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Abstract
Typical RL-for-finance solutions directly optimize
trading policies over the noisy market data, such as
stock prices and trading volumes, without explic-
itly considering the future trends and correlations
of different investment assets as we humans do. In
this paper, we present StockFormer, a hybrid trading
machine that integrates the forward modeling capa-
bilities of predictive coding with the advantages of
RL agents in policy flexibility. The predictive cod-
ing part consists of three Transformer branches with
modified structures, which respectively extract effec-
tive latent states of long-/short-term future dynamics
and asset relations. The RL agent adaptively fuses
these states and then executes an actor-critic algo-
rithm in the unified state space. The entire model is
jointly trained by propagating the critic’s gradients
back to the predictive coding module. StockFormer
significantly outperforms existing approaches across
three publicly available financial datasets in terms
of portfolio returns and Sharpe ratios.

1 Introduction
Reinforcement learning (RL) has shown promising results
in practical applications of financial decision-making prob-
lems, such as improving stock trading strategies by identi-
fying promising buying and selling points [Liu et al., 2021;
Zhong et al., 2020]. A common practice is to formulate the
portfolio optimization problem as a Markov decision process
(MDP) [Puterman, 2014] and directly perform model-free RL
algorithms in the state space represented by the observed data
(e.g., stock prices, trading volumes, and technical indicators).
However, it makes an excessively strong assumption that the
observed data is sufficiently informative and can well repre-
sent (i) the correlations between hundreds (or thousands) of
stocks and (ii) the underlying (or even future) dynamics in the
rapidly changing financial markets.

To address this issue, we consider the way in which hu-
mans make investment decisions. There are two factors that
require special consideration, that is, the dynamic stock cor-
relations and the expected returns of each stock in both long-
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and short-term horizons. We present StockFormer, a novel
RL agent that learns to adaptively discover and capitalize on
promising trading opportunities. It is a hybrid trading machine
that integrates the forward modeling capabilities of predictive
coding with the advantages of actor-critic methods for trading
flexibility. Predictive coding [Elias, 1955; Spratling, 2017;
Rao and Ballard, 1999] is one of the most successful self-
supervised learning methods in natural language processing
[Mikolov et al., 2013] and computer vision [Oord et al., 2018],
whose core idea is to extract useful latent states from noisy
market data that can maximally benefit the prediction of future
or missing contextual information.

Specifically, we leverage three Transformer-like networks to
respectively learn long-horizon, short-horizon, and relational
latent representations from the observed market data. To ease
the difficulty of concurrent time series modeling, StockFormer
employs multi-head feed-forward networks in the attention
block, which can maintain the diversity of temporal patterns
learned from multiple concurrent market asset series (e.g.,
trading records of hundreds of stocks in the same time pe-
riod). For policy optimization, the three types of latent states
are adaptively and progressively combined through a series
of multi-head attention structures. StockFormer exploits the
actor-critic method but only propagates the critic’s analytic
gradients back into the relational state encoder.

Notably, there exists another line of work that aims to im-
prove future stock prediction accuracy with powerful time
series modeling networks [Li et al., 2018; Feng et al., 2019;
Wang et al., 2021; Duan et al., 2022]. They use fixed trading
rules, such as “buy-and-hold”, which recycles capital from un-
successful stock bets to average in on stocks that have promis-
ing future returns and hold them for a fixed period of time. As
shown in Table 1, despite recent success, these models are not
directly designed to maximize investment returns and cannot
provide flexible trading decisions.

We empirically observe that StockFormer remarkably out-
performs existing stock prediction and RL-for-finance ap-
proaches across three public datasets from NASDAQ and
Chinese stock markets as well as the cryptocurrency market.

2 Related Work
RL for finance. There have been many attempts to use RL
methods to make trading decisions [Théate and Ernst, 2021;
Weng et al., 2020; Liang et al., 2018; Benhamou et al., 2020].
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Model Category Trading policy RL state space

FactorVAE [Duan et al., 2022] Stock prediction Fixed (e.g., buy-and-hold) n/a
SARL [Ye et al., 2020] RL-for-finance Learned Observed asset prices + Asset movement signal
StockFormer Hybrid Learned Temporal + Relational predictive coding (via SSL)

Table 1: StockFormer is a hybrid trading framework that is clearly different from the previous art of (a) stock prediction methods and (b)
RL-for-finance methods. In SARL, a typical “asset movement signal” is the financial new embedding. “SSL”: Self-supervised learning.

Main differences of these models include: the definition of the
input states [Zhong et al., 2020; Liu et al., 2021; Weng et al.,
2020], the engineering of reward functions [Liang et al., 2018;
Hu and Lin, 2019], and the RL algorithms [Benhamou et al.,
2020; Suri et al., 2021; Huotari et al., 2020]. SARL [Ye et
al., 2020] proposed to learn policy in the noisy observation
space and expand the space with additional asset movement
signals such as financial news embeddings. FinRL [Liu et al.,
2021] integrates multiple off-the-shelf RL algorithms such as
Soft Actor-Critic (SAC) [Haarnoja et al., 2018] and DDPG
[Lillicrap et al., 2016]. It defines the states as a combination
of the covariance matrix of the close prices of all stocks and
the MACD indicators, whose dimension will sharply increase
with the growth of the number of stocks. We use its SAC
implementation as the baseline of StockFormer.

Stock prediction. Mainstream stock prediction approaches
can be divided into three categories. CNN-based models [Ho-
seinzade and Haratizadeh, 2019; Wen et al., 2019] take the
historical data of different stocks as a set of input feature
maps of a convolutional neural network. RNN-based mod-
els [Li et al., 2018; Zhang et al., 2017; Qin et al., 2017]
are better at capturing the underlying sequential trends in
stocks. Other network architectures use attention mecha-
nisms [Hu et al., 2018; Li et al., 2018; Wu et al., 2019],
dilated convolutions [Wang et al., 2021; Cho et al., 2019], or
graph neural networks [Feng et al., 2019; Wang et al., 2021;
Patil et al., 2020] to jointly model the long-term dynam-
ics and the relations of trading assets. Inspired by previ-
ous Transformer-based architectures [Vaswani et al., 2017;
Kitaev et al., 2020; Zhou et al., 2021; Wu et al., 2021;
Fedus et al., 2021], StockFormer integrates Transformer in
the RL-for-finance framework. It borrows the idea of self-
supervised predictive coding as a representation learning
method to extract useful and compact latent states from noisy
and high-dimensional market data.

3 Portfolio Optimization as POMDPs
We believe that: One of the key challenges of RL-for-finance
is to extract useful states that can reflect the essential dynam-
ics of the market from noisy, high-dimensional raw transac-
tion records. Therefore, unlike previous work that commonly
treats portfolio optimization as an MDP problem with 5-tuples
(S,A, T ,R, γ), in this paper, we take it as partially observ-
able Markov decision processes (POMDPs) with 7-tuples
(O,S,A, T ,Z,R, γ), where O is the observation space of
the noisy market data, S is the state space, A is the action
space, T (st+1|st, at) denotes the state transition probability,
Z(Ot|st) is the prior distribution of the observed dataOt given
latent state st. Assuming a fixed length of P steps in each

episode (e.g., we use 1,000 trading days for the stock trading
experiments), the goal is to learn the optimal policy π∗ that can
maximize the total payoff: Gt = Eτ∼π[

∑P
t=1 γ

t−1Rt], where
the Rt is the immediate reward at each time step drew from
the reward function R(s, a) and γ ∈ (0, 1) is the discount
factor of future rewards. We here give detailed definitions of
O, S , A, and R as follows.

Noisy observation space (O). Let us take the stock trading
problem for instance. The observed data includes:

• Raw trading records Oprice
t ∈ RT×N×5 that involve daily

opening, close, highest, lowest prices, and trading volume
during the past T days, where N is the number of stocks.

• Technical indicators Ostat
t ∈ RN×K , where K is the number

of indicators that capture the dynamics of the time series.

• A covariance matrix Ocov
t ∈ RN×N between sequences of

daily close prices of all stocks over a fixed period before t.

In the following sections, we use Orelat
t ∈ RN×(K+N) to

denote the concatenation of Ostat
t and Ocov

t .

Compositional state space (S). The state space of Stock-
Former is composed of three types of latent states and the
explicit account state samount

t ∈ RN+1 that represents the total
account balance and the holding amount of each trading asset.

Action space (A). We have a continuous action space such
that at ∈ RN , indicating the amount of buying, holding, or
selling shares on each trading asset. To simulate real-world
trading scenarios, we discretize at into multiple intervals of
daily trading signals when interacting with the environment.

Reward function (R). The reward Rt ∼ R(st, at) is de-
fined as the daily portfolio return ratios.

4 StockFormer
As aforementioned, we have highlighted the challenge of RL-
for-finance methods, that is, learning flexible policies aware
of the dynamic relations between a batch of trading targets in
the financial market and the future trends of each individual
of them. To tackle this challenge, we introduce StockFormer,
an RL agent that extracts disentangled latent states from noisy
time series data through predictive coding, and then optimizes
the trading decisions in the compositional state space. There-
fore, StockFormer consists of two training phases: predictive
coding and policy learning.

4.1 Predictive Coding
In this phase, three Transformer-like network branches are
trained in a self-supervised manner to respectively learn the
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Figure 1: Left: Diversified multi-head attention block (DMH-Attn), which improves the original attention block in Transformers with
multi-head feed-forward networks. It captures the diverse patterns of concurrent time series in different sub-spaces. Right: The general
architecture of Transformer branches learned through predictive coding, which extracts useful representations for the RL agent by maximizing
the likelihood of predicting the missing context or future returns of the financial market.

relational, long-horizon, and short-horizon hidden represen-
tations. The key insight of so-called predictive coding [Elias,
1955; Spratling, 2017; Rao and Ballard, 1999] is to extract use-
ful representations that are maximally beneficial for predicting
future, missing or contextual information. These representa-
tions jointly form the compositional state space in the next
training phase for learning the investment policy. Next, we
first introduce an improved Transformer architecture and then
discuss the predictive coding methods for the relational and
predictive representations respectively.
Building block: Diversified multi-head attention. The
diversity of temporal patterns among the concurrent sequences
of multiple trading assets in financial markets (e.g., hundreds
of stocks) greatly increases the difficulty of learning effective
representations from raw data. To tackle this difficulty, as
shown in Figure 1 (Left), we renovate the multi-head attention
block in the original Transformer with a group of feed-forward
networks (FFNs) rather than a single FFN, in which each
FFN individually responds to a single head in the output of
the multi-head attention layer. Without changing the overall
number of parameters, such a mechanism strengthens multi-
head attention’s original feature decoupling ability, which
facilitates modeling the diverse temporal patterns in different
subspaces. We thus refer to the modified attention block as
diversified multi-head attention (DMH-Attn). For a set of
dmodel-dimensional keys (K), values (V ), and queries (Q),
the process in a diversified multi-head attention block can be
represented as follows. We split the output features Z of the
multi-head attention layer by h along the channel dimension,
where h is the number of parallel attention heads, and then
apply a separate FFN to each group of separated features in Z:

Z = MH-Attn(Q,K, V ) +Q, xi = Split(Z)
fi = max(0, xiW1,i + b1,i)W2,i + b2,i
DMH-Attn(Q,K, V ) = Concat(f1, ..., fh) + Z,

(1)

where “MH-Attn” denotes multi-head attention, fi denotes the
output features of each FFN head, which contains two linear
transformations with the ReLU activation in between.
General predictive coding architecture. Each Transformer
branch in StockFormer can be divided into encoder and de-

coder layers, as shown in Figure 1 (Right). Both parts are
used in the predictive coding phase with different training
objectives, but only the encoder layers are used during pol-
icy optimization. We have L encoder layers and M decoder
layers. The representations XL

enc of the final encoder layer is
used as one of the inputs of each decoder layer. The computa-
tion in the lth encoder layer and the mth decoder layer can be
presented as follows:

Encoder Layer:

X l
enc = DMH-Attn(X l−1

enc , X
l−1
enc , X

l−1
enc )

Decoder Layer:

Fm−1
dec = MH-Attn(Xm−1

dec , Xm−1
dec , Xm−1

dec ) +Xm−1
dec

Xm
dec = DMH-Attn(Fm−1

dec , XL
enc, X

L
enc),

(2)

where X l
enc and Xm

dec are the output of the encoder and de-
coder layer respectively. Specifically, X0

enc and X0
dec are the

inputs of the the first encoder and decoder layers, which are
the positional embedding [Vaswani et al., 2017] of the raw
input data Oenc and Odec. XM

dec by the last decoder layer are
then fed into a projection layer to generate the final output in
each predictive coding task, that is, predicting future returns
or reasoning about the missing (masked) information in the
financial market at this moment.
Relation inference module (1st Transformer branch). As
shown in Figure 2, the relation inference module is used to
capture the dynamic correlations among concurrent time series,
e.g., different stocks. At time step t, we use the same input for
the encoder and the decoder, Orelat

enc,t = Orelat
dec,t ∈ RN×(K+N),

where N is the number of concurrent trading assets and K
is the number of statistics that capture the dynamics of the
time series data. Particularly for the stock market datasets,
we use common technical indicators as the statistics, such as
MACD, RSI, and SMA. During the training phase, Orelat

enc,t can
be divided into two parts:
• The covariance matrix Ocov

t ∈ RN×N between sequences
of daily close prices of all concurrent trading assets over a
fixed period of time before t.
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Figure 2: Unlike previous RL-for-finance methods, StockFormer builds the decision module upon learned representations provided by a
relation inference module and two future prediction modules. The decision module contains a couple of multi-head attention layers that
integrate the compositional representations, an actor network, and a critic network. In particular, the critic propagates its gradients of state
values back into the relation inference module (Solid arrow: the data flow; Dashed arrow: the gradient flow of the critic loss).

• The masked statistics Ostat
t ∈ RN×K , in which we randomly

select half of the time series and mask their input statistics
by zero. It is worth noting that in the test phase, we use
complete data without masks as input to the module.

The task of the relation inference module is to reconstruct the
masked statistics (i.e., technical indicators) given Ocov

t and the
remaining visible statistics. The self-supervised loss function
in this module can be represented as:

J relat
t = J (Ôstat

t , Ōstat
t ) =

1

N

∑

n

||Ôstat
t , Ōstat

t ||2, (3)

where Ôstat
t and Ōstat

t are the reconstructed values of the
masked statistics and their ground truth. Intuitively, such
a predictive coding method drives the Transformer encoder
to capture the dependencies among the concurrent time series
(i.e., stocks). The relation inference module provides its final
encoding features (i.e., XL

enc in the above descriptions of the
general architecture) for the subsequent decision module, as
parts of the state space of the RL agent, denoted by srelat

t .

Future prediction modules (2nd&3rd branches). In the
short-term prediction module, the task is to predict the return
ratio of each stock1 for the next day (H = 1). In this module,
we use different inputs for the encoder and the decoder. The
inputs of the encoder are Oprice

enc,t ∈ RT×5, which involve daily
opening, close, highest, lowest prices, and trading volumes
during the past T days. We feed the transaction records at
step t to the decoder, i.e., Oprice

dec,t ∈ R1×5. Similar to the short-
term prediction module, the long-term prediction module is
to predict the return ratios in a longer future horizon (e.g.,
H = 5 for daily stock trading). The long-term prediction task
encourages the Transformer branch to capture future dynamics
from a longer perspective. We adopt the regression loss and

1We here take daily stock trading as an example.

stock ranking loss from [Feng et al., 2019]:

J future
t = J (r̂t+H , rt+H) = ||r̂t+H − rt+H ||2 +

α
N∑

i=1

N∑

j=1

max
(
0,−

(
r̂t+H
i − r̂t+H

j

) (
rt+H
i − rt+H

j

))
,

(4)

where rt+H = [rt+H
1 , . . . , rt+H

N ] denotes the true future re-
turn ratios of all stocks, rt+H

i = (pt+H
i − pti)/p

t
i, p

t
i is the

closing price of stock i on day t, r̂t+H = [r̂t+H
1 , . . . , r̂t+H

N ]
is the predicted return ratios of all stocks, and α is a hyperpa-
rameter used to balance the weight of the two loss terms. The
second term encourages the predicted ranking of any pair of
stocks to maintain the same order as the ground truth. We here
use the output features of the decoders (i.e., XM

dec before the
projection layer) in the future prediction modules as parts of
the states of the RL agent (i.e., slong

t and sshort
t ).

4.2 Policy Optimization
In the second training phase, StockFormer integrates the three
types of latent representations into a unified state space S ⊆
RN×(D+1) through a series of multi-head attention layers
and then exploits an actor-critic method to learn the trading
policy. StockFormer learns flexible trading strategies by taking
full advantage of the future trends of each time series in the
long/short time horizon, as well as the dynamic relationships
between dozens of concurrent trading assets.

Latent states integration. With predictive coding, we ob-
tain informative latent representations from three Transformer
branches, denoted by srelat

t ∈ RN×D, slong
t ∈ RN×D, and

sshort
t ∈ RN×D. Therefore, the first question in the decision-

making module is how to integrate different types of predic-
tive embeddings into a unified state space. We use a cascaded
multi-head attention mechanism as follows so that the decision
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module can be informed with the predicted future informa-
tion in the financial market, as well as the dynamic relations
between different trading targets.

sfuture
t = MultiHead-Attn(slong

t , sshort
t , sshort

t ) + slong
t

sht = MultiHead-Attn(sfuture
t , srelat

t , srelat
t ) + sfuture

t

st = Concat(sht , s
hold
t ),

(5)

where sfuture
t and sht are the outputs from each multi-head

attention layer, slong
t is used as the query in the first MH-Attn

unit as it is less vulnerable to short-term noise than sshort
t and

sfuture
t is used as the query to extract more effective relational

features. We combine sht with the shares of all trading targets
that we hold at a certain time step, shold

t ∈ RN×1, to form
the final states st ∈ RN×(D+1), and then feed st into the
actor network and the critic network. In the experiments, we
empirically show the effectiveness of the proposed architecture
of the decision module: Exploiting a series of multi-head
attention layers better integrates different sources of latent
representations into a unified state space, which can eventually
benefit policy optimization.
Joint learning with RL objectives. We use the soft actor-
critic (SAC) [Haarnoja et al., 2018] to learn the trading pol-
icy in the unified state space. The critic network learns the
parametric soft Q-function by minimizing the following soft
Bellman residual and propagates the analytic gradients of
state values back into the relation inference module which
is adopted from previous actor-critic approaches with visual
inputs [Lee et al., 2020; Yarats et al., 2021]. In other words,
we allow for the joint training of the two training phases of
predictive coding and policy learning in this stage, so that the
critic’s evaluation of the state values can further help to mine
the correlations between the trading assets from noisy and
high-dimensional observation data. The advantage of learning
a hybrid trading machine is that the two training phases can be
deeply bound, which integrates the forward modeling capabili-
ties of predictive coding with the advantages of Rl-for-finance
methods for the flexibility of the trading policy. Specifically,
we optimize the critic loss J (Q) by

min
ϕ,ψ

E(st,at)∼D[1/2(Q(st, at)− Q̂(st, at))
2], where

Q̂(st, at) = Rt + γ (Qϕ′ (st+1, at+1)− λ log πθ (at+1 | st+1)) ,
(6)

where θ, ϕ, and ψ represent the parameters from the actor
network, the critic network, and the relation inference module
respectively, D is the replay buffer,Qϕ′ is the target Q network
and at+1 ∼ πθ (· | st+1). For the actor loss J (πθ), we have

min
θ

Est∼D [DKL(πθ(·|st) ∥ exp(Qϕ(st, ·))/Zϕ(st))], (7)

where Zϕ is a normalization factor.

5 Experiments
5.1 Compared Methods
We compare StockFormer with the following methods:
• The “market benchmarks” in terms of CSI-300 Index and

NASDAQ Composite Index.

Market # Assets # Train Days # Test Days

CSI-300 88 1935 728
NASDAQ-100 86 2000 756
Cryptocurrency 27 1108 258

Table 2: Statistical details of the finance investment datasets.

• Min-variance portfolio allocation strategy (Min-Var) [Basak
and Chabakauri, 2010] that balances returns and risks.

• Recent advances for stock prediction [Wang et al., 2021;
Feng et al., 2019; Duan et al., 2022] and a cutting-edge
Transformer model for general time series prediction [Wu
et al., 2021]. We here use the “buy-and-hold” strategy, in
which we buy a stock each day that has the highest estimated
return in the next 5 days and sell it 5 days later .

• RL methods, including SAC [Haarnoja et al., 2018], DDPG
[Lillicrap et al., 2016], and SARL [Ye et al., 2020]. The
first two models are implemented on the FinRL platform
[Liu et al., 2021] and directly perform policy learning on
the technical indicators and the covariance matrix between
the trading targets. We reproduce the SARL and feed the
current asset prices (rather than the financial news) to its
external state encoder for a fair comparison.

All models are experimented with the transaction costs and
each RL method is performed three times with different seeds.

5.2 CSI-300 Stock Dataset
This dataset contains stock data from the CSI-300 Composite
Index from 01/17/2011 to 12/30/2021. As shown in Table 2,
the dataset is divided into the training and test splits containing
the basic stock price-volume information in 1,935 days and
728 trading days respectively. Furthermore, we follow [Feng
et al., 2019] to retain the stocks that have been traded on more
than 98% training days since 01/17/2011. Our investment pool
contains 88 stocks. If a stock in the training set is suspended
from trading, we interpolate the missing data in using the daily
rate of change of the CSI-300 Composite Index.

Figure 3(Left) shows qualitative results of the accumulated
portfolio return on the CSI-300 test set. It shows that Stock-
Former outperforms other compared models by large mar-
gins, including both stock prediction models trading with
the “buy-and-hold” strategy, as well as the RL-for-finance
methods. Notably, the red curve presents the results of the
proposed long-term prediction module without involving any
other branches or the decision module in StockFormer, which
is trained to predict future returns in 5 days and works with
the “buy-and-hold” strategy as other stock prediction models.
The remarkable advantage of this baseline model compared
with existing approaches, including HATR [Wang et al., 2021],
Relational Ranking [Feng et al., 2019], and AutoFormer [Wu
et al., 2021], demonstrates the powerful dynamics modeling
capability of the proposed Transformer architecture with di-
versified multi-head attention.

Table 3 provides corresponding quantitative results. Besides
the total portfolio return (PR), we follow the work of Factor-
VAE [Duan et al., 2022] to include annual return (AR), Sharpe
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Method CSI-300 NASDAQ-100 Cryptocurrency
PR↑ AR↑ SR↑ MDD↓ PR↑ AR↑ SR↑ MDD↓ PR↑ SR↑

Market benchmark 0.24 0.08 0.51 0.18 1.05 0.30 1.16 0.30 - -
Min-Var [Basak and Chabakauri, 2010] 0.11 0.04 0.38 0.13 0.59 0.18 0.99 0.26 -0.09 0.02

HATR [Wang et al., 2021] -0.02 -0.01 0.14 0.45 0.08 0.28 0.25 0.41 -0.65 -0.66
Relational Ranking [Feng et al., 2019] -0.01 -0.01 0.17 0.45 0.96 0.28 0.95 0.30 - -
FactorVAE [Duan et al., 2022] 1.37 0.38 1.27 0.17 1.20 0.33 0.99 0.24 - -
AutoFormer [Wu et al., 2021] 0.08 0.03 0.25 0.40 -0.25 -0.10 -0.21 0.42 -0.27 -0.16
Our future prediction module (t+ 5) 0.89 0.27 0.73 0.49 0.66 0.20 0.64 0.44 -0.40 -0.71

SARL [Ye et al., 2020] 1.59 0.39 1.38 0.31 1.22 0.30 0.99 0.34 0.06 0.43
FinRL-SAC [Liu et al., 2021] 1.76 0.42 1.41 0.34 1.38 0.34 1.24 0.33 0.10 0.55
FinRL-DDPG [Liu et al., 2021] 1.43 0.36 1.23 0.39 0.83 0.22 0.87 0.33 0.15 0.60
StockFormer 2.47 0.54 1.73 0.31 1.71 0.40 1.39 0.31 0.24 0.75

Table 3: Quantitative results in portfolio return (PR), annual return (AR), Sharpe ratio (SR), and maximum drawdown (MDD) on the test splits
of the stock market datasets. Transaction costs are included in buying and selling actions. For stock prediction methods (Rows 3-7), we use the
“buy-and-hold” strategy. In the last two columns, we show the results on the cryptocurrency dataset.

Figure 3: Accumulated portfolio returns on the CSI (Left) and NASDAQ (Right) test sets. We use the “buy-and-hold” strategy for the stock
prediction models, including HATR, FactorVAE, and our baseline model (i.e., the long-term prediction Transformer branch in StockFormer).

ratio (SR), and maximum drawdown (MDD) as the evalua-
tion metrics. It is worth noting that the final StockFormer
further improves the future prediction baseline (Row 7) and
significantly outperforms all of the stock prediction models by
learning flexible RL strategies. StockFormer also outperforms
the vanilla SAC by 40.3% (1.76 → 2.47) in the portfolio re-
turn and by 22.7% (1.41 → 1.73) in the Sharpe ratio. Such a
profit boost comes from executing policy optimization over
the extracted relational and predictive states.

5.3 NASDAQ-100 Stock Dataset
For the NASDAQ stock dataset, we collect the daily price-
volume records and related technical indicators between
01/17/2011 and 12/30/2021 from Yahoo Finance. Like in CSI-
300, we use the 98% criteria to filter stocks, which derives
an investment pool of 86 stocks, and then fill in the missing
data based on the daily rate of change of the NASDAQ 100
Index. We construct the training and test datasets that involve
2,000 and 756 trading days respectively. As shown in Table 3
and Figure 3(Right), on the NASDAQ-100 test set, due to the

effectiveness of predictive coding, StockFormer improves the
vanilla SAC by 23.9% (1.38 → 1.71) in the portfolio return
and by 12.1% (1.24 → 1.39) in Sharpe ratio.

5.4 Cryptocurrency Dataset
We further evaluate StockFormer by using it to make trading
decisions in the cryptocurrency market. With the 98% filtering
criteria, we select 27 cryptocurrencies and collect their daily
records between 11/01/2017 and 05/01/2022 from Yahoo Fi-
nance. We split the data into a training set of 1,108 trading
days and a test set of 258 trading days.

An interesting result in Table 3 is that most stock prediction
models present negative return ratios on the test set, even worse
than the Min-Var baseline. We suspect that this is due to the
complexity and the non-stationarity of the cryptocurrency data.
In other words, it is difficult to model the temporal dynamics
accurately in such data scenarios, which further highlights the
advantage of the model-free RL methods. For FinRL, SARL,
and StockFormer, they do not explicitly model the transition
function in the state space, and can flexibly produce more
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Input latent states of RL agents PR SR

W/o relational states 1.42 1.43
W/o short-term predictive states 1.53 1.43
W/o long-term predictive states 1.45 1.34
StockFormer (Final) 2.47 1.73

Table 4: Ablation study of the necessity of individual branches in
StockFormer on CSI. We remove each branch separately while main-
taining the other two branches for the decision module.

Relation module Future prediction modules PR SR

FFN FFN 1.29 1.27
Multi-head FFN FFN 1.48 1.29

FFN Multi-head FFN 1.52 1.31
Multi-head FFN Multi-head FFN (StockFormer) 1.71 1.39

Table 5: Ablation study of the proposed multi-head FFN in attention
blocks in StockFormer on NASDAQ, compared with the original
attention block [Vaswani et al., 2017] with conventional FFNs.

conservative trading policies (as shown by the Sharpe ratios).
Another interesting fact in Table 3 is that while the future

prediction module in StockFormer results in a negative portfo-
lio return when working alone, its predictive coding states can
still benefit the hybrid trading machine when integrated into
StockFormer. We can see that StockFormer achieves positive
and the best performance, which has a 140.0% (0.10 → 0.24)
improvement over the vanilla SAC method in the portfolio
return and a 36.4% (0.55 → 0.75) improvement in Sharpe
ratio, showing the ability to control the investment risks.

5.5 Ablation Study
Necessity of individual Transformer branches. To verify
the performance of the relation inference module and future
prediction modules, we compare three variants of StockFormer
on the CSI dataset. From Table 4, we can see that removing
any encoding branch leads to a remarkable performance drop,
and each branch makes essential contributions to the final per-
formance of our final approach. The results demonstrate that
the relation module and prediction modules provide comple-
mentary representations to the decision module from different
perspectives of concurrent time series modeling.

Performance gain of the modified attention block. Table
5 compares the results of three StockFormer variants, in which
we may use the original Transformer architecture without the
proposed multi-head FFNs in any one of the three predictive
coding branches. These results show that multi-head FFNs
can effectively improve the attention block in Transformer by
mitigating the difficulty of concurrent time series modeling.

Design of the decision module. An important question is
how to integrate different types of predictive embeddings into a
unified state space. To answer this question, we study different
network structures for fusing the relational and long-/short-
term predictive states in the decision module and show the
results in Table 6. By replacing the multi-head attention layers
in StockFormer with two fully connected layers (denoted by
“2-layer FFN”), we observe that the portfolio return drops

State fusion in decision module PR SR

2-layer FFN 1.62 1.31
2-layer multi-head attention (StockFormer) 1.71 1.39

Table 6: Evaluation on NASDAQ of different methods that integrate
the relational states and the predictive states in the decision module.

Actor gradient Critic gradient PR SR

✗ ✗ 0.03 0.35
✓ ✗ 0.02 0.35
✗ ✓(StockFormer) 0.24 0.75

Table 7: Ablation study of back-propagating the actor-critic gradients
to the relation inference module on the cryptocurrency dataset.

from 1.71 to 1.62 and the Sharpe ratio drops from 1.39 to
1.31. The results validate the effectiveness of the proposed
architecture of the decision module: Exploiting a series of
multi-head attention layers better integrates different sources
of latent representations into a unified state space, which can
eventually benefit policy optimization.

Joint training vs. Two separate training stages. The two
training phases, predictive coding and policy learning, are
closely related. In Table 7, we experiment with different
gradient back-propagation solutions in the policy learning
phase of the actor-critic method. We observe that StockFormer
achieves the best results by passing the gradients of the critic
loss back into the relation inference module. It significantly
improves the baseline model with two separate training phases
(PR: 0.03 → 0.24), in which the RL agent does not propagate
any gradients back to the predictive coding modules. We
believe that the critic’s evaluation of the state values can further
help to mine the correlations between the trading assets from
noisy and high-dimensional observation data. These results
show the superiority of the joint learning mechanism.

6 Conclusions

This paper presents StockFormer, an RL approach for finan-
cial market decision-making. It has two main contributions.
First, it incorporates predictive coding in the actor-critic RL
framework, which integrates the advantages of existing stock
prediction models in learning future dynamics and the ad-
vantages of RL-for-finance methods in learning more flexible
polices. Second, we proposed to use three branches of the
modified Transformers to learn a mixture of long–/short-term
predictive states and relational states. These three types of
states are then combined adaptively and progressively through
a series of attention structures in the decision-making module,
such that the RL agent can optimize the decisions in a unified
and meaningful state space. StockFormer shows competitive
results on three finance datasets compared with a wide range
of deep learning approaches, including both stock prediction
and RL-for-finance models.
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