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Abstract
Meta-learning has made tremendous progress in re-
cent years and was demonstrated to be particularly
suitable in low-resource settings where training
data is very limited. However, meta-learning mod-
els still require large amounts of training tasks to
achieve good generalisation. Since labelled train-
ing data may be sparse, self-supervision-based ap-
proaches are able to further improve performance
on downstream tasks. Although no labelled data
is necessary for this training, a large corpus of un-
labelled text needs to be available. In this paper,
we improve on recent advances in meta-learning
for natural language models that allow training on
a diverse set of training tasks for few-shot, low-
resource target tasks. We introduce a way to gen-
erate new training data with the need for neither
more supervised nor unsupervised datasets. We
evaluate the method on a diverse set of NLP tasks
and show that the model decreases in performance
when trained on this data without further adjust-
ments. Therefore, we introduce and evaluate two
methods for regularising the training process and
show that they not only improve performance when
used in conjunction with the new training data but
also improve average performance when training
only on the original data, compared to the baseline.

1 Introduction
In recent years, self-supervised methods for training large
text models have shown tremendous success in many nat-
ural language processing (NLP) tasks by training a general
language model without the need for supervised data, fol-
lowed by a fine-tuning step to train the model for a spe-
cific task [Devlin et al., 2019; Radford et al., 2019; Brown
et al., 2020]. However, this fine-tuning process still requires
large amounts of labelled and task-specific data [Yogatama et
al., 2019] which often is not available in real-world scenar-
ios [Tan and Zhang, 2008; Wan, 2008; Salameh et al., 2015;
Fang and Cohn, 2017].

Another field that has recently received lots of attention
is meta-learning [Schmidhuber, 1987; Bengio et al., 1991;
Finn et al., 2017] where the goal is to learn a meta-model on
many small tasks so that it can be used to more efficiently
train a task-specific target model downstream with only a few
labelled training examples. One recent development in this
field is an optimisation-based learning method that is able to
learn a good initialisation point for an arbitrary model archi-
tecture so that the initialised model only needs small adjust-
ments during training to converge and is consequently able to
achieve good performance for small training sets [Finn et al.,
2017].

Although model agnostic, this technique still requires a
fixed model architecture and shares all learned initialisation
parameters including the final classification layers. This
poses a problem for diverse NLP tasks that can have dis-
joint label spaces as well as different numbers of possible
output classes. To solve this problem, a parameter genera-
tor can be used to dynamically generate the initial parameters
of the classification layer based on samples of the training
data [Bansal et al., 2020a]. This generator is part of the meta-
model and is optimised during meta-training to produce good
initial parameters that can be fine-tuned using only few train-
ing examples from the target task. This adjustment allows
the use of all available labelled training data during training,
even if the number of classes N does not match the target
task. Still, it is beneficial for the average model performance
to further increase the amount of training data, especially in
low-resource settings [Bansal et al., 2020b].

In this paper, we explore ways to leverage training on addi-
tional tasks that are generated from the already available data
by changing the training objective. Therefore, these datasets
require no additional labelled or unlabelled data. More con-
cretely our contributions are:

• A method to generate tasks from the available data with
a new training objective

• We demonstrate that this data can not naively be used for
training and therefore

• We introduce two different methods to regularise the
training process and
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• Demonstrate that these techniques are not only effective
while training on the newly generated tasks, but also im-
prove average model performance even when only using
the original datasets

We evaluate all methods on a diverse set of few-shot NLP
tasks to demonstrate their effectiveness and present a detailed
analysis of the effects of the proposed methods.

2 Background
2.1 Meta-Learning
Meta-learning describes the process of training a model to
be able to quickly adapt to a new task. This is achieved by
learning a meta-task over different tasks which is used to op-
timise the learning process [Schmidhuber, 1987; Bengio et
al., 1991; Xiao et al., 2021] which makes meta-learning par-
ticularly suitable for low-resource tasks [Vinyals et al., 2016;
Bansal et al., 2020a; Bansal et al., 2021; Wang et al., 2021a;
Li and Zhang, 2021; Han et al., 2021]. Often a meta-
model is trained to update the parameters of the task-specific
models [Hochreiter et al., 2001; Andrychowicz et al., 2016;
Li and Malik, 2017] which comes with the disadvantage of in-
troducing new parameters that itself need to be optimised dur-
ing training and therefore introducing a computational over-
head to the overall system.

Recent approaches resolve this weakness by using an
optimisation-based learning method [Finn et al., 2017; An-
toniou et al., 2019; Bechtle et al., 2021] with the goal to
learn a set of model parameters θ0 that function as an ini-
tialisation point for downstream tasks, so that the model can
be fine-tuned to a concrete task with only very few training
steps. “Model-Agnostic Meta-Learning” (MAML) [Finn et
al., 2017] is an example of such an algorithm that does not
impose any constraints on the model architecture. In MAML,
the initial model parameters θ0 of a neural network f are
learned by sampling a number of training tasks Ti from a set
of tasks M = {T1, T2, . . .}. For each task, a training (sup-
port) set Dsi ∼ Ti and a validation (query) set Dqi ∼ Ti is
sampled. The initial model parameters θ0 are then updated
to minimise a task loss function Lsi on Dsi , yielding adjusted
model parameters θ∗i :

θ∗i = θ0 − α∇θ0Lsi (fθ0) (1)

where α is the learning rate. This step forms the inner-loop
or the update of the fast-parameters. In the outer-loop, the
updated parameters θ∗i are used to calculate an optimised set
of initial parameters θ0 by minimising the meta loss over all
sampled tasks:

Lmeta(θ0) =
B∑
b=1

Lqi (fθ∗i ) (2)

θ∗0 = θ0 − β ∗ ∇θ0Lmeta(θ0) (3)

where Lqi is the loss on Dqi , B is the sample size drawn from
Ti and β the learning rate of the outer-loop. The calcula-
tion of the outer-loop gradients requires the calculation of
the second-order derivative to propagate the loss through the
inner-loop updates which imposes a serious computational

cost. Interestingly, Finn et al. [2017] empirically show that
using a first-order approximation of the meta-gradients still
yields comparable model performance.

2.2 Few-Shot Learning for Diverse NLP Tasks
Based on the MAML framework, Bansal et al. [2020a] pro-
pose a new architecture for few-shot text classification across
diverse tasks. While MAML is model-agnostic, it requires a
fixed model architecture to tune the initialisation point. In the
case of an N -way classifier network trained using categorical
cross-entropy however, the last layer of the model needs to
have exactly N output neurons. Therefore, the naive MAML
optimisation approach limits either the availability of suitable
tasks that can be used for meta-training, which is especially
problematic for large values of N , or would exclude optimi-
sation of the output layer in the meta-update step for tasks
with a different number of classes as the target task. Bansal
et al. [2020a] therefore introduce a parameter generator gψ
that predicts a set of initial parameters for the output layer us-
ing the first batch of training data fromDsi by partitioning the
data according to the class labels Cn

i ← {xj |yj = n} and
then predict a set of weight and bias parameters

wn
i , b

n
i ←

1

|Cn
i |

∑
xj∈Cn

i

gψ(fθ(xj)) (4)

using each partition where fθ is a pre-trained text-encoder
model. The output layers are then formed by stacking the
predictions for each partition:

W i ← [w1
i ; . . . ;w

Ni
i ] (5)

bi ← [b1i ; . . . ; b
Ni
i ] (6)

gψ is itself a simple multi-layer neural-network whose pa-
rameters are optimised in the outer loop step. The authors
evaluate this architecture on a diverse set of text classification
tasks by using a text classifier architecture that is composed
of the text encoder fθ that feeds into the output layers with the
generated parameters. The text encoder is a pre-trained Bidi-
rectional Encoder Representations from Transformers model
(BERT) [Devlin et al., 2019] that is fine-tuned during meta-
training. Bansal et al. [2020a] call this architecture Learn-
ing to generate softmax parameters for diverse classification
(LEOPARD).

Since θ0 is only updated once for every task Ti, the set
of available Tasks M generally needs to be large, which
is a major challenge for meta-learning algorithms [Santoro
et al., 2016]. One way to create new tasks is by sub-
sampling a set of labels from tasks with large label spaces
[Santoro et al., 2016; Ravi and Larochelle, 2017]. However,
while there exist many tasks with a large label space for vi-
sion applications [Deng et al., 2009; Krause et al., 2013;
Zhou et al., 2017], such datasets are rarer for NLP tasks.
Bansal et al. [2020b] therefore introduce Subset Masked Lan-
guage Modeling Tasks (SMLMT) to generate tasks from unsu-
pervised data by collecting sentences containing N randomly
chosen words from the vocabulary and masking all occur-
rences of those words in k sampled sentences containing one
of the N words to create an arbitrary k-shot N -way classi-
fication task. The authors show that this approach yields an
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average improvement in classification accuracy of 3% com-
pared to LEOPARD when this self-supervised training data is
used jointly with available supervised data.

3 Methods
3.1 Generation of Training Tasks
We propose yet another method of generating new training
tasks that does not rely on new, unsupervised data by us-
ing the task affiliation of a sample as its label. This means
a new N -way task can be created by sampling N tasks
Tn1, . . . , TnN from M. Each datum xni

from each task is
then assigned the label yni

= n, so that the new task Tc be-
comes a problem of N -way dataset association. We denote
the set of possible tasks that can be generated by using all N -
combinations of the datasets used in M by McN while the
original tasks are denoted byMo.

3.2 Regularise Parameter Generation for New
Datasets

As described in section 2.2, parameter generation uses a sin-
gle batch of training data. With the introduction of new tasks
from McN during training, there is the potential for a sub-
optimal sampling of the first batch of training data in Ti used
as the input to the parameter generator gψ where most of the
samples in Cn

i stem from a single class m in the task j from
Mo that is part of the combination to create Tj and there-
fore Cn

i ≈ Cm
j . Assuming a fully deterministic fθ and gψ ,

this would generate the same parameters for classes m and
n, yielding a classification layer that is in the extreme case
equal to the classification layer for Tj . Therefore, we pro-
pose 2 ways of regularising the generation and training of the
classification parameters.

Attention for Weighted Average Inputs
We replace the simple mean aggregation on the output of
gψ in equation 4 with a weighted average. We calculate the
weights using attention [Bahdanau et al., 2015; Cheng et al.,
2016], specifically a fixed-query attention [Sukhbaatar et al.,
2015; Yang et al., 2016] to compute a weight for each sam-
ple. Attention was successfully used to focus on a partial
context in long sequences in NLP tasks [Luong et al., 2015;
Yang et al., 2016; Vaswani et al., 2017]. Our motivation is
for the network to weigh outputs from the generator more if
they represent a better initial classification parameter for the
current task and therefore counteract the sub-optimal selec-
tion of samples. Specifically, we replace equation 4 with an
attention mechanism [Bahdanau et al., 2015]:

uj = tanh(W a fθ(xj) + ba) (7)

αj =
eu

⊺
j uq∑

j e
u⊺

j uq
(8)

wn
i , b

n
i ←

|Cn
i |∑

j=0

αj ∗ gψ(fθ(xj)) (9)

First, the output of the text-encoder fθ is embedded into a hid-
den representation uj through a single layer neural network
with tanh activation (7). To calculate the attention score of an

input sample αj this hidden representation is then multiplied
with a fixed query-vector uq and normalised using softmax to
ensure

∑
j αj = 1 (8). The query-vector uq is tuned jointly

with W a and ba during meta-training. Finally, the calculated
attention scores are used to weigh the output of the parameter
generator gψ for each sample (9).

Triplet-Loss
During classification, the generated parameters of the out-
put layer form a multi-dimensional classification boundary.
Since in a low-resource setting the initial weights of the out-
put layers Wi, bi do not have much training data to adapt
to, not only is a good initialisation of the parameters essen-
tial, but also a quick adaption of those parameters to max-
imise the classification boundary. While the original LEOP-
ARD architecture uses cross-entropy loss (Lce) to calculate
the gradients, we propose the use of the triplet loss func-
tion [Schultz and Joachims, 2003; Chechik et al., 2010;
Schroff et al., 2015] denoted by Lt to calculate gradients
that help to define an effective classification boundary more
quickly by minimising the distance between an input and a
sample of the same class (positive) while maximising the dis-
tance to samples from different classes (negative). The selec-
tion of positive and negative samples is called triplet mining.
We use semi-hard triplet mining on mini-batches with a mar-
gin of 1.0. If no negative sample can be found that satisfies
the semi-hard negative constraint of having a distance larger
than the positive distance plus margin, the largest negative
distance is used.

Since the triplet loss requires the mining of good positive
and negative samples which may not always be available in
each mini-batch, we use a mixed approach (Lmλ) that com-
bines triplet loss with cross-entropy:

Lmλ = Lt ∗ λ+ Lce ∗ (1− λ) (10)

where λ is a hyper-parameter of the model that needs tuning
and can be used to weigh the influence of each loss function
for the overall loss.

Note that both approaches, while introduced to counteract
the problems described above, are used during the training of
tasks fromMo andMcN .

4 Experimental Setup
4.1 Training Tasks
We follow Bansal et al. [2020a] in the selection of a subset of
datasets from the GLUE [Wang et al., 2018] meta dataset,
specifically the MNLI (matched and mismatched), MRPC,
QNLI, QQP, RTE, SST-2 and SNLI datasets [Bowman et al.,
2015] for training the meta-model. STS-B is excluded due
to it being a regression task and WNLI for its small size.
For tasks with N>2 classes, a separate train set for every
2-combination of classes is generated to increase the number
of tasks that can be used during meta-training.

4.2 Evaluation Tasks
Evaluation for each experiment is performed on a diverse set
of tasks with disjoint label spaces and different numbers of
classes.
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From the Amazon Review Corpus [Blitzer et al., 2007],
we use the Product Categories Books, DVD, Electronics
and Kitchen. Each dataset contains reviews for products
of the category together with an associated product rating.
While the original data is separated into 5 rating classes, we
map those into N=3 distinct labels {≤2,=4,=5}.

The CoNLL-2003 shared task [Tjong Kim Sang and
De Meulder, 2003] is a named entity recognition task. Each
input consists of a sentence and a named entity that appears in
this sentence with the label being one of N=4 different entity
types.

Bansal et al. [2020a] describe a set of tasks that were
sourced from crowdflower which are not available from the
provided source anymore after the acquisition of the com-
pany. Therefore, we provide new sources. All datasets consist
of tweets in English with different label spaces depending on
the task. The Airline dataset1 consists of tweets about north
American airlines with N=3 labels to classify the sentiment
of the text. The Disaster dataset2 contains tweets with key-
words such as crash or bush fire with N=2 classes in-
dicating whether or not the input is about a real disaster. The
Emotion dataset3 contains N=13 different emotions as a clas-
sification target. While other authors previously have reduced
this label space by combining and selecting labels due to
strong similarities between some classes [Bouazizi and Oht-
suki, 2016], we follow Bansal et al. [2020a] and use the un-
altered selection. The Political Audience, Political Bias and
Political Message4 tasks all use the same input texts but have
different class labels depending on the intended audience
(N=2, {national, constituency}), the bias (N=2,
{neutral, partisan}) or message (N=9, {policy,
personal, ...}) of the input.

A k-shot subset of a dataset is created by choosing k ran-
dom samples from each of the N classes. We aggregate the
mean accuracy for 10 different subsets for each dataset with
k ∈ {4, 8, 16} and report the average accuracy and the stan-
dard deviation between runs.

4.3 Baseline Experiments
Although Bansal et al. [2020a] provide the sub-sampling of
test datasets used in their experiments online, due to corrup-
tions in some of the files we recreated the task data, resulting
in a different selection of data points.

To be able to compare any improvements of our ap-
proaches, we use Bansal et al. [2020a] as a baseline and eval-
uate on the same datasets. We copy the previously published
results in column LEOPARD. However due to the large vari-
ance in the reported accuracies and to preclude any possible
differences in the selection of samples for the few-shot sub-
sets we also provide the results of the unmodified architecture
on our datasets in the Baseline column.

1https://www.kaggle.com/datasets/crowdflower/
twitter-airline-sentiment

2https://www.kaggle.com/datasets/vstepanenko/disaster-tweets
3https://www.kaggle.com/datasets/pashupatigupta/

emotion-detection-from-text
4https://www.kaggle.com/datasets/crowdflower/

political-social-media-posts

Dataset Loss
αMo Mc2 Lce Lmλ

Leopard • •
Baseline • •

A • 0.5
B • • •
Γ • 0.5 •
∆ • • •
E • • • •
Z • • 0.5
H • • 0.5 •
Θ • 0.1
I • 1.0

Table 1: Experiment Setup Configurations

4.4 Experiment Configurations
Table 1 shows a matrix of model and dataset configurations
used in the experiments. The Dataset column describes
which datasets were used while training the model showing
whether additionally generated training data was available or
not. The Loss column indicates whether cross-entropy (Lce)
or the mixed-loss approach described in section 3.2 (Lmλ) is
used where the number is the set value for parameter λ in the
experiment. A dot in column α indicates that attention was
used in the parameter generator to calculate sample weights
as described in section 3.2.

In experiment A, Θ and I the triplet-loss function with
different values for λ = {0.1, 0.5, 1.0} and in experiment B
the attention weighting is used during training on the origi-
nal set of tasks respectively to examine the effect of the pro-
posed regularisation methods without introducing new tasks.
In experiment ∆ new tasks are introduced, however only the
cross-entropy term is used in the loss function to test whether
the generated data can naively be used to further train the
meta-model on more tasks. Experiment Z uses the additional
training tasks in conjunction with the mixed loss function and
λ = 0.5 to determine the effectiveness of the triplet-loss regu-
larisation when combining the task sets. Experiment H com-
bines attention-based weighting with mixed-loss to determine
if further improvements can be achieved by combining the
approaches.

The implementation used for all experiments in this work
is available for reference online5.

5 Results
This section presents the results of the performed experiments
in an objective manner. A thorough analysis of the behaviour
of the proposed techniques is presented in the next section.

Table 2 shows the accuracy of the different model config-
urations presented in the previous section averaged over all
datasets.

5https://gitlab.mi.hdm-stuttgart.de/griesshaber/metanlp
6Since we calculate the average over all datasets while Bansal et

al. [2020a] reserve some datasets for domain transfer experiments,
our reported average differs from the reported results, although the
accuracy of the separate experiments is approximately the same.
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k LEOPARD6 Baseline6 A B Γ ∆ E Z H Θ I

4 46.15 45.97 47.64 47.58 47.50 43.64 48.13 48.59 48.51 46.04 37.73
8 50.24 50.73 51.58 51.37 51.46 48.62 52.67 53.47 53.26 51.28 40.88

16 53.12 52.06 53.21 53.60 52.85 52.63 54.30 55.30 54.69 52.79 41.39

Table 2: Evaluation results of the different approaches. For brevity, only the average results over all tasks are presented, while a listing of
individual task results is presented in the appendix. The configuration of each experiment column is depicted in table 1

5.1 Baseline Results
The aggregated results of our Baseline match the reported re-
sults by Bansal et al. [2020a] closely. Therefore, we assume
any variation in data selection is unimportant when evaluat-
ing the averaged model performance. However, we point out
that some individual experiments diverge between the two se-
tups, although in most cases the deviation is within 1 standard
deviation from the mean.

5.2 Effect of Regularisation on Baseline Datasets
Experiment A shows an overall improvement to the baseline,
indicating that the mixed triplet-loss strategy already helps in
the low-resource classification case without introducing new
tasks. A similar behaviour, although less pronounced in many
experiments, can be observed in experiment B indicating the
attention-based sample weighting to have the hypothesised
effect of helping the parameter generator to weight the sam-
ples used in contrast to using an unweighted average. Com-
bining both methods in experiment Γ, a slight decrease in
performance compared to A and B can be observed. This
result indicates that the selection of training samples used to
generate parameters is essential for a good initialisation of the
classification head of the model.

5.3 Training on Generated Datasets
In experiment ∆ the decrease in performance is an indica-
tion that, without additional regularisation, the introduced
data hinders the meta-learning process. We use a qualitative
and quantitative exploration in the next subsection to argue
why this behaviour emerges. Experiment E and Z show the
results of training on the same data but using the attention
and the mixed triplet loss instead of only cross-entropy re-
spectively, which shows a clear improvement, not only with
respect to experiment ∆ but even to both baselines. This
is an indication that the generated training tasks based on
the available data can be used to improve meta-training and
thus help the model to initialise with better initial parameters
and adapt more quickly. In experiment H both regularisa-
tion techniques are combined, however, performance across
all configurations of k decreases slightly compared to exper-
iment Z. We conclude that both techniques are effective be-
cause they regularise the training process, however applying
both methods does not further improve, and in fact hinders
the performance due to the added complexity. This is also
supported by the performance decrease in experiment Γ de-
scribed earlier.

5.4 Pure- and Mixed Triplet Loss Approaches
Columns A, Θ and I show the importance of the selection of
λ in the mixed training loss Lmλ. With a value of λ = 0.1

in experiment Θ, the results are close to the baseline with
a maximum change of <1%. Experiment I with λ = 1.0
shows a stark decrease in performance. In the individual ex-
periments one can observe that the accuracy approaches ran-
dom guessing (≈ 1

N ). Only in experiment A with λ = 0.5 an
improvement in task accuracy can be observed. The results
are discussed further in the next section.

5.5 Comparison
The best average accuracy across all experiments for all
tested settings of k is attained in experiment Z using the
additional data with Lm0.5 as loss function. This set-
ting is able to achieve an average improvement of +2.87%
(+2.62%, +2.74%, +3.24%) over our Baseline results and
+2.62% (+2.44%, +3.23%, +2.18%) over the results reported
in [Bansal et al., 2020a]. Without additional data, using
Lm0.5 (A) we attain an improvement of +1.22% whereas
the attention weighted parameter generation (B) achieves
+1.28%.

6 Evaluation & Analysis
This section quantitatively and qualitatively explores the ef-
fects of the proposed techniques for regularisation on the
trained model to better understand their effectiveness and im-
portance.

6.1 Effect of λ for Mixed-Loss Experiments
Experiments A, Θ and I in table 2 show the average perfor-
mance of the meta-models with different configurations for
the hyper-parameter λ (0.5, 0.1 and 1.0 respectively).

These results give insight into the importance of tuning
the λ parameter. With a value of λ = 0.1 the effect of the
triplet loss seems negligible as the resulting average accu-
racy is close to the performance of the baseline model for
all configurations of k. Using a pure triplet loss function
(λ = 1.0) during training however does result in the perfor-
mance degrading close to random guessing, indicating that
the meta-model fails to learn a good initialisation for θ0 and
also does not allow efficient optimisation during fine-tuning.
This shows using only Lt fails to provide good feedback for
optimising the model. We conjecture this is most likely due
to the need to mine good triplets, which may be challenging
for some low-resource tasks.

The results for λ = 0.5 indicate that this value seems to
provide a good balance between optimising the learned rep-
resentations for the triplet objective of moving anchors close
to positive samples but far from negative samples while not
completely relying on the mined triplets which seem to be
insufficient as indicated by the pure triplet loss experiment.
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6.2 Quantitative Analysis of the Regularisation
Approaches

As stated in section 3.2, the motivation for the evaluated at-
tention mechanism and triplet loss regularisation techniques
is to help with sub-optimal random sampling during param-
eter generation. Therefore, we analyse the effectiveness of
regularisation on a learned few-shot classifier which is trained
to predict dataset association between the Rating Books and
Rating Kitchen datasets (N = 2) with k = 16. Both datasets
are not part ofMo andMc2 and are tasks of sentiment clas-
sification, thus the meta-model is trained on other tasks with a
similar objective. Since the objective of the test task however
is domain association, the fine-tuned classifier should have
good separation between the samples of the two datasets at
the output (exa-class), whereas artefacts of the sentiment task
association (inter-class) may indicate a sub-optimal initialisa-
tion of the model on the sentiment classification task.

To quantitatively measure the inter- and exa-class separa-
tion, we perform K-means clustering on the embedded model
output and calculate the adjusted mutual information (AMI)
between the clustering and the true labels. The exa-class AMI
(AMIe) can be calculated directly, whereas, for the inter-
class AMI (AMIi), we perform a separate clustering for each
class and report the average value.

Table 3 shows the results for 3 different loss function con-
figurations. The results for the cross-entropy loss (Lce) show
a higher adjusted mutual information than any of the triplet
loss experiments for the inter-class clustering, indicating that
the output representation contains artefacts of the sentiment
task. The results of the mixed-loss experiments show a de-
crease in inter-class AMI with higher values for λ, support-
ing the hypothesis that the mixed-loss objective regularises
the training by providing better feedback for the current task
compared to a pure cross-entropy measure. However, note
that for λ = 1 the exa-class AMI is lowest, indicating a bad
separation between classes in the output representations. This
is also supported by the results in section 6.1 that showed that
a pure triplet loss function is unable to train a few-shot clas-
sifier.

The results for the experiment using the attention-based
sample weighting (Lce + α) show that this method also suc-
cessfully improves exa-class separation, however, inter-class
separation is much less effectively reduced. This is expected
as the triplet-loss actively tries to minimise the distance to
positive samples and maximise the distance to negative sam-
ples, while the motivation for attention-based weighting is
only to weigh samples more or less depending on their rel-
evance to the task.

6.3 Qualitative Evaluation of the Embedding and
Output Spaces

Figure 1 shows a visualisation of the classification bound-
ary of the evaluated classifier. The visualisation is created by
embedding the high-dimensional output of the text encoder
into a 2-dimensional space using t-SNE [van der Maaten and
Hinton, 2008] to get a vector [x1 x2] for each data point.
This vector is then extended by another component that rep-
resents the 1-d normalised softmax output of the trained net-

AMIi AMIe

Lce 0.153 0.350
Lm0.1 0.017 0.439
Lm0.5 0.015 0.688
Lm1.0 0.011 0.323
Lce + α 0.045 0.455

Table 3: Adjusted Mutual Information of k-Means Clustering
performed on the Embeddings with different Loss Function

Configurations.

work x3 = ((χ0 − χ1) + 1)/2 where χn is the n-th com-
ponent of the softmax-activated model output to get a value
in [0, 1]. The resulting 3-dimensional vector is then coloured
red or blue depending on the source dataset while colour sat-
uration shows different classes within the dataset. Therefore,
a higher euclidean distance between red and blue clusters in-
dicates a higher exa-class separation while intra-class separa-
tion is represented as the distance between clusters of differ-
ently shaded dots in the same colour.

Subfigure 1b shows a lower variance along the 3rd axis
with samples close around the value 0.5, indicating a smaller
learned exa-class boundary. Furthermore, within each class,
clusters of the same saturation can be seen. This may indi-
cate that the encoder after training still produces embeddings
that differ between inter-dataset classes (low intra-class sepa-
ration).

In contrast, subfigure 1a shows a much broader separation
between classes with almost no data points near the classifi-
cation border. The visualisation also shows less clustering of
data points with similar saturation, indicating that this model
produces good embeddings for the task without showing arte-
facts of different classification tasks, supporting the quantita-
tive results.

We interpret this visualisation as another indicator that
shows the importance of regularisation when using the gener-
ated datasets.

7 Related Work

7.1 Meta-Learning

Methods for meta-learning can generally be classified into 3
different approaches; metric-based where the model learns
an embedding of data points that is trained by reducing a dis-
tance metric between related data points [Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018], model-based where
a meta-model predicts parameters that are used to initialise
a task-specific model [Santoro et al., 2016; Munkhdalai and
Yu, 2017] and optimisation-based where task specific param-
eters are obtained through optimisation [Ravi and Larochelle,
2017; Finn et al., 2017; Nichol et al., 2018].

Building on the MAML framework presented in Finn et al.
[2017], Bansal et al. [2020a] introduce the LEOPARD ar-
chitecture by adding a model-based parameter generator for
the classification layer to the otherwise optimisation-based
MAML architecture.
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Figure 1: Visualisation of the class boundary on a class association task without (a) and with (b) regularisation using the mixed triplet loss
strategy.

7.2 Using Additional Data for Training
In Bansal et al. [2020a] they show that an increase of avail-
able training data is beneficial for this architecture and create
this data using a self-supervised approach called SMLMT.
Bansal et al. [2021] further improves on those results by tun-
ing the distributions of the sampled self-supervised tasks. In
contrast, our approach does not require any additional data
for further training. Li and Zhang [2021] use the method pre-
sented in Bansal et al. [2020a] for generating tasks with a
metric-based prototypical network [Snell et al., 2017]. They
show that the additional self-supervised training data is able
to improve downstream performance when used for meta-
learning as well.

7.3 Regularisation of Meta-Learned NLP
Classifiers

Bao et al. [2020] use an attention mechanism based on word
statistics that is trained on meta tasks to aggregate pre-trained
embeddings for direct classification using a ridge regressor
[Bertinetto et al., 2019] instead of predicting softmax param-
eters. This method requires the meta-tasks to have related, al-
though disjoint classes from the target data. Han et al. [2021]
therefore introduce a domain-adversarial approach [Ganin et
al., 2016] to generate domain-invariant features in the sen-
tence embeddings.

Liu et al. [2020] empirically show that MAML for NLP
applications works best when the general language model is
not solely trained during meta-training and the meta-tasks are
dissimilar to one another. Wang et al. [2021b] introduce a
variance reduction based on the recursive stochastic momen-
tum technique [Cutkosky and Orabona, 2019] to regularise
the meta-gradients during training to prevent overfitting on
specific tasks.

8 Limitations
The performed experiments were using English datasets ex-
clusively. This choice was made to ensure some compara-

bility between the baseline results presented by Bansal et al.
[2020a], the availability of the datasets and the authors' famil-
iarity with the language. However, there exists prior work that
shows the effectiveness of both MAML [Zhang et al., 2020]
and BERT [Pires et al., 2019; Cui et al., 2021] for different
languages.

The process of training a new meta-learning model is rel-
atively expensive since the architecture is quite deep with
110 million parameters only in the BERT text encoder. To
train those parameters, a high number of outer-loop train-
ing steps need to be performed, each requiring multiple
inner-loop optimisation steps. Due to this cost, an extensive
hyper-parameter search running many configurations may be
prohibitively expensive. Instead, hyper-parameters can be
learned as part of the meta-learning procedure as presented
in Bansal et al. [2020a]. We performed our experiments on
compute nodes with 4x NVIDIA 2080 Ti GPUs where train-
ing took 72 hours per experiment with the original dataset
and an additional 96 hours for the combined dataset.

9 Conclusion

In this paper, we presented a way to generate new training
tasks that only depend on the training data already present
and can be used to further train a meta NLP classifier. We
also showed that without adjustments, these tasks can hinder
the average model performance in low-resource settings and
therefore require further adaption of the training procedure
to circumvent the negative effects. We propose two methods
that can be used to regularise the training and prove their ef-
fectiveness on both, training with and without the generated
tasks to improve average model performance on a wide vari-
ety of low-resource evaluation tasks. We then examined the
effect of the proposed methods on the trained model using
qualitative and quantitative evaluations as well as the effect
of the introduced hyper-parameters.
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