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Abstract
Protein binding site prediction is an important pre-
requisite for the discovery of new drugs. Usu-
ally, natural 3D U-Net is adopted as the standard
site prediction framework to do per-voxel binary
mask classification. However, this scheme only
performs feature extraction for single-scale sam-
ples, which may bring the loss of global or local
information, resulting in incomplete, artifacted or
even missed predictions. To tackle this issue, we
propose a network called GLPocket, which is based
on the Lmser (Least mean square error reconstruc-
tion) network and utilizes multi-scale representa-
tion to predict binding sites. Firstly, GLPocket
uses Target Cropping Block (TCB) for targeted pre-
diction. TCB selects the local interested feature
from the global representations to perform concen-
trated prediction, and reduces the volume of fea-
ture maps to be calculated by 82% without adding
additional parameters. It integrates global distribu-
tion information into local regions, making predic-
tion more concentrated on decoding stage. Sec-
ondly, GLPocket establishes long-range relation-
ship of patches within the local region with Trans-
former Block (TB), to enrich local context seman-
tic information. Experiments show that GLPocket
improves by 0.5% − 4% on DCA Top-n predic-
tion compared with previous state-of-the-art meth-
ods on four datasets. Our code has been released in
https://github.com/CMACH508/GLPocket.

1 Introduction
Binding sites on the surface of 3D proteins are usually in
the form of deep grooves or tunnels to accommodate small
molecule drugs or ligands. Binding sites are also regarded as
binding pockets, or binding cavities . Given a binding site,
small molecule drugs can be designed and bound to the pro-
tein, so as to change the characteristics and biological func-
tions of the protein. Thus, accurate detection of binding sites
is the premise of drug discovery and drug design [Anderson,
2003; Patani and LaVoie, 1996].

It is a very challenging problem to detect the binding sites.
The binding sites on proteins are much smaller than proteins

themselves. The protein surface are very bumpy and may
lead to many false positive sites. Examples of protein-ligand
pairs are given in Fig. 1. We quantitatively calculate the ratio
of the largest diameter of ligand to the largest diameter of
protein. From diameter ratios below each figure, we can see
that the pocket where the ligand is located is much smaller
than protein, since the length of some ligands is about 1/10
of the protein length. It is very difficult to accurately predict
such small pockets for a given large protein structure.

Many methods have been proposed to tackle protein bind-
ing site detection problem. Traditional methods can be
divided into three categories, i.e., geometric-based meth-
ods, template-based methods, and energy-based methods.
Geometric-based methods, including Fpocket [Le Guilloux
et al., 2009], Ligsite-series [Hendlich et al., 1997; Huang and
Schroeder, 2006] and CriticalFinder [Nguyen et al., 2017],
predict binding sites according to geometric characteristics
of protein surface, and then sort the candidate sites according
to their druggable ability. Template-based methods, such as
FindSite [Brylinski and Skolnick, 2008], search for the most
similar protein from a database, and then assign the binding
site of the hit protein to the query protein. These methods
require a large number of proteins in the database and known
locations of the binding sites for each protein. Energy-based
methods [Ravindranath and Sanner, 2016; Ngan et al., 2012;
Hernandez et al., 2009] are to find ligands that require min-
imal interaction energy to bind to proteins. These methods
require multiple matches and massive ligand templates.

In the past few years, as a tremendous amount of 3D pro-
tein structures become available, machine learning models
have been developed to learn from the data to predict the
site location with promising performance. Prank [Krivák and
Hoksza, 2015] is a typical machine learning approach. It
firstly uses Fpocket and concavity [Chen et al., 2011] tools
to assign and label pocket points according to physical and
chemical properties. Random Forest is adopted to calculate
the binding score of each pocket. Pockets with high scores
are regarded as predicted sites.

In recent years, Deep Learning methods have been pro-
posed for binding site detection with promising performance.
DeepSite [Jiménez et al., 2017] is the first work to adopt a 4-
layer Convolutional Neural Network (CNN) as feature extrac-
tor to predict the location of binding sites. Protein is firstly
voxelized into multi-channel 3D grids, and then the 3D grids
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Figure 1: Figure (a) is a display of protein and ligand binding. The binding site is relatively very small, and the right image is an enlarged
view of it. The stick object is the ligand, and the transparent body is the cavity, which is used to describe the space occupied by the ligand.
The colorful dots are the voxel points inside the cavity. For texts in d1/d2 format below figure (b,c,d,e), d1 represents the longest distance
between ligand atoms, and d2 represents the longest distance between protein atoms.

Figure 2: An overview of existing per-voxel mask classification method frameworks. (a) The natural U-Net architecture used for segmentation
tasks. (b) Example of an end-to-end prediction architecture with global proteins as input, such as Kalasanty [Stepniewska-Dziubinska et al.,
2020]. (c) Example of framework for binary mask prediction with local regions of protein as input, such as DeepPocket [Aggarwal et al.,
2021] and RecurPocket (τ = 1) [Li et al., 2022].

are divided into multiple subgrids, which are used as the input
of the CNN to obtain ligandability scores. DeepSite clusters
the scores to screen out the likely ligandability regions, which
are combined as the predicted site. DeepSurf [Mylonas et al.,
2021] takes local subgrids centered in each voxel point on
the protein surface as network input to obtain ligandability
scores. The scores are clustered to determine the final pock-
ets. The classifications by DeepSite and DeepSurf are both
made on local subgrids, not accurate enough to voxel level.

To do per-voxel classification, Kalasanty [Stepniewska-
Dziubinska et al., 2020] is the first method to employ 3D U-
Net [Ronneberger et al., 2015] as backbone, with the whole
protein as input to predict a 3D binary mask. DeepPocket
[Aggarwal et al., 2021], RecurPocket [Li et al., 2022] and
RefinePocket [Liu et al., 2023] take the local small-scale re-
gions of a protein rather than the whole protein as input to
predict pockets. They utilize Fpocket which predicts many
candidate pockets with high recall but low precision, to gener-
ate candidate centers of each pocket. Then, they take subgrids

centered in each candidate center as the input of 3D U-Net-
based network for binary mask classification. The difference
between RecurPocket (τ >1) and DeepPocket is that it builds
a feedback link from decoder to encoder to predict pockets
in a circular and progressive manner. Fig. 2 summarizes the
network structures of the above mentioned methods.

Although the large-scale input can help Kalasanty to have
a global view and do end-to-end binary mask predictions, it is
difficult to focus on local regions of protein because the tar-
get is relatively very small, as shown in Fig. 1. As a result, it
may lead to less discriminative features of small-scale regions
and loss of details. On the contrary, DeepSite, DeepSurf, and
DeepPocket take each small-scale subgrid of protein as input
to do prediction, which brings the benefit that the networks
are more inclined to notice small potential sites. However,
this modeling doesn’t consider the surrounding environment
of the target and the global information of the protein struc-
ture. Thus the choice of the scale of the input to the model
is a trade-off between the local attention and the global con-
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sideration. The larger the scale, the greater amount of neigh-
borhood information, but making it difficult to concentrate on
small regions. The smaller the scale, the more attention will
be paid to potential small sites, resulting in insufficient aux-
iliary features of the neighborhood morphology to determine
the location and shape of pocket.

The Least mean square error reconstruction (Lmser) [Xu,
1993; Xu, 2019] was initially proposed by folding the au-
toencoder along the center hidden layer. It establishes for-
ward skip connections and feedback connections between the
paired layers of the encoder and decoder. Later, it evolved
into a 2D or 3D CNN-based Lmser structure and has been
proven to be better than U-Net in various tasks [Li et al.,
2019; Li et al., 2022].

In this paper, we propose GLPocket based on Lmser archi-
tecture to capture the multi-scale representations of proteins
to predict binding sites. In the encoding stage, we take the
whole protein as network input to extract global representa-
tions. In order to make the predictions more concentrated and
precise, a Target Cropping Block (TCB) is developed to ex-
tract local patterns of interest for targeted prediction. In the
decoding stage, to fully capture the local context semantic
information for refined prediction, Transformer Block (TB)
is utilized to establish dependency relationships of patches
within small-scale regions. Along with the global informa-
tion transmitted from encoder, predictions for local regions
are further refined.

Our contributions can be summarised as follow:
• A multi-scale Lmser network structure was proposed for

binding site prediction on the surfaces of 3D protein
structures. It learns global and local representations for
targeted prediction.

• We devised a Target Cropping Block (TCB) to capture
local features of interest for accurate details of the bind-
ing pockets. Moreover, TCB greatly reduces volume of
the feature maps to be calculated of 82% without in-
troducing additional parameters. We also built a Trans-
former Block (TB) to establish dependence relationships
of patches within the local region, enriching the context
semantic information.

• We demonstrated the effectiveness of GLPocket on four
benchmark datasets. GLPocket outperforms related
state-of-the-art methods in terms of various metrics.

2 Materials and Methods
2.1 Data Preparation
In our experiments, we adopt five publicly available datasets
to evaluate our method. We use scPDB [Desaphy et al., 2015]
as training set, COACH420, HOLO4k, PDBbind [Wang et
al., 2005], SC6K as testing sets. We ensure that there is no
intersection between the training set and the test sets. The
details are summarized as follows.

ScPDB (v2017) is one of the largest protein-ligand pairs
datasets. It is widely used as the training set for binding site
prediction tasks [Jiménez et al., 2017; Mylonas et al., 2021;
Stepniewska-Dziubinska et al., 2020; Aggarwal et al., 2021].
This dataset contains 16, 612 structures with 17, 594 binding

sites. It also provides all-atom description of the protein-
ligand pairs and their binding sites. We divide the dataset into
ten parts and use one of them as validation dataset. PDBbind
(v2020) contains 5, 316 protein-ligand complexes. After re-
moving 18 proteins which is too large to be loaded, and 1, 405
complexes appeared in the training set, the remaining 3, 893
complexes were used for testing. COACH420 and HOLO4K
have been used as testing sets to evaluate the performance of
P2Rank [Radoslav and David, 2018]. We removed the pro-
teins with invalid cavities, leaving 207 and 2, 752 structures
in COACH420 and HOLO4K, respectively. SC6K dataset
was added to the PDB (Protein Data Bank) from January 1st,
2018, until February 28th, 2020, for binding site detection.
We used 2, 378 proteins screened by DeepPocket as testset.

2.2 The Architecture of GLPocket
An overview of the proposed GLPocket network is shown in
the Fig. 3(a). The architecture applies Lmser as backbone, in-
cluding Encoder Module, Decoder Module, Target Cropping
Block (TCB) and Transformer Block (TB). Encoder Mod-
ule contains one Pre block and four encoder blocks (Ei,
i ∈ [1, 2, 3, 4]). Decoder Module contains four decoder
blocks (Di, i ∈ [1, 2, 3, 4]) and one Post block. The details
of TCB and TB are shown in the Fig. 3(b) and 3(c). Network
structure details can be seen in the Fig. 3(d).

Encoder Module
Given an voxelized protein data x ∈ RC×H×W×D, we firstly
employ Pre block to extract preliminary characteristics of
protein to prepare for subsequent encoder blocks. We uti-
lize E1 to further extract compact protein features, then apply
TCB to choose interested region to focus on target proposal.
Finally, E2, E3, E4 are employed to extract proposal features
to get g4. The process is formulated as below:

f̃2 = TCB(E1(Pre(x))), (1)

g4 = E4(E3(E2(f̃2))), (2)

where f̃2 is the local proposal feature maps obtained from
global feature maps. As a result, the proposal representa-
tion integrates the global structural information and neigh-
borhood information outside the region without expanding its
size. Actually, it reduces the volume of feature maps to 18%
of the original size.

Target Cropping Block (TCB)
Although the encoder is able to encode the pocket location in
a rough manner from a global perspective, it is difficult for the
decoder to predict the boundary details of a relatively small
pocket on the protein surface. So we propose a Target Crop-
ping Block (TCB) to capture small and interested local re-
gions from the global feature maps as pocket proposals.TCB
ensures more neighborhood information to enhance proposal
representation without increasing its size.

The details of TCB are shown in Fig. 3(b). Given protein
feature maps fi (i ∈ [1, 2]), TCB cuts a cube centered on
the candidate center (in yellow) from fi as a local proposal
f̃i, and then passes f̃i to subsequent block to extract features
more intensively. In order to keep scale invariance, we set a
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Figure 3: (a) An overview of proposed GLPocket. Encoder Module extracts large-scale samples, Target Cropping Block (TCB) is applied
for obtaining small-scale features of interested proposal. Decoder Module intensively detects and reconstructs pocket in a small-scale region.
Prediction is further refined by Transformer Block (TB). (b) Details of Target Cropping Block (TCB). (c) Details of Transformer Block (TB).
(d) Network layer description.

cropping ratio for feature maps with different sizes. In this
work, the cropping ratio of f̃i to fi is 0.56 for width, height
and depth respectively. TCB does not introduce additional
network parameters, and it also performs a 82% reduction of
volume of feature maps by selecting regions of interest.

As shown in Fig. 3(a), the input of multi-channel 3D
protein grid x is processed by Pre and E1 blocks to get
f1 and f2, later f2 is processed by a TCB, and then f̃2 is
passed to next encoder block. Like vanilla U-Net structure,
encoder blocks need to pass multi-scale information to the
corresponding decoder blocks for aggregating features of dif-
ferent semantic layers. Here, we transfer the proposal feature
maps rather than the global protein feature maps, in order to
help decoder make accurate local predictions. So f1 and f2
are processed by TCB and then passed to corresponding de-
coder blocks, while f3 and f4 are directly passed to corre-
sponding decoder blocks.

Decoder Module
Decoder Module is responsible for predicting pocket of part
of a protein rather than the whole protein, which is more pur-
posely focused on small binding site. The input of Decoder
Module includes not only forward propagation representation
but also information transmitted from each encoder block.
Following Eq. 3 & 4, Di gradually predicts binding pocket by
concatenating with the information passed from correspond-

ing encoder blocks.
In addition, we utilize Transformer Block (TB) to model

the long distance dependency relationship in proposal space
after D4 according to Eq. 3. Prediction result p can be get
from Post block following Eq. 4 and 5.

ĝ3 = TB(D4(g4, f4)), (3)

g0 = D1(D2(D3(ĝ3, f3), f̃2), f̃1), (4)
p = Post(g0), (5)

where p is the predicted result and represents the probability
that each voxel belongs to binding pocket.

Transformer Block (TB)
When processing the global feature maps of protein, Trans-
former Block (TB) will fall into a dilemma of high computa-
tional complexity due to long token sequence. To solve this
problem, we put TB after Encoder Module to process fea-
ture representation with small size in the hidden space, so
that the complexity can be reduced. But in high-level space,
proposal representation is too compact and abstract to estab-
lish the long-distance dependencies of patches. Therefore, as
shown in Fig. 3(a), after the first decoder block (D4), where
the resolution is increased, we apply TB for volumetric space
and depth modeling.
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The details of TB is shown in Fig. 3(a) and 3(c). Given the
feature maps g3 ∈ RK×h×w×d, we flat and permute it into
z ∈ RN×K as patch embeddings, where N is the number of
tokens (N = h × w × d). Since spatial location relation-
ship between different patches is the important information
for comprehensive representation, we add learnable position
embeddings (PE) to patch embeddings as follows:

z0 = z + cpe, cpe ∈ RN×K (6)

where z0 ∈ RN×K is the feature embeddings and is used as
the input of TB, cpe denotes position encoding.

The TB is composed of Transformer Layer repeated for
L times. The yellow area in the Fig. 3(c) is Transformer
Layer, which contains LayerNorm (LN), Multi-Head Atten-
tion (MHA), and Feed Forward Network (FFN). The result
of each Transformer Layer zl (l ∈ [1, 2, 3, ..., L]) can be get
through the following equation,

ẑl = zl−1 +MHA(LN(zl−1)), (7)

zl = ẑl + FFN(LN(ẑl)), (8)

where zl is the output of l-th Transformer Layer. Finally, we
reshape zL to get volumetric data ĝ3.

2.3 Implementation Details
GLPocket is implemented in PyTorch and trained for 30
epochs with a batch size of 12 on 3 A100 GPUs. SGD op-
timizer was applied to train the model. The learning rate is
set to 0.001 and remains the same. The binary cross entropy
loss is employed to optimize our network.

2.4 Evaluation Metric
We use three metrics to evaluate the performance of models.
The metrics include:

• DCA is the distance between the predicted pocket cen-
ter and closest ligand atom. When distance is less than
threshold, the prediction is considered to be correct, oth-
erwise is wrong.

• DCC is the distance between the centers of predicted
pocket and label. Prediction with DCC less than thresh-
old is considered successful.

• DVO is the ratio of the overlap of predicted pocket and
corresponding label to the union of their volumes.

In our experiments, we set threshold to 4Å as in related
works. Both DCA success rate and DCC success rate are the
ratio of the number of successfully predicted pockets to the
total number of pockets. Under the DCC metric, the DVO is
calculated for the correctly predicted pockets, otherwise, the
DVO is set to 0 for the unpredicted pockets.

3 Results
3.1 Ablation Study
To analyze the efficiency of two blocks, Target Cropping
Block (TCB) and Transformer Block (TB), we perform sev-
eral ablation experiments. Models are evaluated under four
test datasets.

Target Cropping Block
Target Cropping Block (TCB) is to select interested local fea-
ture from global feature representation for targeted predic-
tion. Specifically, in encoding stage, according to the given
candidate center and crop ratio, the protein feature maps are
cropped for targeted predictions. This facilitates subsequent
decoder blocks to extract local features more finely.

To further analyze TCB, we visualized the middle feature
maps of GLPocket with and without TCB, as shown in Fig.
4. We can see that GLPocket without TCB introduces more
artifacts in the output. GLPocket with TCB has a cleaner
and more concentrated output with clearer boundaries. We
can observe that the protein regions of with TCB have higher
activate values in f1 and f2 than those without TCB, which
leads to the features of two regions (empty region and protein
region) to be more discriminative than those without TCB.
This is mainly because GLPocket without TCB has limited
local view. It is difficult to distinguish between proteins and
empty areas. This problem is solved by TCB by selecting
interested features from the global representation.

Furthermore, comparing f3 of GLPocket with and without
TCB, we can see that although they are the feature maps ex-
tracted from the same region of a protein, the prediction of
with TCB is closer to the label than that without TCB. This is
because the proposal integrates the global distribution infor-
mation, making GLPocket with TCB more accurate to predict
the shape of the pocket.

We also calculate the DCC and DVO of GLPocket with
and without TCB, as shown in Tab. 1. Comparing the first
two rows, TCB further improves prediction performance of
model without increasing additional parameters.

Transformer Block
We also conduct comparative experiments to verify the effec-
tiveness of Transformer Block (TB). TB aims to capture the
spatial dependency within proposal to enrich local context se-
mantic information.

The quantitative results are presented in Tab. 1. Comparing
the first and third rows, GLPocket with TB, with only a few
network parameters added, shows great superiority in both
DCC and DVO metrics with significant improvements. This
is mainly because the dependency between patches within
proposal can be captured early in the decoding phase by using
attention mechanism of TB. The subsequent decoder blocks
can perform step-by-step targeted refinement on the local pro-
posal based on the enhanced features. The result clearly re-
veals the benefits of TB to model semantic relationships of
small-scale representation.

As shown in the last row of Tab. 1, GLPocket with TCB ob-
tains further improvements in DCC and DVO under four test
datasets. This is mainly because the network not only adopts
TCB for global and local information modeling but also uses
TB to learn the semantic correlation between patches within
the proposals. Since PDBbind dataset has various compounds
pairs, like protein-nucleic acid pairs etc., where the sites are
relatively large. TCB in GLPocket is to remove surrounding
information interference and do local refined prediction, pay-
ing more attention on the small-site detection. However, de-
tecting larger sites needs a model with more consideration of
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Figure 4: Visualization of cross-sections of intermediate feature maps. Features in red boxes of f1 and f2 are f̃1 and f̃2 respectively.

Model
TestSet TCB TB COACH420 ↑ HOLO4K ↑ SC6K ↑ PDBbind ↑ #paramsDCC DVO DCC DVO DCC DVO DCC DVO

GLPocket

85.08 54.12 82.11 53.31 84.03 50.22 63.96 36.11 25.9M
✓ 91.94 55.64 88.43 54.31 91.03 51.26 71.72 33.82 25.9M

✓ 91.13 54.86 88.78 52.57 90.90 50.90 77.52 40.65 27.5M
✓ ✓ 92.74 55.18 90.20 54.22 92.50 52.67 77.14 38.51 27.5M

Table 1: We perform DCC and DVO test on different models. The bold indicates the best result.

neighborhood information in some extent. So the GLPocket
without TCB delivers a superior performance on PDBbind.

3.2 Comparison to State-of-the-art Methods
We make a quantitative comparison of GLPocket with the
state-of-the-art (SOTA) methods on four different test sets,
as shown in Tab. 2. Note that Kalasanty [Stepniewska-
Dziubinska et al., 2020], DeepPocket [Aggarwal et al., 2021]
and RecurPocket [Li et al., 2022] are the latest work to do site
prediction tasks. It is found that GLPocket achieves the best
performance for both DCC and DVO values. Kalasanty takes
the whole protein as input, which makes it difficult to focus
on small segmentation targets. DeepPocket and RecurPocket
pay more attention to local proposals so their performances
are better. RecurPocket builds feedback links from decoder
to encoder to guide the representation learning in a recurrent
and progressive manner, so it works better than DeepPocket.
GLPocket takes both the global and local information into
account with an appropriate trade-off, and establishes the se-
mantic relationship between smaller patch blocks within the
local proposal, so it achieves the best results.

We also report DCA on these test sets in Tab. 3. DCA
Top-n mainly measures two aspects, one is the sorting abil-
ity of the prediction results, and the other is location ability
for pocket. Top-n is the success rate of the first n predictions
according to the priority of prediction results, where n is the

number of annotated pockets for a given protein. Top-(n+2)
is the same. Kalasanty, DeepPocket and RecurPocket are the
latest best models in DCA [Aggarwal et al., 2021], and they
have different ways of ranking predictions. Kalasanty sorts
prediction results according to the segmentation density. It
selects the first n and n + 2 to do DCA test. DeepPocket
trains a classification network and a segmentation network.
The classification network is dedicated to scoring and rank-
ing pockets predicted by Fpocket. Our work mainly solves
the location and shape prediction of pockets. For a fair com-
parison, as in RecurPocket, models are tested in two steps.
First, according to the ranking results of DeepPocket classi-
fication network, the first n and n + 2 candidate pockets are
selected to calculate candidate centers. DeepPocket, Recur-
Pocket and GLPocket take the candidate centers as priori in-
formation of segmentation network, to predict pockets which
are used to calculate DCA.

From Tab. 3 we see that GLPocket outperforms previous
related works on four datasets with good generalization per-
formance. The performance of GLPocket is 2.49% higher
than RecurPocket on Top-n under COACH420 testset. Such
improvements demonstrate the effectiveness of GLPocket,
especially on this challenging task with such small pockets.
GLPocket is slightly inferior to RecurPocket on PDBbind, but
it is comparable with RecurPocket, indicating the efficiency
of our methods.
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Model
TestSet COACH420 ↑ HOLO4K ↑ SC6K ↑ PDBbind ↑

DCC DVO DCC DVO DCC DVO DCC DVO
Kalasanty 56.85 24.49 51.08 21.53 91.94 48.24 42.40 22.69
DeepPocket 85.08 54.12 83.62 51.82 84.03 50.22 63.96 36.11
RecurPocket 89.91 53.19 89.94 53.43 92.77 54.22 70.85 36.49
GLPocket 92.74 55.18 90.20 54.22 92.50 52.67 77.14 38.51

Table 2: We perform DCC and DVO test on different models. The result of RecurPocket in our paper is obtained under the condition of τ=2
using voxel-level mask. The bold indicates the best result.

Method
TestSet COACH420 ↑ HOLO4K ↑ SC6K ↑ PDBbind ↑

Top-n Top-(n + 2) Top-n Top-(n + 2) Top-n Top-(n + 2) Top-n Top-(n + 2)
Fpocket 35.09 51.25 36.34 51.53 23.99 37.23 19.21 43.08
Deepsite 53.07 53.07 51.65 51.67 52.94 65.41 - -
P2Rank 68.24 75.48 70.60 80.05 62.90 75.74 * *
Kalasanty 63.51 65.18 61.21 62.63 61.75 61.75 61.95 65.73
DeepPocket 71.53 76.87 79.79 87.56 66.39 84.33 68.89 84.56
RecurPocket 72.95 80.42 81.12 89.59 67.28 85.84 69.71 85.64
GLPocket 75.44 80.43 81.59 89.62 67.55 86.19 69.30 84.90

Table 3: DCA Top-n and Top-n+ 2 results of the state-of-the-art methods, the larger the better. The bold indicates the best results. n refers
to the number of annotated ligand for a given protein. The symbol “-“ indicates that there are no relevant results in the original paper and
related papers, and the author has not published the source code or model. “*“ indicates that some protein appeared in test sets are used to
optimize the model parameters.

Figure 5: Visualization of four sample results of the state-of-the-
art methods. The first column is partial protein and pocket, and the
other columns are model prediction results. Gray grid-lines denote
ground truth label.

We visualize examples of predictions in Fig. 5. The predic-
tions by Kalasanty are often incomplete, discontinuous, and
even far out-of-bounds, while those by DeepPocket and Re-
curPocket are more accurate and smooth. In general, the re-
sults by GLPocket are the closest to the real pockets.

4 Discussion and Conclusion
In this paper, we proposed a Lmser-based network structure,
called GLPocket, to capture the multi-scale representations
of objects to predict binding sites. We devised Target Crop-
ping Block (TCB) to select interested local features from the
global representation for targeted prediction. TCB makes
the local region representation more discriminative by inte-
grating the global distribution information, which helps to
make the prediction more concentrated and precise. TCB
also greatly reduces the volume of feature maps to be calcu-
lated by 82%, without introducing additional parameters. To
fully capture the spatial dependency within local regions, we
utilize Transformer Block (TB) to establish dependency rela-
tionship within proposal for enriching local context semantic
information. Experiments show that GLPocket outperforms
the state-of-the-art methods with a few parameters increase.
This method can be extended to other detection or segmen-
tation models easily, especially to detect or segment small
targets from large-scale samples.
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