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Abstract

Optimized trade execution is to sell (or buy) a
given amount of assets in a given time with the
lowest possible trading cost. Recently, reinforce-
ment learning (RL) has been applied to optimized
trade execution to learn smarter policies from mar-
ket data. However, we find that many existing RL
methods exhibit considerable overfitting which pre-
vents them from real deployment. In this paper, we
provide an extensive study on the overfitting prob-
lem in optimized trade execution. First, we model
the optimized trade execution as offline RL with
dynamic context (ORDC), where the context rep-
resents market variables that cannot be influenced
by the trading policy and are collected in an offline
manner. Under this framework, we derive the gen-
eralization bound and find that the overfitting issue
is caused by large context space and limited context
samples in the offline setting. Accordingly, we pro-
pose to learn compact representations for context to
address the overfitting problem , either by leverag-
ing prior knowledge or in an end-to-end manner. To
evaluate our algorithms, we also implement a care-
fully designed simulator based on historical limit
order book (LOB) data to provide a high-fidelity
benchmark for different algorithms. Our experi-
ments on the high-fidelity simulator demonstrate
that our algorithms can effectively alleviate over-
fitting and achieve better performance.

1 Introduction

Nowadays, brokerage firms are required to execute orders on
behalf of their clients (e.g., retail or institutional investors) to
ensure execution quality. Optimized trade execution, whose
objective is to minimize the execution cost of trading a cer-
tain amount of shares within a specified period, is an impor-
tant task towards better execution quality. In modern finan-
cial markets, most of the transactions are conducted through
electronic trading. Therefore, developing a smart agent for
optimized trade execution in electronic markets is a critical
problem in the financial industry.

Traditional solutions for this problem [Almgren and
Chriss, 2001; Guéant et al., 2012; Bulthuis et al., 2017] usu-
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ally make strong assumptions on the price or transaction dy-
namics and therefore do not apply to real scenarios. More-
over, these strategies are static (i.e., determined before the
start of the trading) and therefore unable to adapt to the real-
time market. Recently, RL-based methods have been devel-
oped to learn a more adaptive agent from market data [Fang
et al., 2021; Ning er al., 2018; Lin and Beling, 2020]. How-
ever, we find that existing methods suffer from considerable
overfitting. As shown later in Figure 1 (right), trained models
are prone to memorize the history instead of learning gener-
alizable policies.

To better analyze overfitting in trade execution, we propose
a framework called Offline Reinforcement learning with Dy-
namic Context (ORDC) to model the problem. This frame-
work highlights the difficulty in generalization for the trade
execution task. In trade execution, part of the observation
(which we call context) evolves independently of the agent’s
action, and the simulator is based on a dataset that contains a
finite number of context sequences (e.g., historical price se-
quences). The number of context sequences is usually limited
and does not increase w.r.t. the number simulation steps at
training time. Therefore, the agent is prone to memorize the
training context sequences, and perform not well on testing
context sequences. We highlight the difficulty in generaliza-
tion under this setting theoretically and show that limited con-
text sequences lead to bad generalization. This explains why
generalization is hard for ORDC. The offline nature does not
receive much attention in previous RL applications for trade
execution that usually employ off-the-shelf online RL meth-
ods with data-driven simulation.

Since it is usually hard to increase the number of sampled
context sequences for training in practice, we find another
way to address the overfitting problem. The theoretical anal-
ysis also indicates that larger context space leads to worse
generalization under the same number of samples. Motivated
by the analysis, we propose to aggregate the context space
by learning a compact context representation for better gen-
eralization. This is effective for trade execution where the
context usually contains more information than needed, but
only a small amount of the underlying information is help-
ful for decision-making. Moreover, we design a simplified
trade execution task that motivates us to learn a compact con-
text representation that is predictive of the statistics on future
contexts. Therefore, we propose to use the prediction of fu-
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ture statistics as the context representation. We propose two
algorithms: CASH (Context Aggregate with Hand-crafted
Statistics) which can learn interpretable models, and CATE
(Context Aggregate with End-to-end Training) which does
not require domain knowledge.

In the experiment, we first implement a high-fidelity and
open-source simulator for trade execution to provide a uni-
form backtest for different methods. With this simulator, we
find that previous state-of-the-art algorithms suffer from over-
fitting and our algorithm outperforms these baselines due to
better generalization.

The contributions of this paper are as follows:

* (Section 3) We propose the ORDC framework and pro-

vide theoretical analysis to highlight the difficulty in
generalization for the trade execution task.

(Section 4) We propose two algorithms to learn gener-
alizable representations for trade execution. One is in-
terpretable with the help of human prior and the other
learns in an end-to-end manner.

(Section 5) We implement an open-source, high-fidelity,
and flexible simulator to reliably compare different trade
execution algorithms. With this simulator, we show that
our models learn more generalizable policies and out-
perform previous methods.

2 Related Work

Most existing papers on RL generalization study under the
contextual MDP setting where the agent is trained and evalu-
ated on different sets of configurations [Zhang et al., 2018b;
Zhang et al., 2018a; Packer et al., 2018] or procedurally gen-
erated environments [Cobbe et al., 2019; Cobbe et al., 2020;
Song et al., 2019; Wang et al., 2020]. ORDC is different from
their settings in that 1) the context changes in each time step
and affects both the reward and the transition; 2) the context
sequence is highly stochastic and pre-collected with limited
volume. These properties contribute to the difficulty in esti-
mating the value function or evaluating the policy and thus
exacerbate overfitting. A recent survey [Kirk et al., 2021]
points out that benchmarking RL algorithms with popular
procedurally generated environments is not enough and RL
generalization in other settings (e.g., the offline setting) is
valuable and under-explored.

Not only limited to trade execution, the structure of ORDC
is common for many industrial RL application scenarios such
as video stream control [Mao et al., 20171, inventory man-
agement [Oroojlooyjadid et al., 2022], ride-sharing [Shen et
al., 20201, cellular network control [Dietterich et al., 2018],
etc. Although ORDC emphasizes the offline nature, it is also
different from the canonical offline RL setting. The agent
is trained to avoid encountering unseen states in offline RL,
whereas the agent in ORDC is evaluated on unseen context
sequences which cannot be avoided. Therefore, off-the-shelf
offline RL algorithms do not apply to our setting and a more
adaptive algorithm is needed. Many previous solutions for
trade execution use online RL algorithms to learn a policy
from the interaction with the data-driven simulator. However,
unlike online RL settings where the testing and training en-
vironments are the same, ORDC tests the agent on unseen
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context sequences which brings in difficulty in generaliza-
tion. IDSD [Shahamiri, 2008] and input-driven MDP [Mao
et al., 2018] are similar to ORDC in that they model the un-
controllable part in observation. However, they focus on the
online setting and do not model the existence of a smaller
latent context space (see section 3).

3 Why Generalization is Difficult for Trade
Execution?

In this section, we first briefly introduce the trade execution
problem. Then, we introduce Offline RL with Dynamic Con-
text (ORDC) which models how RL is used to solve the prob-
lem. At last, we provide theoretical analysis for the ORDC
model to highlight the difficulty in generalization for these
RL applications.

3.1 Trade Execution

Modern electronic markets match the buyers and sellers with
the limit order book (LOB), which is a collection of outstand-
ing orders, each of which specifies the direction (i.e., buy or
sell), the price, and the volume. The traders can trade via two
types of orders: market orders (MOs) and limit orders (LOs).
An MO is executed immediately but may suffer from a large
trading cost (e.g., due to crossing the spread or temporary
market impact [Almgren and Chriss, 1999]), whereas an LO
can provide the trader with a better price but at the risk of non-
execution. See appendix for more details on LOB. Moreover,
the price fluctuation or trend can also affect the trading cost.
Optimized trade execution aims to buy/sell a given amount of
assets in a given time period at a trading cost as low as possi-
ble. For simplicity, we only consider liquidating (or selling)
the asset.

Previously, different methods [Nevmyvaka et al., 2006;
Lin and Beling, 2020; Fang et al., 2021] are proposed to apply
RL to trade execution, but they follow a similar procedure:
The agent learns based on interactions with a data-driven sim-
ulator. The dataset contains the information collected from
the real market and is used to determine simulated transitions.
Therefore, it can be regarded as an offline RL setting. The ob-
servation of the agent can be divided into the market variable
(e.g., the LOB snapshot) and the private variable (e.g., re-
maining time and inventory). The market variable is usually
high-dimensional and incorporates different forms of infor-
mation to represent the noisy and partially observable market.

3.2 Offline RL with Dynamic Context

To model the problem structure when applying RL to trade
execution, we introduce the ORDC model. ORDC is a tu-
ple (X,C,S, ¢, P,r,v, D) specifying the latent context space
X, the context space C, the state space S, the unknown
context decoding function ¢ : C — A, the transition dy-
namics P(2/, |z, s,a) = Py (2'|z)Ps(s'|x, s, a), the reward
r(z, s, a), the discount factor -y and the offline context dataset
D that contains context sequences.

In trade execution, the market variable serves as the con-
text, and the private variable serves as the state. The context
evolves independently and is not affected by the action or the
state. However, the context is important since it influences the
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Figure 1: The blue line: In trade execution, the deep learning agent
can memorize and overfit to the context sequence used for train-
ing (the gray line) and liquidate most of the inventory on the high-
est price. The orange line: A generalizable agent should output a
smooth policy considering the stochasticity of future context. See
the corresponding experiment setting in Section 5.1.
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reward collected by the agent and the dynamics of the state.
The context ¢ € C is usually high-dimensional and corre-
sponds to a more compact latent context x € X’ (e.g., the key
information for making trading decisions). Specifically, they
have the block structure [Du et al., 2019]: Each context ¢ € C
uniquely determines its generating latent context x € X with
the unknown mapping ¢ : C — X.

Given a policy 7 : C x S — A, the Q-function is defined
as Q" (c,s,a) = K[}, v'r(xs, 8¢, a0)|zo = ¢(c),s0 =
s,ap = a, 7|, where a; ~ 7(|ct, s¢) and x4, s¢ transits fol-
lowing the dynamics P for all ¢ > 1. The agent learns
from interactions with a data-driven simulator based on the
offline dataset D and outputs a policy 7 that maximizes
J(m) =E[Q™ (¢, s,a)|(c,s) ~ Py,a ~ w(|c,s)] where Py is
the initial context/state probability.

3.3 Theoretical Analysis for Generalization under
ORDC

With a slight abuse of notation, we can write the dynam-
ics as P(c,§'|e,s,a) = P.(c'|c)Ps(s’|e, s,a) owning to the
block structure. In many real instances of ORDC, simula-
tion is cheap and thus Ps can be accurately estimated from a
large number of interactions with the simulator. Moreover, P
(e.g., the rules to match the orders) is usually simple, whereas
P, (e.g., involving market dynamics) is complex and hard to
estimate. Therefore, we further assume P, is known. The
following sample complexity lower bound highlights the in-
trinsic difficulty in generalization under ORDC. (Notice that
the sample complexity indicates how many samples are suffi-
cient to ensure a small generalization gap.)

Assumption 1 (Regularity). C, X, S, and A are discrete and
the immediate reward r(z, s, a) € [0,1],Vz, s, a.

Theorem 1. Under Assumption 1, there exists a class of
ORDC models M = {My,--- , My} such that any algo-

rithm A needs at least T = Q(%) context sam-

ples to learn a value function Q* € RE*S*A such that
Q" — Q% oo < € with probability at least 1 — § for all
M € M, where Q* is the optimal action value function.
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We provide the proof in appendix. In the proof, we con-
struct a class of ORDC models where the contexts can be
divided into a small number of categories. However, without
further knowledge on how to aggregate the contexts, the al-
gorithm still needs a large number of samples (i.e., O(|C|))
to learn a generalizable policy. We will later show that the
sample complexity can be improved when the context aggre-
gation is known.

The theorem indicates that the estimated value function can
overfit to limited context sequences when the context space is
large or the underlying context dynamics is complex. Ac-
tually, this is the case for real trade execution tasks. First,
the context space is large since people usually incorporate
many market indicators as the context to reflect the market
more comprehensively. Second, the context dynamics is com-
plex and highly stochastic since it is driven by various market
participants, news, economics, etc. Moreover, we find that
function approximation does not effectively improve general-
ization since deep learning models can also suffer from such
overfitting. To illustrate this, we present an overfitted strat-
egy and a generalizable strategy in Figure 1. The overfitted
strategy results from a deep learning model trained using a
standard RL algorithm, and the generalizable strategy results
from a similar training but with a technique that aggregates
the context (see Section 5.1 for details). We can see that a
standard deep RL model can memorize the highest price in
the training context (price) sequence and learn an aggressive
policy that liquidates nearly all the stocks on that price.

4 Towards Better Generalization

Motivated by the theoretical analysis, we first show that ag-
gregating the context can improve the generalization theoret-
ically. Then, we introduce two practical algorithms for trade
execution: 1) CASH (Context Aggregate with Hand-crafted
Statistics) , and 2) CATE(Context Aggregate with End-to-
end Training).

4.1 Context Aggregation

In ORDC, the agent may overfit to limited context sequences
in the dataset. We observe that, by resorting to the context de-
coding function ¢ : C — X that maps the high-dimensional
context into the latent context, we can obtain a more general-
izable agent.

Theorem 2. With the access to ¢ and a generative model
to collect context samples for D, there exists an algorithm
that learns a value function Q such that |Q* — Qlloc < €
as long as the context transitions in |D| is larger than D =

0] (lxl(zllfi#) with probability at least 1 — 6.

We provide the proof of Theorem 2 in appendix. ' No-
tice that X is considered to have a much smaller cardinality
than |C|. This indicates that we can learn a good policy with
much fewer context samples when ¢ is available. However,

'Compared with Theorem 1, the additional dependency on the
cardinality of the (latent) context space may be improved using more
involved analysis (e.g., using a Bernstein style inequality).
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Figure 2: The architecture of variational autoencoder

the mapping ¢ is not provided in many real scenarios. Nev-
ertheless, we still hope to improve the generalization of the
model by finding a mapping that can effectively aggregate
the high-dimensional context. Next, we propose two algo-
rithms to approximate the mapping either using the domain
knowledge or an end-to-end training scheme.

4.2 Practical Algorithms

With a simulator that replays the historical context sequences,
we can use the standard online RL algorithm by treating it as
a regular MDP (where the observation contains the context
as well as the state). Additionally, we consider the risk of
overfitting highlighted in the analysis on ORDC and propose
to train a context encoder to approximate the mapping ¢.

In our algorithms, we guide the learning of the context en-
coder with the statistics extracted from future contexts. The
reasons are as follows: The key challenge in trade execution
is to handle the uncertainty of the future since the solution for
the task would be easy if we knew the future, e.g., liquidat-
ing on the known highest price. In this sense, compared with
traditional methods that do not use context and output static
policies, using context gives us a good indication of the future
and enables dynamic adaptation. Therefore, the information
extracted from future contexts is important to guide the train-
ing of the context encoder. However, there is spurious noise
in the future contexts that is not predictable from the current
context. Therefore, we hope to use stable statistics (i.e., with
a stable correlation with the optimal decision, see [Arjovsky
et al., 2019]) that can extract predictable as well as generaliz-
able information from future contexts. For example, crude
price movement and volatility in the future are rather pre-
dictable, whereas the specific time point in the future when
the price is highest is not generalizable. Moreover, the design
of our algorithms is also motivated by the experiments on a
simplified trade execution task (See Section 5.1), which in-
dicates that guiding the context encoder with the statistics on
future contexts is a simple yet effective method.
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4.3 CASH: Context Aggregation with
Hand-crafted Statistics

CASH and CATE are based on the training of a standard DRL
model RL,,(¢g(c),s) that receives a context ¢ and a state
s and outputs actions or values. We use 6 and w to denote
the parameters in the context encoder and the policy/value
network respectively. CASH uses hand-crafted statistics to
guide the learning of the context encoder. We present the
diagram of CASH in Figure 2. In the pre-training phase,
we first train a context encoder that tries to predict the la-
bels extracted using hand-crafted statistics from future con-
texts. Specifically, we train the encoder ¢y (-) with the loss
Lsu(0) = (po(c) — dnana(c’))? where ¢’ is the future con-
text following the current context ¢ and ¢nang extracts hand-
crafted statistics. The loss is a mean-squared error between
the context representation and the generated statistics. In the
training phase, we fix the context encoder ¢¢(+) and train the
policy RL,(-,-) using standard RL algorithms. We denote
the loss function of the RL algorithm as Lgy (w) which can
be the TD error for value-based RL algorithms (e.g., DQN)
or the negative policy performance estimation in policy gra-
dient algorithms (e.g., PPO). These losses are estimated and
optimized based on the transition samples collected from the
data-driven simulator. Specifically, the context ¢ and future
context ¢’ are collected by replaying the historical data; the
state s and the reward are calculated by the simulator.

In our experiment, we design statistics of the future con-
texts Pnana(-) based on the observation that the task would
be simple if the information about the future price trend and
spread is discovered. We use the following hand-crafted
statistics: 1) The difference between the average future twap
(time-weighted average price) and the current twap, which
indicates the trend; 2) The difference between the maxi-
mum/minimum future twap and the current twap, which in-
dicates whether the current price is a peak/bottom; 3) The
volatility of the future twap, which is related to risk control;
4) The standard deviation of future spreads and the difference
between the average/maximum/minimum of future spreads,
which are related to the temporary market impact.

4.4 CATE: Context Aggregation with End-to-end
Training

Designing effective statistics for the context encoder to pre-
dict requires expertise in the specific domain, which is un-
available in many real scenarios. Therefore, we propose
CATE that learns to generate such statistics via a future (con-
text) encoder ¢y(-) where ¥ is the trainable parameter. We
present the algorithm in Figure 2. The algorithm learns a con-
text encoder (that outputs the context representation), a future
encoder (that outputs the future statistics), and a policy/value
network. These components are trained simultaneously with
the following loss in an in an end-to-end manner:

LO9,w)= > Lene(0,9) + Lrua(0,w) + Lria(9,w)

transitions
where Lene(6,9) = (d(c) — ¢o(c))?
Lre1 (6, w) optimizes the RL model RL.,(¢o(c), s)
Lri2(9, w) optimizes the RL model RL., (¢9(c’), s)
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The first term Lg,. is used not only to train the context en-
coder but also encourage the future encoder to generate pre-
dictable statistics. The second term Lgy | optimizes the base
RL model (i.e., the context encoder and the value/policy net-
work). The third term Lg;, encourages the future encoder
to generate statistics that are helpful for decision making and
therefore incentivizes informative future statistics. Similar to
CASH, this loss is calculated based on the transition samples
collected from the data-driven simulator.

5 Experiments

In this section, we first conduct a simplified task of trade
execution, to illustrate the overfitting in vanilla RL meth-
ods and the effectiveness of context aggregation for gener-
alization. Then, based on our market simulator, we compare
our algorithms with other existing trade execution methods
in the real stock market data. We provide the source code in
https://github.com/zhangchuheng123/RL4Execution.

5.1 Experiments on Simplified Trade Execution
Task

In this experiment, we introduce a simplified trade execution
task to study the overfitting problem with a context dataset
and possible solutions towards better generalization. In this
simplified task, all transactions are executed on a single price
process (i.e., without ask/bid price) following the Brownian
motion. Formally, the dynamic of price process is pi+1 =
pe + Apy, Apy = o + 0&;, where p; is the price at the ¢-th
step, & ~ N(0, 1) is a random variable which follows the the
standard Gaussian distribution independently at each step ¢,
« and o denote drift and volatility which are two statistical
parameters of process. The task is to learn an agent that can
give a execution strategy based on the observation of price
changes over the past 30 time steps.

The objective is to reduce the trading cost, and therefore we
set the negative discounted trading cost as the reward (i.e., the
gap between the average discounted execution price and the
average discounted market price).

This task is a simplified ORDC task, which focuses on
1) the existence of a mapping between the high-dimensional
context ¢ and the latent context x = («, o), and 2) train-
ing with a limited context dataset. In the following experi-
ments, we use DDPG [Silver et al., 2014] as the base RL al-
gorithm. We design several methods to solve the task and ob-
serve the corresponding generalization ability of the learned
agents. We present the experiment results in Table 1 and ana-
lyze the result of each model as follows:

Base. We can first observe the performance of the base RL
model. We can see that it performs well when the sample data
is sufficient, but its performance degenerates quickly when
the data volume decreases.

Bottleneck. When the data is noisy and limited, deep learn-
ing models with high capacity are able to memorize the sam-
ples in the training set. A natural idea is to limit the model
capacity with a representation bottleneck (i.e., learning a low-
dimensional representation). With the prior knowledge that
the whole price process can be represented by two parame-
ters (i.e., drift o and volatility o), so we set the representation

4979

to be a two-dimensional vector. However, we observe that an
end-to-end training process for a model with bottleneck does
not result in a good performance. Additionally, we observe
that the training process is highly unstable.

CATE. In this model, we consider an encoder-decoder ar-
chitecture to learn the representation with the others remain-
ing the same as Bottleneck. Specifically, the encoder gener-
ates a two-dimensional representation from the past context,
and the decoder tries to predict the future context sequence
based on the representation (the decoder that reconstructs the
past context sequence results in similar performance). The
decoder receives a two-dimensional representation generated
by the encoder and tries to predict the future context se-
quence. We observe that this model results in relatively good
performance even when the data is highly limited. However,
the two-dimensional representation may not only embed the
estimated statistical parameters (i.e., (o, «)) but also overfit
the spurious noise in the data (i.e., ;).

CASH. In this model, we consider using a separate train-
ing signal to supervise the learning of the representation with
other architectures remaining the same as Bottleneck. The
loss function to train the encoder is a mean-squared-error
w.r.t. a two-dimensional hand-crafted target vector, which is
the estimate of (5, ). We observe that this model achieves
superior performance even when the data is highly scarce.
Moreover, the generalization gap is only half of that in the
previous model, which may benefit from the fact that this
model avoids fitting the spurious noise.

We also present the strategies learned by Base and CASH
with 1k data in Figure 1. We can observe that the strategy
learned by Base (cf. overfitted strategy in Figure 1) presents
sharp peaks resulting from overfitting the training data. In
contrast, the strategy learned by CASH (cf. generalizable
strategy in Figure 1) is smooth which indicates that the agent
is more generalizable.

Through the experiments on this simplified trade execu-
tion task, we have several observations: 1) Overfitting can
easily occur for a deep RL model even in a setting simpler
than the ORDC model. 2) Simply regularizing the capacity
of the representation does not lead to better performance or
generalization. 3) Reconstruction/Prediction-based encoder
training combined with limited representation capacity can
achieve good performance. 4) With carefully designed tar-
get features, we can prevent the encoder from fitting spurious
noise and further improve generalization.

5.2 Experiments with High-Fidelity Simulation

Simulated Environment. To reduce the gap between sim-
ulation and the real-world environment and provide a reli-
able benchmark for different algorithms, we build an open
source, high fidelity, and flexible market simulator for trade
execution. Compared with previous simulators that are based
on bar-level simulation [Fang er al., 20211, our simulator
is based on LOB-level data and thus has higher fidelity.
Specifically, our simulator considers the temporary market
impact, time delay, and second-level snapshot-by-snapshot
order book reconstruction to minimize the sim-to-real gap.
Moreover, our simulator can easily adapt for different designs
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Reward (train) Reward (eval) Gap
Data volume Model mean std mean std mean std
100k Base 1.8559 0.0379 1.8291 0.0227 0.0268 0.0317
Bottleneck -0.0024 0.0035 -0.0022 0.0162 -0.0003 0.0150
CATE 1.7143  0.0281 1.7004 0.0265 0.0139 0.0252
CASH 1.8016 0.0246  1.8028 0.0187 -0.0013 0.0321
10k Base 2.5389 0.0197 1.6047 0.0266 0.9341 0.0346
Bottleneck  0.0059 0.0131 -0.0006 0.0013 0.0065 0.0144
CATE 1.7743  0.0261 1.7335 0.0536  0.0408 0.0471
CASH 1.8329 0.0300 1.8083 0.0304 0.0246 0.0544
1k Base 4.0340 0.0659 14083 0.0748 2.6258 0.1259
Bottleneck  0.3202 0.8233  0.4142 0.8833 -0.0940 0.1430
CATE 2.0324 0.1823 1.6007 0.0591 04317 0.1736
CASH 2.1578 0.1219 19557 0.0555 0.2021 0.1188

Table 1: The performance of different models on the simplified trade execution task. The models are evaluated over five random seeds.

Reward (train/eval) represents the negative trading cost on the training/evaluation set.

Algorithm Training Validation Testing Gap
TWAP - - 14.0984 (2.1545) -
Momentum - - 12.2530(0.6151) -
Tuned DQN 2.0382 (1.7684)  5.8134(2.1032)  5.9240(3.2986)  3.8858
[Nevmyvaka et al., 2006] 3.0781 (5.2447)  8.8698 (1.5701)  9.1223 (1.0554)  6.0441
[Ning et al., 2018] 7.3248 (5.1059) 10.3971 (2.0066)  9.4051 (2.6524)  2.0804
[Lin and Beling, 2020] 5.8778 (7.0791)  10.7000 (0.7024) 12.7116 (1.1514)  6.8338
Tuned DQN + CASH 22269 (2.0798)  3.7992 (1.4612)  3.4250(1.9052) 1.1981
Tuned DQN + CATE -2.8774 (1.7019)  -1.8431 (1.2983)  0.0075 (1.6920)  2.8849
Tuned PPO -0.9505 (2.2439)  2.1132(0.2497)  2.7575(1.2070)  3.7079
[Dabérius er al., 2019] 7.6944 (11.3490)  9.2893 (1.9000) 12.3166 (2.8627) 4.6222
[Lin and Beling, 2021] 52697 (7.4173)  8.1153 (0.8894)  9.4807 (1.9686) 4.2110
[Fang et al., 2021] -4.9090 (16.1474)  10.1338 (4.0843) 11.8739 (5.0948) 16.7829
Tuned PPO + CASH -4.6504 (0.4916)  -3.9351 (0.2810)  -4.5760 (0.2062)  0.0744
Tuned PPO + CATE -5.0364 (0.8104)  -3.8797 (0.1103)  -4.9068 (0.3015)  0.1296

Table 2: The trading cost (bp=10"") of different algorithms. The validation set is used for hyperparameter tuning. The numbers are the
average mean (std.) trading cost in the last 100 evaluations of the total 1000 evaluations over five different random seeds. The bold numbers
indicate the algorithms with the best performance or smallest generalization gap.

(e.g., in the action/observation space and the reward function)
of previous methods and therefore enables comparing differ-
ent methods uniformly. See detailed description for the sim-
ulator and the environment settings in appendix.

Experiment Setting. Our simulator is based on the LOB
data of 100 most liquid stocks in China A-share market. The
data collected from April 2022 to June 2022 is used as the
training set, and the data collected during July 2022 and
August 2022 are used as the validation and testing set re-
spectively. The task is to sell 0.5% of the total trading vol-
ume of the last trading day in a 30-minute period randomly
selected from a trading day. The agent makes a decision
(i.e., placing orders) at the start of each minute. We train
an universal model for all the stocks. The evaluation met-
ric is the trading cost defined as (Prwap — P)/Prwap, Where
p = A,/V, is the average execution price of the agent and

A,,V, are the trading money and volume of the agent re-
spectively, prwap = % Z;‘F:l Py is the time-weighted average
price in the given T time steps. Trading cost is measured in
basis point (bp) which is 1074,

Baselines. We compare our algorithm with some rule-based
and RL-based strategies for trade execution, where TWAP di-
vides a large order into smaller orders of equal quantities and
executing them at regular intervals throughout the entire pe-
riod, Momentum buys relatively more quantity when the price
rises, and vice versa.

The experiment results are shown in Table 2. We imple-
ment two families of algorithms based on DQN (which rep-
resents value-based RL methods) and PPO (which represents
policy-based RL methods) respectively. Most of the previ-
ous RL-based trade execution algorithms are based on these
two base RL algorithms. We implement these algorithms by
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Predicted Price  Volume
Statistics

Avg future twap - current twap ~ 4.5540  0.0971
Max future twap - current twap ~ 1.5008 -0.2111
Min future twap - current twap  -1.0073  0.3853
Twap volatility 1.3095 -0.4248
Avg future sprd - current sprd -0.1326  0.1083
Max future sprd - current sprd 1.8983  -0.1352
Min future sprd - current sprd ~ -1.3171  0.0292
Sprd volatility 6.3998 -0.8049

Table 3: The impact of predicted statistics on the agent’s action in
CASH (based on PPO).

following their designs in the model architecture, the observa-
tion, the action space, the reward function, etc. Moreover, we
conduct experiments on the combinations of different designs
and develop two well-designed RL-based trade execution al-
gorithms (i.e., tuned DQN and tuned PPO in the table). Later,
we implement our algorithms based on these two baselines.

First, we observe that tuned DQN/PPO outperforms other
DQN/PPO-based baselines due to better designs. Specifi-
cally, we found that using only MOs for trade execution leads
to high trading costs to cross the ask-bid spread. Moreover,
the design of the reward function has a significant impact
on the performance of the model. Second, we observe that
our algorithms outperform tuned DQN/PPO due to aggregat-
ing the context. Notice that OPD [Fang et al., 2021] uses
a teacher policy that is based on the perfect information to
guide the learning of the target policy, which is similar to
our algorithms in extracting information from future contexts.
However, OPD suffers from a larger generalization gap since
the guidance of the teacher policy is informative but may not
be generalizable. In contrast, the guidance in our algorithms
(hand-crafted or generated statistics) is designed to be both
informative and generalizable.

The advantage of using hand-crafted statistics to guide the
learning of the context encoder in CASH is that the meaning-
ful context representations can lead to an interpretable learned
policy. To interpret the learned policy, we estimate how each
dimension of the representation (i.e., the predicted statistics)
affects the selected quoted price and volume based on a set
of collected context representations. We list the slopes esti-
mated using linear regression in Table 3. In this way, we can
examine the learned policy. For example, we can see from
the first row that the quoted price is 4.554 bp higher for every
unit increase in the predicted price trend.

To present the policy of the agent under different trends,
we plot an example of trade execution, as shown in Figure
3. Roughly speaking, the agent liquidates evenly across the
horizon. Meanwhile, the agent can adaptively place the or-
der according to the trend and the timeline. For example, the
agent tends to place LOs at higher price levels in the early
stage of the horizon and becomes more conservative in the
latter stage. Moreover, when there is a rising trend, the agent
is more inclined to quote at a higher price to catch the trend.
We also show how the baseline PPO algorithm liquidates (cf.
the purple lines). Compared with our algorithm, the baseline
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Figure 3: The policies under different trends learned by CATE
(based on PPO) and the corresponding baseline (Tuned PPO). The
background shaded areas indicate the 5-level ask/bid prices, and the
stars indicate the orders placed by CATE. The lines indicate the re-
maining inventory of CATE and the baseline algorithm.

tends to liquidate more at some specific steps which may re-
sult from overfitting the training data. and the baseline tends
to complete liquidation before the end of the given horizon
which may lose trading opportunities.

6 Conclusion

To analyze the overfitting problem when applying RL to the
trade execution task, we propose an Offline RL with Dy-
namic Context (ORDC) framework. In this framework, we
derive the generalization bound for the ORDC and find that
the generalization gap results from limited data and large con-
text space. Motivated by the theoretical analysis, we pro-
pose to aggregate the context space to learn a generalizable
agent. Accordingly, we design two algorithms: CASH that
learns an interpretable agent using hand-crafted future statis-
tics to guide context aggregation, and CATE that learns a
compact context representation without resorting to domain
knowledge. The experiments on both a simplified trade exe-
cution task and a well-designed high-fidelity simulated envi-
ronment show that our algorithms can generate more gener-
alizable agents. Moreover, combined with a better design on
the model components (e.g., the reward function and the ac-
tion space), our algorithms achieve significant performance
improvement over the previous methods. In the future, we
plan to apply the ORDC framework into other real-world RL
applications that learn from offline context data.
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