36+0.31  72.1940.24
SGC 80.70+0.55  71.94+0.07  78.82+0.04  68.59+0.03
SAGE 81.73+0.58  69.86+0.62  77.20+0.40  72.04+0.20
GCN 82.52+0.60  71.02+0.83  79.16+0.35  71.99+0.22
GAT 82.76+0.88  T1.87+0.53  77.74+0.34  T71.75+0.28
APPNP 83.13+0.58  71.39+0.68  80.30+0.17  71.22+0.26
GCNII 84.17+0.40  72.46+0.74  79.85+0.34  72.46+0.32
¥AdaEdge(GCNN/A) 82.30+0.80  69.10+0.90  77.4040.50 N/A
fcG? 83.40+0.70  73.60+0.80  80.2040.80 N/A
TGAUG-O(GCN128)  83.60+0.50  73.30+1.10  79.30+0.40  71.40+0.50
TCoCoS(GCNm/%ﬁ) 84.15£N/A  T73.57+N/A  80.92+N/A  T1.7T+N/A
TGRAND(GCN3s5) 84.50+0.30  74.20+0.30  80.00+0.30 N/A
TGAM(GCN 5) 84.80+0.06  72.46+0.44  81.00+0.09 N/A
"7 Violin(GCNyg) ~ ~ 85.22x0.60 73.38+0.32  8l.11+0a47 - T
Violin(GCN35) 85.08+0.65  73.96+0.38  81.05+0.51 -
Violin(GCN125) 84.49+0.66 74.26+0.40 81.23+0.42 -
Violin(GCNay56) 84.03+0.59  74.16+0.55  80.83+0.36  72.49+0.09

Table 3: Node Classifications Accuracy (%). (‘t’: results are col-
lected from published papers/ leaderboards. ‘N/A’: the data is not
reported. The subscript of a model: the hidden layer dimensions. )

Models for Comparisons

We compare Violin with twenty state-of-the-art models,
which can be categorized into four types: Common mod-
els: Multi-layer Perceptron (MLP), node2vec (n2v); Un/self-
supervised GNNs: DGI, MVGRL, DIMP; Semi-supervised
GNNs: GCN, GAT, GraphSAGE, JK-Net, GIN, GCNII, SGC,
APPNP, PNA; Enhancement techniques for semi-supervised
GNNs: CG®, GRAND, GAM, GAUG, AdaEdge, CoCoS. A
brief introduction of each model refer to Appendix D.2.

Implementations

We implement different GNN backbones for Violin in exper-
iments. The learning rate is 0.01 for most variants. v = 0.4
and m = 2 (the number of VO per node) for Ogbna while
v = 0.6 and m = 1 for others. « is searched in [0.2, 1]
by an interval of 0.2. We run each implementation ten times
with ten random seeds. In each run, we record the test accu-
racy corresponding to the best validation loss and report the
averaged test accuracy and standard deviation over ten runs.
More implementation details of each variant can be found in
Appendix D.3.

5.2 Experiments of Node Classifications

Quantitative Results

Since previous works mostly use GCN as the backbone, we
mainly compare Violin’s GCN variant with them for fairness.
Table 3 shows the results on four datasets. We can observe
that all Violin variants consistently outperform others or be
competitive to the best on the board. Compared with unsu-
pervised models, Violin can be trained in an end-to-end man-
ner. This makes it more effective to learn from the supervised
signals in the graph and yield task-oriented representations,
which can be more discriminative in semi-supervised scenar-
ios. The superiority of Violin over semi-supervised baselines
is more significant. This is because Violin not only learn
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Figure 4: Left: The prediction accuracies and adaptive thresholds
of Violin(GCN) on Citeseer during training. Right: The cumulative
number of qualified nodes/ VOs and prediction accuracies at each
confidence level, at the epoch marked by the red circle in the Left.

from the few labeled nodes but also all unlabeled but avail-
able data. More diverse knowledge and discriminative pat-
terns can therefore be captured by Violin, which significantly
improves the representation power of a GNN model.

As an enhancement technique, Violin shows superiorities
over other state-of-the-arts. First, Violin is a plug-and-play
framework for common GNNs. Compared with other meth-
ods, Violin does not need any additional learnable parame-
ters but only to fine-tune the backbone model, which can be
more computationally effective and memory-efficient. Fur-
thermore, for other competitors, such as GRAND and CG3,
elaborate handcrafted augmentations are required for gener-
ating qualified graph augmentations. In contrast, Violin au-
tomatically learns to generate the graph augmentation, i.e.,
the semantics-consistent graph. Such a data-driven scheme
can be more adaptive to different scenarios, which results in
learning more task-oriented representations.

Qualitative Analyses of Violin

To qualitatively investigate the effect of Violin, we monitor
the value of p (the confidence threshold) during training. The
left of Figure 4 shows an example, where p varies at different
epochs. This is reasonable as the distribution of prediction
confidence shifts as we train (refer to Appendix E.4 for some
examples). To match such dynamics, Violin adaptively ad-
justs p, which recalibrates itself to continually improve the
model. We additionally inspect the status of the model at the
epoch marked by the red circle, as shown in the right of Figure
4. Prediction accuracy rises in the intervals with higher con-
fidence, but in the meanwhile, the number of qualified nodes
(or VOs) drops. A large confidence threshold ensures that
added VOs are almost correct but only few candidates fulfill,
while a small threshold acts oppositely. However, the p of
Violin is near the two curves’ intersection. In other words,
it adaptively makes a balance between the quantity and qual-
ity of VOs, which makes Violin effective to a GNN. More
visualizations/ analyses refer to Appendix E.S.

5.3 Ablation Studies

Enhancement for Different GNN Backbones

To investigate the general enhancement performance of Vio-
lin, we extend it to more typical GNNs. Table 4 shows the ex-
perimental results. Obviously, almost all backbones are sig-
nificantly enhanced and Violin still works for more advanced
models (e.g., GCNII). It is worth mentioning that the origi-
nal PNA model suffers from overfitting in Cora, Citeseer and
Pubmed. However, with Violin, overfitting is well alleviated,
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Backbone Cora Citeseer Pubmed Ogbna Dataset Ogbna AmzP CoCS
Violin(GIN) | 8L.AL(+3.47)  71.40(+4.53)  80.74(+2.91)  64.37(+1.18) Train/Val/Test (%) 1710789 0.5/10/89.5 | 1.3/13.1/85.6 | 0.8/8.2/91
Violin(PNA) | 81.41(+6.36)  62.50(+7.46)  79.58(+3.67) OOM GCN 63.85 60.89 82.89 88.76

Violin(JK-Net) | 83.77(+3.42)  71.82(+4.53)  80.12(+1.76)  72.26(+0.07) Violin(GCN) 66.82(+2.97) | 64.88(+3.99) | 87.77(+4.88) | 91.82(+3.06)
Violin(GAT) | 84.33(+1.57)  72.08(+0.93)  79.12(+1.38)  71.41(—0.34)

Violin(SAGE) | 84.38(+2.65)  73.07(+3.21)  78.99(+1.79)  72.11(+0.07 . . .

Violin(APPNP) 844415+L28§ 72464E+1425§ 82408((+1‘78)) 71.01E+o 29§ Table 6: Prediction accuracies (%) with limited labels.
Violin(GCN) | 85.22(+2.70)  73.38(+2.36)  81.11(+2.36)  72.49(+0.50)

Violin(GCNII) | 85.63(+1.46) 74.19(+1.73) 81.83(+1.98) 73.18(+0. 72)

Table 4: Node classification accuracy (%) of Violin with different
GNN backbones. (OOM: out of memory.)

Settings Cora Citeseer Pubmed
GCN 82.52 71.02 79.16

Violin(y = a =0) | 82.76(4+0.24) 72.43(+1.41) 79.91(+0.75)
Violin(y = 0) 84.80(+2.28) 72.71(4+1.69) 79.96(+0.80)
Violin(aw = 0) 83.77(+1.25) 73.29(+2.27) 80.76(+1.60)
Violin(p = 0) 84.73(+2.21) 73.07(+2.05) 80.18(+1.02)
Violin(p = 0.3) 84.96(+2.44) 73.06(+2.04) 80.17(+1.01)
Violin(p = 0.6) 84.72(+2.20) 73.32(+2.30) 80.42(+1.26)
Violin(p = 0.9) 83.43(+0.91) 70.99(—0.03) 80.70(+1.54)
Violin (Adaptive p) | 85.22(+2.70) 73.38(+2.36) 81.11(+2.36)

Table 5: Accuracies (%) of Violin(GCN) with different settings.

and the performance is improved by a large margin. This is
because Violin learns not only from the few labeled nodes, but
also from all available data, which encourages it to yield rep-
resentations with better generalization ability. The great im-
provement also reflects that the learning capacity of the listed
GNNss is under-exploited, while introducing Violin releases
their potentials. In addition, we will show (in the following
experiments) that the performance improvement can be more
significant on Ogbna if only limited labels are available.

The Performance of Regularization Terms

We additionally evaluate the two regularization terms of Vio-
lin, i.e., £, and L., in Equation 9. We train Violin(GCN)
by removing the corresponding term but keep other settings
the same. Results are shown in Table 5. Compared with the
vanilla GCN, these two terms consistently improve the per-
formance of Violin. £,, keeps consistency between the two
end-points of VOs, which induces Violin to mine consistent
semantics within the graph. L., forces the model to adapt
to different graph augmentations, encouraging Violin to gen-
erate more robust node representations. These two regular-
ization terms are complementary to each other, which jointly
improves the performance of a model.

Quantitative Studies on the Confidence Threshold

We further investigate the effect of the confidence threshold
p for Violin. Specifically, we train Violin(GCN) with a fixed
p all the time. The results are shown in Table 5. Violin still
works with most static thresholds. However, there does not
exist a static threshold that can fit different datasets. In con-
trast, Violin with adaptive threshold dominates all. The adap-
tive mechanism continually monitors the confidence distri-
butions and finds an appropriate threshold to fit the current
training status when the confidence distribution shifts. This
makes it easier to generalize to different scenarios and there-
fore learn discriminative representations for the task. More
analyses on confidence thresholds refer to Appendix E.6.3.
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5.4 Evaluations with Limited Labels

We additionally investigate the performance of Violin(GCN)
on Ogbna, AmzP and CoCS with limited labels. Specifically,
on Ogbna, we randomly sample 10% of nodes for validation,
1% and 0.5% respectively for training, and the rest for test-
ing. On AmzP and CoCS, we randomly sample 10 and 100
nodes of each class to form the training and validation set
respectively, while the rest is used for testing.

Table 6 shows that Violin consistently boosts GCN across
different low-label rate datasets. More importantly, the per-
formance gain brought by Violin can be more significant
when there are fewer labels. On Ogbna, Violin(GCN) trained
on the 0.5/10/89.5 split can even outperform the vanilla
GCN trained with more labels (the 1/10/89 split). This is
because the introduction of VOs well improves the data uti-
lization on unlabeled nodes. More general patterns can be
captured from the graph and integrated with supervised sig-
nals to help classifications. Such results demonstrate that Vi-
olin is effective to learn from all available data under limited
labels scenarios. Moreover, it can even achieve over 10% im-
provement on other backbones (e.g., GAT and GCNII). When
under more extreme settings (e.g., 4 labels/ class for train-
ing), Violin can still outperform other state-of-the-arts meth-
ods. More details refer to Appendix E.1 ~ E.3.

5.5 Extended Experiments and Analyses

We conduct more experiments to investigate Violin’s charac-
teristics, including its ‘sweet spot’, robustness against noisy
estimations, complexity, etc. Appendix C and E state details.

6 Conclusions

In this paper, we propose a generic framework, Violin, to
enhance common GNNs for semi-supervised learning. By
learning to add virtual overbridges (VOs) between two nodes,
Violin can learn from unlabeled data and purposefully ex-
tends the receptive field towards regions informative to a tar-
get node. A GNN can therefore capture more discriminative
patterns while sharing diverse knowledge with more nodes,
which significantly improves the learning capacity. In addi-
tion, we propose an adaptive thresholding mechanism and uti-
lize consistency regularization training to further enhance the
model. The generated representations are therefore more ro-
bust with better representation power. Violin can be readily
extended to a wide range of GNNs with little computational
overheads. Empirical evaluations show it robust to noisy VOs
and adaptive to various situations with limited labeled data.
Extensive experiments on six datasets demonstrate its great
effectiveness. As Violin is orthogonal to other enhancement
methods, it is also feasible to integrate it with other state-of-
the-arts to further improve GNN’s representation power.
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