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Abstract

Set Cover is a fundamental problem in combinato-
rial optimization which has been studied for many
decades due to its various applications across mul-
tiple domains. In many of these domains, the in-
put data consists of locations, relationships, and
other sensitive information of individuals which
may leaked due to the set cover output. Attempts
have been made to design privacy-preserving algo-
rithms to solve the Set Cover under privacy con-
straints. Under differential privacy, it has been
proved that the Set Cover problem has strong im-
possibility results and no explicit forms of the out-
put can be released to the public.
In this work, we observe that these hardness results
dissolve when we turn to the Partial Set Cover prob-
lem, where we only need to cover a ρ ∈ (0, 1) frac-
tion of the elements. We show that this relaxation
enables us to avoid the impossibility results, and
give the first algorithm which outputs an explicit
form of set cover with non-trivial utility guarantees
under differential privacy. Using our algorithm as a
subroutine, we design a differentially private bicri-
teria algorithm to solve a recently proposed facil-
ity location problem for vaccine distribution which
generalizes the k-supplier with outliers. Our anal-
ysis shows that relaxing the covering requirement
to serve only a ρ ∈ (0, 1) fraction of the popula-
tion/universe also allows us to circumvent the in-
herent hardness of k-supplier and give the first non-
trivial guarantees.

1 Introduction
Data privacy is a fundamental challenge in many real world
applications of data-driven decision making where there is a
risk of inadvertently revealing private information. Differen-
tial privacy, introduced in [Dwork et al., 2006], has emerged
as a widely accepted formalization of privacy, which gives
rigorous parameterized guarantees on the privacy loss while
simultaneously enabling non-trivial utility in algorithmic and
statistical analysis. Differential privacy is defined in terms of
datasets which differ by one individual, called neighboring

datasets, and requires that the output of a mechanism is (ap-
proximately) indistinguishable when run on any two neigh-
boring datasets. Formally, it is defined as:
Definition 1.1. M : Xn → Y is (ϵ, δ)-differentially private
if for any neighboring datasets X,X ′ ∈ Xn and S ⊆ Y ,

Pr[M(X) ∈ S] ≤ exp(ϵ) Pr[M(X ′) ∈ S] + δ.

If δ = 0, we say M is ϵ-differentially private.
Differentially private algorithms have now been developed

for a number of problems ranging from statistics [Canonne et
al., 2020; Brown et al., 2021], machine learning and deep
learning [Lee and Kifer, 2018; Ghazi et al., 2021], social
network analysis [Nissim et al., 2007; Hay et al., 2009;
Karwa et al., 2011], and combinatorial optimization [Mitro-
vic et al., 2017; Esencayi et al., 2019; Nguyen and Vullikanti,
2021]. See [Dwork and Roth, 2014; Vadhan, 2017] for a sur-
vey on the techniques used.

In this work, we consider a fundamental problem in com-
binatorial optimization: the Set Cover problem [Williamson
and Shmoys, 2011], which involves choosing the smallest
subset of a set system S = {S1, . . . , Sm} ⊂ 2U that covers
a universe U = {u1, . . . , un}. In many settings, the elements
of the universe U are private (e.g., clients wish to be private in
facility location problems). [Gupta et al., 2010] first studied
the problem of Set Cover with privacy, and showed that out-
putting an explicit solution to Set Cover has strong hardness
results, even for the special case of Vertex Cover: any dif-
ferentially private algorithm must output a set cover of size
m− 1 with probability 1 on any input, a useless result.

As a result, the authors designed a mechanism which out-
puts an implicit set cover via a privacy-preserving set of in-
struction for the elements to reconstruct the set cover. While
the implicit solutions are useful in some limited settings, it
cannot replace the explicit solutions needed in many impor-
tant applications, such as public health [Eubank et al., 2004;
Li et al., 2022]. In particular, explicit solutions are necessary
when using a Set Cover algorithm as a subroutine when solv-
ing a more complicated problem. As a result, we turn to the
Partial Set Cover problem, where we only need to cover a ρ-
fraction of the elements in U , for ρ ∈ (0, 1). Due to the space
limit, we present our core results in the main paper and defer
some analyses and experimental results to the Appendix. We
maintain a full, updated version of this work here1.

1https://arxiv.org/abs/2207.10240
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Our primary contributions are:

• We observe that the impossibility results for outputting
an explicit set cover under differential privacy are alle-
viated when considering the Partial Set Cover problem.
When the number sets isn’t too large (i.e., m = O(n)),
we give a O(log2(m) log(1/δ)/ϵ(1−ρ))-approximation
algorithm (see Theorem 2.4). Alternatively, when the
optimal partial set cover isn’t too large (i.e., OPT ≲

nϵ
log3 n log(1/δ)

), we give a O(log( 1
(1−ρ) ))-pseudo approx-

imation algorithm (see Theorem 2.6). Note that both of
our guarantees break down as ρ→ 1.

• To illustrate the importance of explicit solutions, we use
our differentially private Partial Set Cover algorithm as
a subroutine to give a differentially private approxima-
tion algorithm for a vaccine distribution problem which
in particular, generalizes k-supplier with outliers. We
emphasize that this is the first differentially private algo-
rithm for k-supplier type problems with non-trivial ap-
proximation guarantees, which was thought to be impos-
sible due to the high sensitivity of min-max objectives.

• Finally, we evaluate the our private algorithms on real
life datasets for set cover and vaccine distribution, and
observe a good privacy-utility tradeoff: the empirical ap-
proximation factors are much better than the worst case
bounds we give in our theorem statements. We view the
vaccine distribution problem as a concrete practical con-
tribution of our work (see Figure 1 for an example).

Figure 1: Visualization of locations of chosen facilities. The black
and white spots indicate locations chosen by the non-private and
private algorithms, respectively. As we see, the private algorithm
yields qualitatively different distributions when compared to the
non-private algorithm while not losing too much in objective value
(see Section 4).

1.1 Related Work
The Set Cover problem and its various generalizations have
been studied by combinatorial optimization community for
several decades [Wolsey, 1982; Alon et al., 2003]. For
the simplest version, there exists a greedy algorithm which
achieves a (log n + 1)-approximation which is best possi-
ble unless P=NP [Moshkovitz, 2015]. [Gupta et al., 2010]

first considered the Set Cover problem under differential pri-
vacy, showing impossibility results of outputting explicit set
covers. They then gave approximation algorithms via out-
putting implicit set covers, which we argue is insufficient
for many applications. The only other work which outputs
explicit set covers under differential privacy is [Hsu et al.,
2014], which approach the set cover problem via private lin-
ear programming. They give approximation guarantees but
ignore O(OPT2 · polylog(n, 1/δ)) elements. One of our al-
gorithms also has guarantees of this form, but ignores only
ρn elements, which is better when the size of the optimal set
cover is larger. We also give a true approximation for Partial
Set Cover, which is the first in the literature.

Also directly related to our work are the differentially pri-
vate facility location problems, which [Gupta et al., 2010]
also first considered. For the uniform facility location prob-
lem, they showed that a Ω(

√
n)-approximation is needed un-

der differential privacy, an essentially useless result, and de-
vised a way to implicitly output the facilities. [Esencayi et al.,
2019] built upon their work, improving the approximation
guarantees to O( logn

ϵ ) for general metrics. [Cohen-Addad
et al., 2022b] considered the facility location problem un-
der the local differential privacy model, gave tight approxi-
mation algorithms up to polynomial factors of ϵ. A partic-
ular interesting quality of their algorithms is that it extends
to non-uniform facility location. [Gupta et al., 2010] also
considered the k-median problem, and developed approxi-
mation algorithms which guaranteed that the service cost is
at most 6 ·OPT +O(k

2 log2 n
ϵ ). Since then, there has been an

abundance of work on this problem improving the approxi-
mation guarantees, practical performance, and efficiency of
the differentially private algorithms [Balcan et al., 2017;
Ghazi et al., 2020; Blocki et al., 2021; Jones et al., 2021;
Cohen-Addad et al., 2022a]. Despite the abundance of work
on facility location-type problems, k-supplier remains un-
touched; our work is the first to overcome impossibility re-
sults and give approximation guarantees for the problem.

1.2 Differential Privacy Background
In our algorithms, we will make extensive use of the follow-
ing basic mechanisms and properties, the proofs of which can
be found in [Dwork and Roth, 2014]. The post-processing
and composition properties enable us to easily combine
smaller differentially private mechanisms to create a more
complicated one:

Theorem 1.2. LetM1 : Xn → Y1 andM2 : Xn → Y2 be
(ϵ1, δ1) and (ϵ2, δ2)-differentially private algorithms, respec-
tively. The following properties hold:

• post-processing: Let f : Y1 → Z be an arbitrary (po-
tentially randomized) mapping. Then f ◦M1 : Xn → Z
is (ϵ1, δ1)-differentially private.

• composition: Let M : Xn → Y1 × Y2 be defined
as M = (M1,M2). Then M is (ϵ1 + ϵ2, δ1 + δ2)-
differentially private.

We next state the Laplace Mechanism which, by adding
Laplace noise, provides a simple way to privately output a
statistic that depends on a private database:
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Theorem 1.3. Given a function f : Xn → Rk, the ℓ1-
sensitivity is defined as ∆f = maxx∼x′ ∥f(x) − f(x′)∥1.
The Laplace Mechanism, given the function f : Xn → Rk,
outputs f(x)+(Y1, . . . , Yk), where Yi are i.i.d. random vari-
ables drawn from Lap(∆f/ϵ). We claim the Laplace Mecha-
nism is ϵ-differentially private.

Finally, we state the Exponential Mechanism which ap-
proximately optimizes the utility function over some set of
candidates choicesR while preserving privacy:

Definition 1.4. Given a utility function u : Xn×R → R, let
∆u = maxr∈R maxx∼x′ |u(x, r)−u(x′, r)| be the sensitivity
of u, where x, x′ are neighboring datasets. The exponential
mechanism M(x, u,R) outputs an element r ∈ R with prob-
ability ∝ exp( ϵu(x,r)2∆u

).

Theorem 1.5. The exponential mechanism is ϵ-differentially
private. Furthermore, if we fix a dataset x and let OPT =
maxr∈R u(x, r), we have Pr[u(x,M(x, u,R)) ≤ OPT −
2∆u

ϵ (ln |R|+ t)] ≤ e−t.

2 Differentially Private Partial Set Cover
Formally, we wish to solve the following problem:

Definition 2.1. Let U = {u1, . . . , un} be the universe of ele-
ments and let S = {S1, . . . , Sm} be a set system where each
Si ⊆ U and

⋃m
i=1 Si = U . Finally, let ρ < 1 be the covering

requirement. The Partial Set Cover problem asks for the mini-
mal size subset {π1, . . . , πk} of S such that |

⋃k
i=1 πi| ≥ ρ|U|

(i.e., the subset covers a ρ fraction of U ).

For differential privacy, we consider two Partial Set Cover
instances neighboring if the set systems (U1,S1) and (U2,S2)
are two neighboring datasets if they differ by exactly one el-
ement u in the universe and the sets Si1 ∈ S1 and Si2 ∈ S2
differ only by u (or are the same). Note that our definition
of privacy can recover the one considered in [Gupta et al.,
2010] and [Hsu et al., 2014] as a special case, but is in gen-
eral stronger. We elaborate on this subtlety further in the Ap-
pendix.

At first glance, our (and [Gupta et al., 2010]’s) definition
of neighboring datasets for (Partial) Set Cover may not be en-
tirely intuitive. As an example of an application where such
a privacy definition makes sense, let’s consider the problem
studied by [Eubank et al., 2004] of placing sensors in people-
location graphs to detect the spread of a disease. Formally,
we have a bipartite graph where nodes in one part of the graph
represent locations and nodes in the other part represent peo-
ple. An edge exists between a person and a location if the
person visits that location. We wish to place sensors at the
locations so that infected individuals can be detected. Since
placing sensors is an expensive process, we wish to place the
fewest sensors as possible to cover a ρ-fraction of the popula-
tion. This can be formulated as a Partial Set Cover problem.
For this example, our notion of privacy corresponds to node
privacy for people in the graph. In addition to this exam-
ple, we show in the following section that our privacy defi-
nition here also lines up nicely with client-privacy in facility
location problems when using Partial Set Cover to solve k-
supplier with outliers.

In the following subsections, we’ll present our algorithms
for differentially private Partial Set Cover. Since Partial Set
Cover is NP-Hard, we will focus on giving approximation
algorithms while preserving differential privacy. We say an
algorithm gives an α-approximation to the optimal solution if
it outputs a partial set cover of size at most α · OPT, where
OPT is the size of an optimal partial set cover.

2.1 A Private Variant of the Greedy Algorithm
The general outline of our first algorithm is as follows: we
use a private version of the classical greedy algorithm for Par-
tial Set Cover to output a permutation of the sets π1, . . . , πm.
Then, we use an offline implementation of the AboveThresh-
old mechanism to choose a threshold k such that π1, . . . , πk

covers a ρ fraction of the elements.

Algorithm 1MPartialSetCover(U ,S, ρ, ϵ, δ)
Input: Set system (U ,S), covering requirement ρ, and pri-
vacy parameters (ϵ, δ)
let U1 ← U , S1 ← S , ϵ′ ← ϵ

2 ln(e/δ) .
for i = 1, . . . ,m do

pick set S ∈ Si with probability ∝ exp(ϵ′|S ∩ Ui|).
let πi ← S, Ui+1 ← Ui − S, Si+1 ← Si − {S}.

end for

let T ← ρn+ 12 logm
ϵ , T̂ ← T + Lap(2/ϵ).

for i = 1, . . .m do
let fi ← |π1 ∪ · · · ∪ πi|, γi ← fi + Lap(4/ϵ).

end for
let k be first index such that γk ≥ T̂ .

Output: (π, k) //π1, . . . , πk is a set cover for (U ,S)

Lemma 2.2. Let k∗ be the first index such that π1, . . . , πk∗

is a
(
ρn+ 24 logm

ϵ

)
-partial covering of U . Then with proba-

bility 1−O( 1
m ), for m = O(n), we have k∗ ≤ O

(
ln(m)2

ϵ′(1−ρ)

)
·

OPT = O
(

ln(m)2 ln(1/δ)
ϵ(1−ρ)

)
· OPT.

Proof. For iteration i ∈ [m], let Li be the size of the set which
covers the most additional elements (i.e., Li = maxS∈Si |S∩
Ui|). For an iteration where Li ≥ 6 lnm/ϵ′, the probability
of selecting a set which covers less than Li − 3 lnm/ϵ′ is at
most 1

m2 . Hence, over all iterations where Li ≥ 6 lnm/ϵ′,
we will choose a set which covers at least Li/2 elements
with probability at least 1 − 1

m . By a standard argument
[Williamson and Shmoys, 2011], this will only use at most
OPT · lnn sets. Consider the last iteration t such that Lt ≥
6 lnm/ϵ′. If the number of elements covered through itera-
tion t is at least ρ′n, then we are done. The rest of the proof
deals with the case where less than ρ′n are covered.

Next, we analyze what happens when Lj < 6 lnm/ϵ′ for
j = t + 1, . . . ,m. The utility guarantees of the exponen-
tial mechanism are essentially useless from this iteration on-
wards. Notice that the number of remaining elements |Uj |
is at most OPT · |Lj |. Unfortunately, we cannot claim that
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each set chosen covers at least one element; this is simply
not true. Instead, we analyze the probability that a set cov-
ering at least one element is chosen. Let ρ′ = ρ+1

2 and note
that ρ′ < 1 and ρ′n ≥ ρn + 24 logm

ϵ for sufficiently large n.
Since there are at least (1−ρ′)n uncovered elements remain-
ing and m = O(n), there necessarily exists some constant ρ′′
such that the probability of not covering anything is at most
[1− (1−ρ′′)]. Thus, the probability of not covering anything
over the course of 2 lnm

1−ρ′′ iterations is at most

[1− (1− ρ′′)]
2 lnm
1−ρ′′ ≤ exp(−2 lnm) =

1

m2
,

where we used 1 − x ≤ exp(−x). Thus, each of the |Uj |
remaining elements is covered using at most 2 lnm

1−ρ′′ sets, with
probability at least 1− 1

m . Since there are at most OPT · |Lj |
elements remaining which need to be covered, at most OPT ·
2 ln(m)2

ϵ′(1−ρ′′) sets are used.

Lemma 2.3. (Lemma A.1) With probability 1 − O
(

1
m

)
, the

threshold k satisfies |π1 ∪ · · · ∪ πk| ∈ [ρn, ρn+ 24 logm/ϵ].

Theorem 2.4. For ϵ ∈ (0, 1), δ < 1
e , and m = O(n), the

following are true for Partial Set Cover
• Algorithm 1 preserves (2ϵ, δ)-differential privacy.
• With probability 1 − O( 1

m ), Algorithm 1 is an

O
(

ln(m)2 ln(1/δ)
ϵ(1−ρ)

)
-approximation algorithm.

Proof. Let’s first consider the privacy. Outputting the per-
mutation of sets was shown to be (ϵ, δ)-differentially private
in [Gupta et al., 2010]. Our mechanism for outputting the
threshold k can be viewed as an offline implementation of the
AboveThreshold mechanism from [Dwork and Roth, 2014].
Since switching to a neighboring set system changes the num-
ber of elements covered by a family of sets by at most 1, the
analysis of [Dwork and Roth, 2014] applies and outputting
the threshold is (ϵ, 0)-differentially private. By basic compo-
sition of adaptive mechanisms [Dwork and Roth, 2014], we
have (2ϵ, δ)-differential privacy.

Now, we turn to the utility guarantee. Consider the thresh-
old k selected; by Lemma 2.3, the threshold is such that
|π1 ∪ · · · ∪ πk| in the interval

[
ρn, ρn+ 24 logm

ϵ

]
with prob-

ability at least 1 − 1
m . Hence, it is a ρn-partial cover and by

Lemma 2.2, uses at most O
(

ln(m)2 ln(1/δ)
ϵ(1−ρ)

)
· OPT sets.

Remark 1. In Theorem 2.4 (and in future Theorems 2.6
and 3.2)), we can reduce the probability of failure to an ar-
bitrary polynomial in m by losing constant factors in the ap-
proximation guarantee.

2.2 Algorithm via Maximum Coverage
In this section, we give another algorithm for Partial Set
Cover under differential privacy. Our algorithm here will give
a pseudo-approximation for the problem (i.e., our approxima-
tion factor will be with respect to the optimal Set Cover solu-
tion instead of the optimal Partial Set Cover solution). Such a

guarantee is similar to the one given in [Hsu et al., 2014]. To
give our algorithm, we first need to define the Differentially
Private Maximum Coverage problem:
Definition 2.5. Let U = {u1, . . . , un} be the universe of ele-
ments and let S = {S1, . . . , Sm} be a set system where each
Si ⊆ U and

⋃m
i=1 Si = U . Finally, let k be the budget. The

Maximum Coverage problem asks us to find a size k subset
{π1, . . . , πk} of S such that |

⋃k
i=1 πi| is maximized.

As in the Partial Set Cover problem, we view the elements
of the universe as the private information and we view two
set systems as neighbors if they differ by exactly one element
u in the universe. Since the objective here is submodular and
monotone [Williamson and Shmoys, 2011], we can apply the
following result from [Mitrovic et al., 2017] for submodular
maximization. We remark that the result we state is stronger
than the one given in [Mitrovic et al., 2017], since we can use
a specialized privacy analysis for maximum coverage (like
in [Gupta et al., 2010]) which is not possible for general sub-
modular functions. This has shown up in other works such
as [Jones et al., 2021].
Lemma 2.6. There exists an (ϵ, δ)-differentially private al-
gorithm for the maximum coverage problem which such that
the expected number of elements covered is

(
1− 1

e

)
OPT −

2k lnn
ϵ0

, where ϵ0 = ϵ
2 ln(e/δ) .

The main idea for our algorithm for Partial Set Cover is
that under some restrictions on the set system and budget, the
Maximum Coverage problem can be approximated within a
constant factor under differential privacy via the algorithm in
Lemma 2.6. Then, iteratively applying the algorithm for the
maximum coverage problem with budget k set to the size of
the optimal Partial Set Cover suffices to obtain a good ap-
proximation algorithm for Partial Set Cover.
Lemma 2.7. (Lemma A.2) There exists an (2ϵ, δ)-
differentially private algorithm for the maximum coverage
problem such that for some constant C, if we have

k ≤ Cϵ0

ln2(n)
· OPT,

then the algorithm is a 0.15-approximation with probability
1−O( 1n ), where ϵ0 = ϵ

2 ln(e ln(n)/δ ln(1+α)) .

Given this result, we can state our algorithm for Partial Set
Cover. For simplicity of notation, let’s denote the Algorithm
referenced in Lemma 2.7 by MAXCOVER(U ,S, k, ϵ, δ). As
mentioned before, the idea is to guess the size of the optimal
Partial Set Cover via binary search. Then, assuming we have
OPT, we can run MAXCOVER approximately O(log(1− ρ))
times in order to cover ρn elements. Though the idea is
very simple, there are many subtleties in the algorithm due
to privacy. First, our binary search must guarantee that our
guess OPT′ is at most upper; this is because the guarantee in
Lemma 2.7 only applies when the budget isn’t too large. Ad-
ditionally, when binary searching for OPT, we need to decide
if the guess is too large or too small, based on the number of
elements covered by the output. However, we cannot do this
directly since the elements are considered private; as a result,
we need to add Laplace noise before making the comparison.
This makes the analysis slightly more complicated.
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Algorithm 2MMaxCoverage(U ,S, ρ, ϵ, δ)
Input: Set system (U ,S), covering requirement ρ, privacy
parameters (ϵ, δ)
let upper = ⌊C(1− ρ

2 )nϵ0
ln3(n)

⌋, t = ⌈log0.85(1− ρ′)⌉.
Binary Search on {1, . . . , upper}, and let the current guess
be OPT′

let SOL = ∅, U1 ← U , S1 ← S
let ϵ′ ← ϵ

t log2(n)
, δ′ ← δ

t log2(n)
.

for i = 1, . . . , t do
run MAXCOVER(Ui,Si,OPT′, ϵ′, δ′) to obtain sets

πi = {πi,1, . . . , πi,OPT′}.
let SOL← SOL ∪ πi

let Ui+1 ← Ui −
⋃OPT′

j=1 πi,j , Si+1 ← Si − πi.
endfor
let γ be the number of elements covered by SOL
let γ̂ = γ + logn

ϵ′ + Lap(1/ϵ′)
if γ̂ ≥ ρn increase OPT′; otherwise, decrease OPT′

Output: SOL for minimum OPT′ satisfying γ̂ ≥ ρn

Theorem 2.8. Algorithm 2 is (ϵ, δ)-DP. Furthermore, assum-
ing the optimal set cover has size OPT ≤ C(1− ρ

2 )nϵ0
ln3(n)

, where

C is from Lemma 2.7 and ϵ0 = O
(

ϵ/t
ln ln(n)+ln(t/δ)

)
, Algo-

rithm 2 outputs a (1 − ρ)-Partial Set Cover using at most
O(log( 1

1−ρ )) · OPT sets with probability 1− Õ( 1n ).

Proof. First, let’s consider the privacy guarantee. For each
iteration of the binary search, we run MAXCOVER t times.
By basic composition, we this is (tϵ′, tδ′)-differentially pri-
vate. Additionally, γ̂ is the output of the Laplace Mecha-
nism, so it is (tϵ′, 0)-differentially private. The binary search
takes at most log2(upper) ≤ log2(n) iterations to converge,
so (2ϵ, δ)-differential privacy follows by basic composition
once again. Finally, the outputted solution SOL is (2ϵ, δ)-
differentially private by post-processing.

Now, we will turn to the utility guarantee. Let ρ′ = ρ+1
2 ,

β = 0.15, and let us first consider the algorithm when our
guess OPT′ is at least OPT. We claim that running MAX-
COVER t times, as in Algorithm 2, covers at least ρ′n ≥
ρn+ 2 log n

ϵ′ elements. Since the output of the Laplace mech-
anism γ̂ will be at least ρn with probability at least 1− 1

n , the
binary search will converge to some OPT′ ≤ OPT. Now, con-
sider the partial set cover output by the algorithm; we know
that the number of sets used is t · OPT′ ≤ t · OPT, hence a
t-approximation. Next, we will prove our claim.

If at any iteration i < t, we have ρ′n elements are covered
by the previously selected sets, we are done. Suppose there
remains at least (1−ρ′)n elements uncovered at all iterations
i ≤ t; we will show that ρ′n elements are covered after iter-
ation t. By definition of OPT and the fact that OPT′ ≥ OPT,
there exists OPT′ sets which cover the remaining uncovered
elements. Thus, when OPT is suitably small as in the theo-
rem statement, running MAXCOVER always covers at least
an α-fraction of the remaining elements, leaving a (1 − α)-
fraction of the remaining elements uncovered. By algebra,

running MAXCOVER t times suffices to guarantee that at most
(1− ρ′)n elements remain uncovered.

Remark 2. We emphasize that the guarantees in Theorem
2.8 are pseudo-approximations. That is, the approximation
guarantee is with respect to the optimal set cover whereas the
algorithm outputs a partial set cover.

3 An Application to Facility Location
To show an example where an explicit solution for (partial)
set cover is a necessary building block for a larger algorithm,
we will consider a facility location problem called MOBIL-
EVACCCLINIC, introduced in [Li et al., 2022]. The authors
introduced the following generalization of the well known k-
supplier problem for deploying vaccine distribution sites:

Definition 3.1. Let C be a set of locations in a metric space
with distance function d : C × C 7→ R≥0. Let P be a set
of n people where each person p ∈ P is associated with a
set Sp ⊆ C, which can be interpreted as the set of locations
p visits throughout the day. Finally, let k ∈ N be a budget
on the number of facilities. We want to output a set of loca-
tions F ⊆ C with |F | ≤ k to place facilities which minimizes
maxp∈P d(Sp, F ), where d(S, F ) = minj∈S,j′∈F d(j, j′).
For simplicity, we normalize the metric so that the diameter
is maxj,j′∈C d(j, j

′) = 1.

We consider the outliers version of the above problem,
where we are only required to serve ⌊ρn⌋ people in the pop-
ulation, for some ρ < 1. Since the problem was designed
for vaccine distribution, the outliers variant is still very inter-
esting: we only need to vaccinate 94% of the population in
order to achieve herd immunity. For the differential privacy,
the set of locations C, covering requirement ρ, and budget
k is public information and the individuals along with their
travel patterns is private information. We call two instances
of MOBILEVACCCLINIC neighbors if they differ by exactly
one individual p (along with their travel pattern Sp). Thus, we
protect the privacy of the individuals: a differentially private
algorithm’s output will not differ too much whether or not any
individual and their travel patterns are included in the data.

Unfortunately, we show that this problem is hard in a very
strong sense: there cannot exist any (efficient or inefficient)
algorithm which provides a finite approximation guarantee.
Hence, we turn towards bicriteria algorithms where we vio-
late the budget k: an algorithm is an (α, β)-bicriteria approx-
imation for MOBILEVACCCLINIC with outliers if it obtains
an additive β-approximation to the optimal radius while plac-
ing at most αk facilities. We show that this is possible. The
idea of the algorithm is simple: we first guess the optimal
radius R∗ via a binary search on the interpoint distances (in
practice, we just guess R∗ up to an additive error of γ for
faster convergence). Assuming we know R∗, we consider the
reverse problem where we wish to place the fewest facilities
in order to cover a ρ fraction of the clients within a radius
of R∗. This is exactly a Partial Set Cover problem, so we
can apply Algorithm 1 (it is easy to verify the privacy re-
quirements of MOBILEVACCCLINIC matches that of Partial
Set Cover). To formalize this, let the universe be U = P
and let the set system be SR = {Sj(R) : j ∈ C}, where
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Sj(R) = {p ∈ P : d(Sp, j) ≤ R}. It is easy to see that
this indeed reduces to a Partial Set Cover problem. In the fol-
lowing formalization of our algorithm, let α(ϵ, δ) denote the
approximation guarantee of Algorithm 1:

Algorithm 3 DPCLIENTCOVER:

Input: MOBILEVACCCLINIC instance (C,S,P, k, ρ), ad-
ditive error γ, and privacy parameters (ϵ, δ)
let ϵ′ ← ϵ/log2(1/γ), δ

′ ← δ/log2(1/γ)
let low ← 0, high← 1
while high− low > γ do
R ← (high+ low)/2
Calculate SR as described above
FR ←MPartialSetCover(C,SR, ρ, ϵ′, δ′)
if |FR| > α(ϵ′, δ′) · k then low ← R
otherwise high← R

end while
Output FR for minimum R such that |FR| ≤ α(ϵ′, δ′) · k.

Theorem 3.2. For any γ > 0, Algorithm 3 is (2ϵ, δ)-DP

and an (O
(

log2 |C| log(1/γ) log(1/δ)
ϵ

)
, γ)-approximation algo-

rithm for MOBILEVACCCLINIC with outliers, with probabil-
ity at least 1− Õ

(
1
|C|

)
, when |C| = O(n).

Proof. The privacy guarantee is easy: since the guesses R
don’t depend on the private information, (2ϵ, δ)-differential
privacy follows directly by basic composition. Note that we
are allowed to find the minimum R such that |FR| ≤ α · k by
post-processing, since the FR’s are private already.

Next, we turn to the utility guarantee. Let us analyze the
algorithm for the iterations of binary search where R ≥ R∗.
We will show that for these iterations, we necessarily have
|FR| ≤ α(ϵ′, δ′) · k. This implies that the binary search con-
verges to some R satisfying R ≤ R∗ + γ, so the minimum R
satisfying |FR| ≤ α(ϵ′, δ′) · k also will satisfy R ≤ R∗ + γ.

To complete the proof, let’s prove our claim. Suppose
R ≥ R∗ and consider the corresponding Partial Set Cover
instance. We know there exists some Partial Set Cover of size
k (by the definition of R∗), so our approximation guarantees
in Theorem 2.4 imply that |FR| ≤ α(ϵ′, δ′) · k with probabil-
ity 1 − O( 1n ). Apply the union bound over all iterations of
the binary search completes the proof.

Remark 3. Our algorithm needs to violate the budget k by a
poly-logarithmic multiplicative factor, which is often not pos-
sible in the real world. To circumvent this, we note that it
has been observed experimentally that set cover algorithms
obtain near optimal solutions; thus, we can implement Algo-
rithm 3 with α set to 1 and still obtain a near-optimal radius
R in practice. Even this contribution is non-trivial; before
our work, even good heuristics were not known for differen-
tially private k-supplier. We use this heuristic in the experi-
ments in Section 4.
Remark 4. We state Algorithm 3 and its guarantees in terms
of guessing the optimal radius R∗ up to an additive error of γ.
We find that this converges faster in practice and thus obtains
a better privacy/utility tradeoff. As mentioned before, binary

searching on the interpoint distances can save us this additive
error of γ but will lose a logarithmic factor in the number of
facilities placed. The proof of this is very similar, and thus
omitted.

3.1 Lower Bounds
To give our lower bound for MOBILEVACCCLINIC, we will
first show that Partial Set Cover cannot be solved exactly un-
der (ϵ, δ)-differential privacy and that an approximation is
necessary (deferred to Appendix).
Lemma 3.3. Under (ϵ, δ)-differential privacy, Partial Set
Cover cannot be solved exactly (with high probability).

We will use this fact to derive an information theoretic
lower bound for MOBILEVACCCLINIC, stating that even
computationally inefficient algorithms cannot give a finite ap-
proximation factor for this problem while simultaneously sat-
isfying approximate differential privacy. Overall, this lower
bound justifies our use of bicriteria approximation algorithms
for our problem. The reduction we give is similar to the
one found in [Anegg et al., 2022] for a separate problem, γ-
colorful k-center.
Theorem 3.4. There can be no finite approximation al-
gorithm for MOBILEVACCCLINIC which satisfies (ϵ, δ)-
differential privacy, even when the metric space is the Eu-
clidean line.

Proof. Suppose for contradiction some differentially private
approximation algorithm did exist with approximation ratio
α = α(n,m, ρ, ϵ, δ). We will show that it can be used to solve
any instance (U ,S, ρ, ϵ, δ) of Differentially Private Partial Set
Cover to optimality. By contradiction, we will conclude such
an approximation algorithm cannot exist.

Let the metric space be the Euclidean line, let C =
{1, . . . , |S|} and let the covering requirement be ρ = ρ. For
each element uℓ ∈ U , define a person p ∈ P and let their
travel locations be Sp = {i ∈ [|S|] : uℓ ∈ Si}. By con-
struction, it is clear that the optimal solution for this MOBIL-
EVACCCLINIC instance has radius 0 and gives a solution (of
size k) to the Partial Set Cover instance. Furthermore, any
α-approximation will output a solution with radius α · 0 = 0
as well. Consequently, we can binary search over k ∈ [m] to
use any α-approximation for MOBILEVACCCLINIC to obtain
an optimal solution for Partial Set Cover.

4 Experiments

Clients Locations Diameter (km)

Charlottesville 33156 5660 8.12
Albemarle 74253 9619 61.62

Table 1: Network Information

For our experiments in our main paper, we focus on the
vaccine distribution problem we studied in Section 3. We
run all of our experiments on synthetic mobility data from
Charlottesville city and Albemarle county, which are part of
a synthetic U.S. population (see [Chen et al., 2021; Machi et
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al., 2021] for details). The data keeps track of the locations
each person travels to throughout a week, so each person is
associated with a set of activity locations. We use this data in
our experiments to study the following:

• Privacy/Accuracy Tradeoff: how does the quality of
our algorithm vary as the privacy parameters (ϵ, δ) vary?

• Cost of Privacy: how does our private algorithm com-
pare with the non-private one given in [Li et al., 2022]?

Due to space constraints, we defer some of these experiments
and analyses to the full version. There, we also investigate
the above questions for our Partial Set Cover algorithms.

Baseline: We use a non-private greedy algorithm to solve
the partial set cover problem as our Baseline. Starting with
an empty set of locations, the greedy algorithm at each step
chooses one location that covers the most of the uncovered
clients. Then it adds the location to its set and updates the
current state of covered clients. The baseline algorithm uti-
lizes the same binary search routines with DPCLIENTCOVER
to find the optimal radius.

Metric: All of our comparisons are made based on the
objective value of MOBILEVACCCLINIC with outliers. In-
formally, by calculating the service cost of each person, our
objective is to minimize the distance the ⌈ρn⌉th person needs
to travel in order to get vaccinated. Formally, our objective is
minP1⊆P:|P1|=⌈ρn⌉ maxp∈P1 d(Sp, F ).

4.1 Privacy/Accuracy/Budget Tradeoff
In this subsection, we investigate the two questions regarding
the privacy/accuracy trade-off and the cost of privacy. We
set δ = 10−6 and run our private vaccine distribution al-
gorithm for different budgets k ∈ {4, . . . , 16} and different
privacy parameters ϵ ∈ {0.25, 0.5, 1, 2, 4}. A careful reader
may notice that Theorem 2.4 only applies for ϵ ∈ (0, 1), and
may worry that our experimental regime doesn’t have pri-
vacy guarantees. However, DPCLIENTCOVER makes calls
to the Partial Set Cover algorithm with parameter ϵ′ =
ϵ/ log2(1/γ), so we still have differential privacy.

The experimental results show that, generally, with higher
values of budget, all algorithms perform better, i.e., they
achieve lower objective values. Our private algorithm DP-
CLIENTCOVER usually achieves higher accuracy with higher
ϵ at every level of budget, while the non-private algorithm
(Baseline) always has the best performance. These results
are expected. Figure 2 also shows that our private algorithm
performs well, obtaining near optimal choices of facility lo-
cations for ϵ ≥ 1. For example, DPCLIENTCOVER with
ϵ = 4 matches the performance of Baseline on the Albe-
marle dataset and almost matches the Baseline at several val-
ues of budget on the Charlottesville dataset. However, we
can observe some trade-offs between privacy and utility, es-
pecially in high-privacy settings. In particular, for ϵ = 0.25
and k = 4, there is a high cost of guaranteeing privacy in both
datasets. In these cases, the objectives of the private settings
are 4–7 times higher than those of the Baseline.

A more subtle result that Figure 2 gives is to help us under-
stand the trade-off between the budget and the privacy loss ϵ.
From a policy-making perspective, this is interesting since we
can allocate more mobile vaccine distribution sites in return

for a stronger privacy guarantee. For example, the accuracy
from k = 8 facilities with ϵ = 0.25 is similar to using k = 4
facilities with ϵ = 0.5. Figure 1 shows the vaccine clinics
chosen by the private (ϵ = 0.5, white spots) and non-private
(black spots) algorithms for the Charlottesville dataset with
k = 8. The two algorithms tend to choose two totally dif-
ferent distributions of vaccine clinics, although they do not
differ much in term of objective values (see Figure 2, where
k = 8).

Figure 2: Utilities of DPCLIENTCOVER at ρ = 0.8 with different
values of privacy parameter (ϵ) and budget (k) on both datasets. The
y-axis indicates the objectives measured at the 80th percentiles (in
meters). The x-axis shows different budget values, i.e., the num-
ber of selected locations. Generally, DPCLIENTCOVER performs
closely to the Baseline with large values of ϵ (ϵ ≥ 2) on both
datasets. For the Albemarle county dataset, curves for the Base-
line and DPCLIENTCOVER with ϵ = 4 overlap.

5 Discussion
In this paper, we consider the Set Cover problem and the k-
supplier problem, which have strong hardness results under
differential privacy. We observe that partial coverage of ele-
ments/clients suffices to avoid the impossibility results, and
give the first non-trivial approximation algorithms for both
problems. Overall, our work is an important step in tackling
the impossibility results in differentially private algorithm de-
sign and leaves many interesting problems open:

• Both of our algorithms for Partial Set Cover require
some (relatively loose) assumption on the set system.
An interesting question is whether we can remove these
assumptions: can we obtain a general approximation al-
gorithm for Partial Set Cover under differential privacy?

• Our algorithm for k-supplier violates the budget k by
a poly-logarithmic factor, which is impractical in some
settings. It is interesting to see what guarantees are pos-
sible without violating the budget: can we obtain true ap-
proximations for k-supplier with outliers with privacy?

• As mentioned before, the facility location problem has a
Ω(
√
n) approximation hardness result under differential

privacy. It is interesting to see if our ideas can help avoid
this: does allowing partial coverage circumvent hardness
results of the uniform facility location problem?
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