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Abstract

Numerous machine learning models can be formu-
lated as a stochastic minimax optimization prob-
lem, such as imbalanced data classification with
AUC maximization. Developing efficient algo-
rithms to optimize such kinds of problems is of
importance and necessity. However, most exist-
ing algorithms restrict their focus on the single-
machine setting so that they are incapable of deal-
ing with the large communication overhead in a dis-
tributed training system. Moreover, most existing
communication-efficient optimization algorithms
only focus on the traditional minimization problem,
failing to handle the minimax optimization prob-
lem. To address these challenging issues, in this pa-
per, we develop two novel communication-efficient
stochastic gradient descent ascent with momen-
tum algorithms for the distributed minimax opti-
mization problem, which can significantly reduce
the communication cost via the two-way compres-
sion scheme. However, the compressed momen-
tum makes it considerably challenging to investi-
gate the convergence rate of our algorithms, espe-
cially in the presence of the interaction between the
minimization and maximization subproblems. In
this paper, we successfully addressed these chal-
lenges and established the convergence rate of our
algorithms for nonconvex-strongly-concave prob-
lems. To the best of our knowledge, our algo-
rithms are the first communication-efficient algo-
rithm with theoretical guarantees for the minimax
optimization problem. Finally, we apply our algo-
rithm to the distributed AUC maximization prob-
lem for the imbalanced data classification task. Ex-
tensive experimental results confirm the efficacy of
our algorithm in saving communication cost.

1 Introduction
Recently, the stochastic minimax optimization problem has
been attracting increasing attention since numerous machine
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learning models can be formulated as a minimax optimiza-
tion problem. For instance, the adversarial training paradigm
[Goodfellow et al., 2014; Madry et al., 2017] solves the maxi-
mization and minimization subproblems alternately to obtain
a robust machine learning model. The AUC maximization
problem is formulated as a minimax optimization problem
in [Ying et al., 2016] to facilitate stochastic training. Mean-
while, with the emergence of distributed data in real-world
machine learning applications, efficiently solving large-scale
stochastic minimax optimization problems becomes an open
challenge. In this paper, we focus on developing efficient op-
timization algorithms to solve the following stochastic mini-
max optimization problem:

min
x∈Rd

max
y∈Rd′

f(x, y) ≜
1

K

K∑
k=1

f (k)(x, y) , (1)

where K is the number of workers, f (k)(x, y) =
Eξ∼D(k) [f (k)(x, y; ξ)] is the loss function on the k-th worker
and D(k) denotes the dataset on the k-th worker. In this paper,
we assume f (k)(x, y) is nonconvex regarding x and strongly-
concave regarding y.

A typical application of Eq. (1) is the imbalanced data clas-
sification task. Specifically, the data in many machine learn-
ing applications is imbalanced, where the number of posi-
tive samples is extraordinarily different from that of negative
samples. For instance, in the click-through rate (CTR) pre-
diction task, there are much fewer positive samples than neg-
ative samples. It is challenging to learn a well-performing
classifier with such kinds of imbalanced data. Recently, to
address this issue, a line of research is to directly optimize
the Area-Under-the-ROC-Curve (AUC) score, rather than the
cross-entropy loss function. Specifically, [Ying et al., 2016]
developed the following minimax loss function for the AUC
maximization problem:
min

w,ŵ1,ŵ2

max
θ

L(w, ŵ1, ŵ2, θ; a, b)

≜ (1− p)(f(w; a)− ŵ1)
2I[b=1]

+ p(f(w; a)− ŵ2)
2I[b=−1] − p(1− p)θ2

+ 2(1 + θ)(pf(w; a)I[b=−1] − (1− p)f(w; a)I[b=1]) ,
(2)

where w ∈ Rd denotes the model parameter of the classifier
f , ŵ1 ∈ R, ŵ2 ∈ R, θ ∈ R are the additional parameters
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for computing AUC score, (a, b) represents the sample’s fea-
ture and label, p denotes the prior probability of the positive
class, and I is an indicator function. Here, when the classifier
f is nonconvex, such as a deep neural network, Eq. (2) is a
nonconvex-strongly-concave problem.

To solve stochastic minimax optimization problems, a lot
of efforts have been made in the past few years. In particular,
numerous stochastic gradient descent ascent (SGDA) algo-
rithms [Lin et al., 2020; Zhang et al., 2020; Qiu et al., 2020;
Yan et al., 2020; Yang et al., 2020; Chen et al., 2021]
have been proposed. For instance, [Lin et al., 2020] devel-
oped mini-batch SGDA and established its convergence rate
for nonconvex-strongly-concave problems. However, this
method requires a large batch size. Thus, it is not practical
for real-world machine learning applications. To address this
issue, [Qiu et al., 2020] developed a momentum SGDA algo-
rithm, which only needs a small constant batch size. Further-
more, a couple of accelerated algorithms [Huang et al., 2020;
Luo et al., 2020; Qiu et al., 2020] have been proposed by in-
corporating the variance reduction techniques [Cutkosky and
Orabona, 2019; Fang et al., 2018]. However, all of these algo-
rithms ignore the distributed setting. They cannot be directly
leveraged to solve Eq. (1) due to the unique challenges, such
as the communication issue, in the distributed setting.

Different from the single-machine setting, the workers
in a distributed training system should communicate fre-
quently with the central server to communicate stochastic
gradients. When the model is large, i.e., x and y are with
high dimensionality, the incurred communication cost will
lead to significant performance bottleneck [Gao et al., 2023;
Qiu et al., 2019]. In recent years, to alleviate the large
communication cost issue, a large number of methods have
been proposed. For instance, [Alistarh et al., 2017; Wen
et al., 2017] proposed to compress the stochastic gradient
for reducing the communication cost. [Stich et al., 2018;
Karimireddy et al., 2019] developed the error-feedback strat-
egy to improve the convergence performance of compressed
gradient algorithms, [Tang et al., 2019; Zheng et al., 2019]
proposed the two-way compression strategy to compress the
uplink and downlink gradient. Recently, [Richtárik et al.,
2021] developed a recursive compressor such that the com-
pression error could be shrunken in the course of training.

However, all aforementioned communication-efficient al-
gorithms only focus on the minimization problem. It’s unclear
whether those techniques still work for the minimax problem.
1) On the algorithmic design side, each worker in Eq. (1) has
to communicate the stochastic gradient regarding x and that
regarding y with the central server. How to compress those
two stochastic gradients such that the communication cost is
reduced and the convergence performance is not impaired has
not been explored yet. 2) On the theoretical analysis side,
how the compressed gradient algorithm for Eq. (1) affects the
convergence has not been investigated. Especially, when the
momentum technique and the compression technique are em-
ployed simultaneously, how they affect the convergence rate
has not been studied. In fact, it is much more challenging to
establish the convergence rate compared with the minimiza-
tion problem due to the interaction between those techniques
in both minimization and maximization subproblems. Thus,

it is necessary to develop communication-efficient algorithms
with theoretical guarantees to solve Eq. (1).

In this paper, to address aforementioned challenges, we
developed two novel communication-efficient stochastic gra-
dient descent ascent algorithms with momentum algorithms.
Specifically, on the algorithmic design side, our first algo-
rithm compresses the momentum, rather than stochastic gra-
dients, in both worker-to-server and server-to-worker direc-
tions by employing the plain error-feedback compression
scheme [Karimireddy et al., 2019]. Our second algorithm
employs the recursive error-feedback compression mecha-
nism [Richtárik et al., 2021] for compressing the momentum
communicated in both directions. As such, the communica-
tion cost can be reduced significantly. On the theoretical anal-
ysis side, we proposed novel theoretical analysis techniques
to establish the convergence rate of our algorithms. Impor-
tantly, our theoretical results demonstrate how the compres-
sion operator and the number of devices affect the conver-
gence rate. To the best of our knowledge, this is the first
work to develop communication-efficient algorithm with the-
oretical guarantees for solving the distributed minimax opti-
mization problem. At last, we apply our algorithm to solve
the AUC maximization problem in Eq. (2) for the distributed
imbalanced classification task. The extensive experimental
results confirm the efficacy of our algorithms in saving com-
munication cost and its effectiveness in preserving the con-
vergence performance. In summary, we made the following
contributions in this paper:

• We developed two novel communication-efficient algo-
rithms for optimizing distributed minimax optimization
problems. This is the first work studying how to reduce
the communication cost for minimax problems.

• We established the convergence rate of our two algo-
rithms, theoretically demonstrating how the compres-
sion operator and the number of workers affect conver-
gence rates.

• We conducted extensive experiments on the imbalanced
classification task, which confirms the effectiveness of
our algorithms.

2 Related Works
2.1 Stochastic Minimax Optimization Algorithms
In machine learning, a large number of models can be for-
mulated as the stochastic minimax optimization problem. A
typical example is the adversarial learning model [Goodfel-
low et al., 2014; Madry et al., 2017], which has been widely
applied in a wide variety of data mining and machine learn-
ing applications. Due to the extensive application of stochas-
tic minimax optimization problem in machine learning, de-
veloping efficient optimization algorithms for this problem
has attracted a surge of attention in the past few years. As
such, a large number of algorithms have been proposed. For
instance, [Lin et al., 2020] leveraged stochastic gradients
to solve the maximization and minimization subproblems,
and established its convergence rate for nonconvex-strongly-
concave problems. This convergence rate is further improved
in [Chen et al., 2021] by assuming that the second moment
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of stochastic gradients is bounded. Furthermore, to accel-
erate the convergence rate of SGDA, [Qiu et al., 2020] de-
veloped two momentum-based algorithms by exploiting the
moving-average strategy and the STORM strategy [Cutkosky
and Orabona, 2019], respectively. Meanwhile, [Luo et al.,
2020] exploited the SPIDER variance-reduced gradient [Fang
et al., 2018] to accelerate SGDA and achieve a better conver-
gence rate than the standard SGDA for nonconvex-strongly-
concave problems.

As for the AUC maximization problem, traditional meth-
ods typically employ a surrogate function, which depends
on a pair of training samples. As such, it is not friendly to
the stochastic training. To address this problem, [Ying et al.,
2016] reformulated it as a minimax loss function, which can
be decomposed into a sum of loss functions regarding individ-
ual samples. As a result, it can be optimized by stochastic gra-
dient algorithms. Based on this reformulated minimax loss
function, a couple of algorithms have been proposed for AUC
maximization. For instance, [Ying et al., 2016] developed a
stochastic online algorithm and established its convergence
rate for convex-concave problems. However, [Ying et al.,
2016] assumes that the classifier is a linear function, which
is too restrictive to be applied to practical machine learning
applications. Later, [Liu et al., 2019] extended it to deep neu-
ral networks so that the loss function becomes nonconvex-
strongly-concave. Then, they developed the stage-wise proxi-
mal primal-dual stochastic gradient algorithm and established
its convergence rate based on the Polyak-Łojasiewicz (PL)
condition. However, all these algorithms just focus on the
single-machine setting so that they are not able to handle the
communication challenges in the distributed setting.

2.2 Communication-Efficient Distributed
Optimization Algorithms

Under the distributed setting, a major concern is the large
communication cost caused by the communication between
workers and the central server. In the past few years,
much progress has gone towards designing communication-
efficient algorithms. The basic idea is to compress the gra-
dient such that fewer bits are demanded in the commu-
nication step. Based on this strategy, a large number of
communication-efficient stochastic gradient descent (SGD)
algorithms [Jiang and Agrawal, 2018; Alistarh et al., 2017;
Wen et al., 2017; Gao et al., 2021; Ivkin et al., 2019; Wangni
et al., 2018; Gorbunov et al., 2020; Gupta et al., 2021] have
been proposed. For instance, [Wen et al., 2017] developed
the TernGrad algorithm, which quantizes gradients to ternary
levels so that the communication cost can be reduced signif-
icantly. [Bernstein et al., 2018] proposed a more aggressive
algorithm, which just communicates the sign of gradient en-
tries. However, these compression strategies introduce a large
gradient variance, which can impair the convergence perfor-
mance. To address this problem, the plain error-feedback
compression strategy was introduced in [Seide et al., 2014;
Stich et al., 2018; Karimireddy et al., 2019]. It is able to re-
duce the gradient bias by compensating the compression er-
ror so that the convergence performance of compressed gradi-
ent algorithms can match that of full-precision counterparts.
Recently, [Richtárik et al., 2021] developed a new recursive

error-feedback compression scheme, which enjoys the con-
tractive compression error property and demonstrates supe-
rior performance in practice. However, all these methods only
investigate the minimization problem.

Regarding the distributed minimax optimization problem,
a few of works have been proposed in recent years. For in-
stance, [Xian et al., 2021; Zhang et al., 2021; Gao, 2022;
Zhang et al., 2023b] developed decentralized stochastic vari-
ance reduced gradient descent ascent algorithms where work-
ers perform peer-to-peer communication. On the other hand,
[Deng and Mahdavi, 2021; Tarzanagh et al., 2022; Sharma et
al., 2022] developed a federated stochastic gradient descent
ascent algorithm for Federated Learning. Moreover, [Guo et
al., 2020; Yuan et al., 2021; Zhang et al., 2023a] studied the
AUC maximization problem under the federated learning set-
ting. These works are orthogonal to our setting because they
reduce the communication cost by skipping the communica-
tion round, rather than compressing gradients. In summary,
designing communication-efficient algorithms for optimizing
Eq. (1) is still an open challenging problem.

3 Methodology
3.1 Problem Setup
The gradient compression technique has been widely studied
in recent years. Typically, the compression operator satisfies
the following property.

Definition 1. A compression operator C : Rd → Rd is α-
contraction if there exists α ∈ (0, 1] such that

∥x− C(x)∥2 ≤ (1− α)∥x∥2 . (3)

The commonly used compression operators that enjoy the
α-contraction property include Top-k operator [Stich et al.,
2018] and the scaled sign operator [Karimireddy et al., 2019].

To investigate the convergence rate of our algorithm, we
assume the loss function satisfies the following assumptions,
which are also commonly used in existing minimax optimiza-
tion works [Lin et al., 2020; Luo et al., 2020; Huang et al.,
2020; Qiu et al., 2020].

Assumption 1. The loss function f (k) on the k-th worker is
L-smooth, i.e., there exists a constant value L > 0 such that

∥∇xf
(k)(z1)−∇xf

(k)(z2)∥ ≤ L∥z1 − z2∥ ,
∥∇yf

(k)(z1)−∇yf
(k)(z2)∥ ≤ L∥z1 − z2∥ ,

(4)

for ∀z1 = (x1, y1) ∈ Rd × Rd′
, ∀z2 = (x2, y2) ∈ Rd × Rd′

.

Assumption 2. The stochastic gradient ∇xf
(k)(x, y; ξ) and

∇yf
(k)(x, y; ξ) have bounded variances, i.e., there exist con-

stant values σx > 0 and σy > 0 such that

E[∥∇xf
(k)(x, y; ξ)−∇xf

(k)(x, y)∥2] ≤ σ2
x ,

E[∥∇yf
(k)(x, y; ξ)−∇yf

(k)(x, y)∥2] ≤ σ2
y ,

(5)

for ∀(x, y) ∈ Rd × Rd′
.

Assumption 3. The loss function f (k) is µ-strongly-concave
with respect to y, i.e., there exists a constant value µ > 0 such
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that

f (k)(x, y1) ≤ f (k)(x, y2) + ⟨∇yf
(k)(x, y2), y1 − y2⟩

− µ

2
∥y1 − y2∥2 ,

(6)

for ∀(x, y1) ∈ Rd × Rd′
, ∀(x, y2) ∈ Rd × Rd′

.

Algorithm 1 SGDAM-PEF

Input: η > 0, γ > 0, λ > 0, ρ1 > 0, ρ2 > 0,
r0 = 0, s0 = 0.

1: for t = 0, · · · , T − 1 do
2: Worker-k:
3: if t == 0 then
4: m

(k)
0 = ∇xf

(k)(x0, y0; ξ
(k)
0 ) , ϕ(k)0 = 0 ,

5: else
6: m

(k)
t = (1− ρ1η)m

(k)
t−1 + ρ1η∇xf

(k)(xt, yt; ξ
(k)
t )

7: end if
8: p

(k)
t = m

(k)
t + ϕ

(k)
t , ϕ(k)t+1 = p

(k)
t − C(p(k)t ) ,

Upload C(p(k)t ) to the central server.
9: if t == 0 then

10: h
(k)
0 = ∇yf

(k)(x0, y0; ξ
(k)
0 ) , ψ(k)

0 = 0 ,
11: else
12: h

(k)
t = (1− ρ2η)h

(k)
t−1 + ρ2η∇yf

(k)(xt, yt; ξ
(k)
t )

13: end if
14: q

(k)
t = h

(k)
t + ψ

(k)
t , ψ(k)

t+1 = q
(k)
t − C(q(k)t ),

Upload C(q(k)t ) to the central server.
15: Server:

ut =
1
K

∑K
k=1 C(p

(k)
t ) + rt , rt+1 = ut − C(ut) ,

vt =
1
K

∑K
k=1 C(q

(k)
t ) + st , st+1 = vt − C(vt) ,

Broadcast C(ut) and C(vt) to all workers.
16: Worker-k:

xt+1 = xt − γηC(ut) , yt+1 = yt + ληC(vt) .
17: end for

3.2 Communication-Efficient Stochastic Gradient
Descent Ascent with Momentum Algorithms

In this paper, we focus on the stochastic gradient descent
ascent with momentum algorithm, where the momentum
stochastic gradient is employed to update the minimization
and maximization subproblems. To reduce the communica-
tion cost, we proposed two communication-efficient stochas-
tic gradient descent ascent with momentum algorithms. In
particular, in Algorithm 1, we developed the communication-
efficient stochastic gradient descent ascent with momentum
algorithm, i.e., SGDAM-PEF, which employs the plain error-
feedback technique to compress the momentum in two direc-
tions. In Algorithm 2, we proposed the SGDAM-REF algo-
rithm, which leverages the recursive error-feedback technique
to compress the momentum in two directions.

Algorithm 1. SGDAM-PEF
Both algorithms exploits the momentum stochastic gradient
to update model parameters. For instance, for the mini-
mization subproblem with respect to x, at the t-th iteration,
each worker k computes the momentum m

(k)
t based on the

Algorithm 2 SGDAM-REF

Input: η > 0, γ > 0, λ > 0, ρ1 > 0, ρ2 > 0,
ū0 = 0 , v̄0 = 0 , û0 = 0 , v̂0 = 0.

1: for t = 0, · · · , T − 1 do
2: Worker-k:
3: Receive xt and yt from the server
4: if t == 0 then
5: m

(k)
0 = ∇xf

(k)(x0, y0; ξ
(k)
0 ) , u(k)0 = 0 ,

6: else
7: m

(k)
t = (1− ρ1η)m

(k)
t−1 + ρ1η∇xf

(k)(xt, yt; ξ
(k)
t )

8: end if
9: p

(k)
t = C(m(k)

t − u
(k)
t ) , u(k)t+1 = u

(k)
t + p

(k)
t ,

Upload p(k)t to the central server.
10: if t == 0 then
11: h

(k)
0 = ∇yf

(k)(x0, y0; ξ
(k)
0 ) , v(k)0 = 0 ,

12: else
13: h

(k)
t = (1− ρ2η)h

(k)
t−1 + ρ2η∇yf

(k)(xt, yt; ξ
(k)
t )

14: end if
15: q

(k)
t = C(h(k)t − v

(k)
t ) , v(k)t+1 = v

(k)
t + q

(k)
t ,

Upload q(k)t to the central server.
16: Server:

ūt+1 = ūt +
1
K

∑K
k=1 p

(k)
t ,

v̄t+1 = v̄t +
1
K

∑K
k=1 q

(k)
t ,

rt+1 = C(ūt+1 − ût), ût+1 = ût + rt+1 ,
st+1 = C(v̄t+1 − v̂t), v̂t+1 = v̂t + st+1 ,
Broadcast rt+1 and st+1 to all workers.

17: Worker-k:
ût+1 = ût + rt+1 , xt+1 = xt − γηût+1 ,
v̂t+1 = v̂t + st+1 , yt+1 = yt + ληv̂t+1 .

18: end for

stochastic gradient as follows:

m
(k)
t = (1− ρ1η)m

(k)
t−1 + ρ1η∇xf

(k)(xt, yt; ξ
(k)
t ) , (7)

where ρ1 and η are two positive hyperparameters such that
ρ1η < 1, ξ(k)t denotes the randomly selected samples from
the local dataset on the k-th worker. Note that the model pa-
rameter x(k)t on the k-th worker is the same with other work-
ers due to the synchronization across all workers. Thus, we
omit the superscript of x(k)t and y(k)t throughout this paper.

Algorithm 1 employs the following error-feedback scheme
to compress the momentum m

(k)
t :

p
(k)
t = m

(k)
t + ϕ

(k)
t , ϕ

(k)
t+1 = p

(k)
t − C(p(k)t ) , (8)

where ϕ
(k)
t+1 denotes the residual error between the full-

precision momentum p
(k)
t , which is the original momentum

m
(k)
t corrected by the residual error ϕ(k)t in the prior itera-

tion, and the compressed momentum C(p(k)t ). Then, C(p(k)t )
is uploaded to the central server and thus the communication
cost is reduced. With such an error-feedback mechanism, we
can control the bias caused by the compression operation to
improve the convergence.

To reduce the communication cost when broadcasting the
global momentum to all workers, we also compress the global
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momentum with the same error-feedback compression mech-
anism to get the compressed global momentum C(ut), which
is shown in Line 15 of Algorithm 1. Then, each worker ex-
ploits this global momentum to update it model parameters.
As for the model parameter y, our algorithm leverages the
same compression technique to reduce communication cost.

It can be observed that our algorithm compresses the mo-
mentum of the minimization and maximization subproblems,
rather than the stochastic gradient, in both worker-to-server
and server-to-worker directions to reduce the communication
overhead. To the best of our knowledge, our work is the first
one applying this technique to the minimax optimization al-
gorithm, especially the compression of the momentum, which
is much more challenging. Specifically, the minimax struc-
ture and momentum cause significant challenges to investi-
gate the convergence rate. We addressed these challenges and
established the convergence rate in Section 4.

Algorithm 2. SGDAM-REF
However, the plain error-feedback mechanism in Algo-
rithm 1 cannot guarantee the residual error converges to zero
[Richtárik et al., 2021]. Therefore, in Algorithm 2, we resort
to the recursive error-feedback compression strategy, which
is first proposed for the minimization problem in [Richtárik et
al., 2021], to compress momentum m

(k)
t as follows:

p
(k)
t = C(m(k)

t − u
(k)
t ) , u

(k)
t+1 = u

(k)
t + p

(k)
t , (9)

where u(k)t+1 can be viewed as an approximation to momen-
tum m

(k)
t . It can be observed that this compression mecha-

nism compress the difference between the original momen-
tumm

(k)
t and the approximated one u(k)t in the prior iteration.

With this compression strategy, u(k)t+1 will converge to m(k)
t ,

which will be shown in our theoretical analysis. Here, p(k)t
is uploaded to the central server and the communication cost
is reduced. Similarly, the maximization subproblem with re-
spect to y also follows the same strategy to compute the local
momentum h

(k)
t and compress it with the recursive compres-

sion strategy to obtain v(k)t+1.
As for the central server, when it receives p(k)t from all

workers, it computes the average ūt+1 = ūt +
1
K

∑K
k=1 p

(k)
t

and compresses it with the same recursive compression strat-
egy, which is shown in Line 16 of Algorithm 2. Then, the
server broadcasts rt+1 to all workers. Similarly, the server
applies the same procedure to the maximization subproblem.
As such, the communication cost in both worker-to-server
and server-to-worker directions are reduced significantly.

After receiving the global rt+1 from the central server,
each worker k updates its local ût+1 and exploits it to update
the local model parameter as follows:

ût+1 = ût + rt+1 , xt+1 = xt − γηût+1 , (10)

where γ > 0 is a hyperparameter. It is worth noting that
all workers and the central server maintain an identical se-
quence {ût}, since û0 = 0 and rt is shared by all workers
and the central server. In addition, due to the employed recur-
sive compression strategy, ût+1 will converge to ūt+1, while

ūt+1 will approach to the global momentum 1
K

∑K
k=1m

(k)
t .

Thus, ût+1 is an approximation to the global momentum. As
such, each worker leverages the compressed global momen-
tum to update its model parameters. Regarding the maximiza-
tion subproblem with respect to y, our algorithm exploits the
same strategy to update it.

Note that the recursive compression strategy is first pro-
posed in [Richtárik et al., 2021]. However, our algorithm is
extraordinarily different from it. First, [Richtárik et al., 2021]
studies the full gradient descent algorithm. Our algorithm fo-
cuses on stochastic gradients. Additionally, [Richtárik et al.,
2021] compresses gradients, while our algorithm compresses
the momentum, which is much more challenging. Second,
[Richtárik et al., 2021] just compresses the gradient sent from
workers to the central server. On the contrary, our algorithm
performs compression on both directions. Thus, our algo-
rithm is able to save much more communication cost. Mean-
while, the two-way compression makes it much more chal-
lenging to establish the convergence rate of our algorithm. At
last, [Richtárik et al., 2021] established the convergence rate
for minimization problem. As such, their convergence analy-
sis does not hold for our minimax optimzation problem. All
in all, our algorithm is significantly different from [Richtárik
et al., 2021] and it is much more challenging to establish the
convergence rate of our algorithm due to the employed two-
way compression and momentum techniques.

4 Theoretical Analysis
To investigate the convergence rate of our algorithm, we first
introduce two auxiliary functions: Φ(x) = maxy f(x, y) and
y∗(x) = argmaxy f(x, y). Then, based on Assumption 1, it
is easy to get that Φ(x) is LΦ-smooth where LΦ = 2L2/µ
[Lin et al., 2020]. Moreover, we introduce an additional as-
sumption about the compression operator in the following,
which has been commonly used in existing works [Alistarh
et al., 2018; Li and Li, 2022; Haddadpour et al., 2021], e.g.,
Assumption 1 of [Alistarh et al., 2018] and Assumption 3 of
[Li and Li, 2022].

Assumption 4. The compression operator C : Rd → Rd

satisfies the following condition:

∥ 1

K

K∑
k=1

a(k) − 1

K

K∑
k=1

C(a(k))∥2 ≤ (1− α)∥ 1

K

K∑
k=1

a(k)∥2,

(11)
where α ∈ (0, 1] and a ∈ Rd.

Then, based on the aforementioned assumptions and auxil-
iary functions, we establish the convergence rate of our algo-
rithm for nonconvex-strongly-concave problems.

Theorem 1. Given Assumptions 1-4, by setting ρ1 > 0, ρ2 >
0, η < min{ 1

2γLΦ
, 1
ρ1
, 1
ρ2
, 1}, and

γ ≤ min
{ λµ2

12L2
,

α2µ

4L2
√

128/ρ21 + 3240 + 2135/ρ22

}
,

λ ≤ min
{ 1

6L
,

3µα4

L2(128/ρ21 + 2134/ρ22 + 2544)

}
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Algorithm 1 has the following convergence rate

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)∥2] ≤
4(Φ(x0)− Φ(x∗))

γηT

+
16L2

ληµT
∥y0 − y∗(x0)∥2 +

400L2σ2
y

3µ2ρ2ηTK

+
400ρ2ησ

2
yL

2

3µ2K
+

8σ2
x

ρ1ηTK
+

8ρ1ησ
2
x

K
,

(12)

where x∗ represents the optimal solution.
Remark 1. From Theorem 1, it can be observed that γ =
O(α4), λ = O(α4), ρ1 = O(1), and ρ2 = O(1).
Remark 2. In terms of Theorem 1, by setting η = O(Kϵ2),
T = O(α

−4

Kϵ4 ), Algorithm 1 can achieve the ϵ-accuracy so-
lution, i.e., 1

T

∑T−1
t=0 E[∥∇Φ(xt)∥2] ≤ ϵ2. The dependence

on α indicates that the compression operation increases the
number of iterations. To the best of our knowledge, this is
the first algorithm disclosing how the compression operation
affects the convergence rate of minimax optimization algo-
rithms. When there is no compression operation, i.e., α = 1,
we can get the iteration complexity O( 1

Kϵ4 ), which indicates
that our algorithm can achieve linear speedup with respect
to the number of devices compared with that O( 1

ϵ4 ) of the
single-machine counterpart [Qiu et al., 2020].
Theorem 2. Given Assumptions 1-4, by setting ρ1 > 0, ρ2 >
0, η < min{ 1

2γLΦ
, 1
ρ1
, 1
ρ2
, 1}, and

γ ≤ min
{ λµ2

20L2
,

µα2

4L2
√
23088 + 891/ρ21 + 22275/ρ22

}
,

λ ≤ min
{ 1

6L
,

9µα4

2L2(23088 + 891/ρ21 + 22275/ρ22)

}
,

Algorithm 2 has the following convergence rate

1

T

T−1∑
t=0

E[∥∇Φ(xt)∥2] ≤
2(Φ(x0)− Φ(x∗))

γηT
+

12ρ21η
2σ2

x

αK

+
12L2

λµηT
∥y0 − y∗(x0)∥2 +

252

α3TK

K∑
k=1

∥∇xf
(k)(x0, y0)∥2

+
6300L2

α3µ2T

1

K

K∑
k=1

∥∇yf
(k)(x0, y0)∥2 +

300ρ22η
2σ2

yL
2

αµ2K

+
1782σ2

x

ρ1α4ηTK
+

44550σ2
yL

2

ρ2α4µ2ηTK
+

252σ2
x

α3TK
+

6300L2σ2
y

α3µ2TK

+
1782ρ1ησ

2
x

α4K
+

44550ρ2ησ
2
yL

2

α4µ2K
+

7200ρ22η
2σ2

yL
2

α3µ2K

+
576ρ21η

2σ2
x

α4K
+

14400ρ22η
2σ2

yL
2

α4µ2K
+

288ρ21η
2σ2

x

α3K
,

(13)
where x∗ represents the optimal solution.

Similarly, we can find that γ = O(α4), λ = O(α4), ρ1 =
O(1), and ρ2 = O(1) in Theorem 2. We can also get the
iteration complexity as follows.

Remark 3. In terms of Theorem 2, by setting η =

O(Kα4ϵ2), T = O(α
−8

Kϵ4 ), Algorithm 2 can achieve the ϵ-
accuracy solution, i.e., 1

T

∑T−1
t=0 E[∥∇Φ(xt)∥2] ≤ ϵ2. This

iteration complexity also indicates the linear speedup with re-
spect to the number of devices. Additionally, compared with
Theorem 1, the learning rate has an additional dependence
on α, resulting a larger iteration complexity O(α

−8

Kϵ4 ) than
O(α

−4

Kϵ4 ) of Theorem 1.

In summary, we established the convergence rate for our
two algorithms, disclosing how the compression operation
and the number of devices affect the convergence rate. To
the best of our knowledge, this is the first work achieving
these theoretical results. In fact, it is challenging to establish
these convergence rates. Specifically, our algorithms com-
press the momentum on both directions so that the interaction
among the momentum technique, compression scheme, and
two subproblems make it difficult to study how the function
value and the compression error evolves across iterations. We
developed novel theoretical analysis strategies, e.g., a novel
potential function for Algorithm 2, to establish the conver-
gence rate. All in all, establishing the convergence rate of our
two algorithms is challenging. Our new theoretical analysis
strategies are novel and can benefit other distributed minimax
optimization, such as federated minimax optimization.

5 Experiments
5.1 Experimental Setup
In our experiments, we apply our two algorithms to the dis-
tributed AUC maximization problem for imbalanced data
classification.

Datasets. In our experiments, five benchmark datasets are
employed to evaluate the performance of our algorithm. They
are CATvsDOG 1, CIFAR10, CIFAR100 2, STL10 [Coates et
al., 2011], Melanoma [Rotemberg et al., 2021]. For the first
four datasets, we partition each dataset into two groups ac-
cording to its classes. Specifically, the first half of classes are
viewed as the positive class, while the second half of classes
are viewed as the negative class. Then, we randomly drop
some samples from the positive class in the training set such
that the ratio between positive samples and all samples is 0.1.
As such, the first four datasets are imbalanced binary classi-
fication datasets. The statistics of all datasets are shown in
Appendix. Then, the training set is randomly distributed to
all workers, while the testing set are the same for all workers.

Experimental settings. To evaluate the performance of our
algorithm, we compare it with the full-precision stochas-
tic gradient descent with momentum algorithm (SGDM),
which is to optimize the cross-entropy loss function, the full-
precision stochastic gradient descent ascent with momentum
algorithm (SGDAM) [Qiu et al., 2020], which is to optimize
the AUC loss function, and the compressed SGDAM without
the error-feedback technique (SGDAM-NEF). To make a fair

1https://www.kaggle.com/c/dogs-vs-cats
2https://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 1: The test AUC score versus the number of iterations when the compression ratio is 80%.
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Figure 2: The test AUC score versus the number of communicated megabytes when the compression ratio is 80%.
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Figure 3: The test AUC score versus the number of communicated
megabytes when using different compression ratios for CIFAR10.

comparison, we use the equivalent learning rate for all algo-
rithms, i.e., 0.1. The compression operator in our experiment
include Top-k and Rand-k where k = 20%. Note that θ in
Eq. (2) is a scalar, which cannot be compressed by Top-k or
Rank-k operators. Thus, we employ the quantization opera-
tor [Alistarh et al., 2017] where the quantization level is set
to 4. More experimental settings can be found in Appendix.

5.2 Results and Analysis
In Figure 1, we report the testing AUC score versus the num-
ber of epochs on testing sets. Here we use four workers
where each worker is a V100-GPU. From Figure 1, we have
the following observations. 1) Our two algorithms with the
error-feedback technique significantly outperform those with-
out error-feedback. 2) Our SGDAM-PEF and SGDAM-REF
can achieve almost the same AUC score, which means the
empirical performance of two error-feedback strategies does
not have significant difference. 3) Our algorithms with Top-
k compressor perform better than the variants with Rand-k
compressor. The possible reason for this phenomenon is that
the Rand-k compressor discards too much informative gradi-
ent components. When using Top-k compressor, our two al-
gorithms can achieve almost the same AUC score as the full-

precision SGDAM. In Figure 2, we plot the testing AUC score
versus the number of communicated megabytes. The same
experimental settings are used as Figure 1. It can be observed
that our two algorithms with Top-k compressor achieve al-
most the same final testing performance as full-precision SG-
DAM under the condition of greatly reducing the commu-
nication cost, which confirms the efficacy of our algorithms
in saving the communication cost and preserving the conver-
gence performance.

To further demonstrate the communication efficiency of
our algorithm, we use different compression ratios for our
algorithms. The testing AUC score versus the consumed
megabytes is shown in Figure 3. Here, due to the limi-
tation of space, we only show the result of CIFAR10 and
three different compression ratio: Top-20%, Top-10%, Top-
5%, and Top-2%. From Figure 3, we can observe our algo-
rithms can achieve almost the same final performance with
full-precision SGDAM consistently, which means that they
are robust to high compression ratios. For example, our al-
gorithm SGDAM-REF-Top5 with 95% compression ratios
still achieve almost the same AUC score compared with full-
precision SGDAM on CIFAR10 dataset.

6 Conclusion

In this paper, we developed two novel communication-
efficient stochastic gradient descent ascent algorithms for dis-
tributed minimax optimization problems. This is the first
work to demonstrate how to reduce the communication cost
of minimax optimization algorithms. Moreover, we estab-
lished the convergence rate, disclosing how the compression
operator and the number of devices affect the convergence
rate. Extensive experimental results confirm the effectiveness
of our algorithms.
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