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Abstract

Modern Natural Language Processing (NLP) mod-
els expose under-sensitivity towards text rubbish
examples. The text rubbish example is the heav-
ily modified input text which is nonsensical to hu-
mans but does not change the model’s prediction.
Prior work crafts rubbish examples by iteratively
deleting words and determining the deletion order
with beam search. However, the produced rub-
bish examples usually cause a reduction in model
confidence and sometimes deliver human-readable
text. To address these problems, we propose an
Annealing Genetic based Preposition Substitution
(AGPS) algorithm for text rubbish sample genera-
tion with two major merits. Firstly, the AGPS crafts
rubbish text examples by substituting input words
with meaningless prepositions instead of directly
removing them, which brings less degradation to
the model’s confidence. Secondly, we design an
Annealing Genetic algorithm to optimize the word
replacement priority, which allows the Genetic Al-
gorithm (GA) to jump out the local optima with
probabilities. This is significant in achieving bet-
ter objectives, i.e., a high word modification rate
and a high model confidence. Experimental results
on five popular datasets manifest the superiority of
AGPS compared with the baseline and expose the
fact: the NLP models can not really understand the
semantics of sentences, as they give the same pre-
diction with even higher confidence for the nonsen-
sical preposition sequences.

1 Introduction
Recent researches have shown that Deep Neural Networks
(DNNs) are vulnerable to external perturbation in Natural
Language Processing (NLP) field for text classification. Ad-
versarial text examples have attracted much attention from
researchers [Papernot et al., 2016; Jia and Liang, 2017;
Li et al., 2020; Kwon and Lee, 2022; Wang et al., 2022].
The Adversarial text example is the slightly disturbed original
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Figure 1: The rubbish examples crafted by our AGPS.

input. These modifications are usually imperceptible to hu-
mans but can trigger DNNs’ false prediction, which exposes
DNNs’ over-sensitivity to small changes. On the contrary,
the rubbish example refers to the heavily modified example,
where it is totally unrecognizable to humans but has nearly
no effect on the model’s prediction. Figure 1 lists several rub-
bish examples in our experiments, where the input words are
replaced with meaningless prepositions, but the model still
gives high confidence in the true label.

Rubbish examples reflect the under-sensitivity of modern
DNNs to a large number of text modifications. [Welbl et
al., 2020] emphasized that lack of sensitivity is a challeng-
ing issue for neural models, which usually leads to unreliable
predictions in real text recognition tasks, such as spam fil-
tering [Guzella and Caminhas, 2009], toxic comment detec-
tion [Risch and Krestel, 2020], resume recommendation [Roy
et al., 2020], and medical diagnose [Bakator and Radosav,
2018]. Rubbish samples allow the model to leverage spuri-
ous clues in the data enough to achieve a high level of perfor-
mance without understanding task-related textual meaning.
Models can achieve strong nominal accuracy on the training
set containing rubbish samples by utilizing prediction short-
cuts that can not represent a given NLP task, but this leads to
severe failure of prediction on samples without these spurious
clues. Therefore, exploring potential text rubbish examples
is crucial to expose DNNs’ vulnerabilities to avoid security
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risks caused by such under-sensitivity.
The concept of rubbish example is primarily proposed by

[Goodfellow et al., 2014; Nguyen et al., 2015] in the com-
puter vision community by fooling images, which are non-
sensical to humans as degenerate inputs but can be labeled
with high confidence as a specific class by DNNs. In the
NLP domain, [Feng et al., 2018] proposed a text rubbish
example generation approach named input reduction, which
iteratively removes insignificant words from the input sen-
tence while maintaining the model’s prediction unchanged.
After the word deletions, some of the crafted rubbish exam-
ples contain only one or two words, which lack reasonable in-
formation for humans to make any predictions but the model
can confidently retain the original prediction. However, there
are three challenges to the input reduction method. Firstly,
it employs the beam search to determine the word deletion
priority, while this is usually not guaranteed to produce a
globally optimal solution, i.e., deleting the most words. Sec-
ondly, during the word removal process, the semantic infor-
mation of the words is not considered, the remaining words
often contain important information for humans to make a
correct decision. For example, in the sentiment analysis task,
the original input classified as “positive” (i.e., A fascinating
and fun film) is transformed into a rubbish example (i.e., fas-
cinating), where the word “fascinating” strongly indicates a
positive sentiment. Thirdly, a high-quality rubbish example
should not affect the prediction of the DNNs model, but the
reduced text usually causes a reduction in average model con-
fidence over most datasets.

In this paper, we propose AGPS, an Annealing Genetic
based Preposition Substitution algorithm for text rubbish
sample generation to address these problems. Specifically,
we first construct a set of substitution candidates by carefully
collecting nonsensical prepositions. Each input word can be
replaced with any candidate in the set of candidate substitu-
tions, and our goal is to achieve more substitutions without
reducing model confidence. In the second step, we present
a hybrid Annealing Genetic algorithm to optimize the word
replacement priority. Population-based search strategy can
realize distributed search in the whole solution space, and
skip the sub-optima combined with the Metropolis mecha-
nism of the simulated annealing algorithm. This can make
it a greater probability to approach the best rubbish sample,
i.e., replacing the maximum number of input words. Exten-
sive experiments demonstrate that the proposed AGPS gener-
ates more effective rubbish examples with higher model con-
fidence. Our main contributions are summarized as follows:

• We propose a novel Annealing Genetic based Preposi-
tion Substitution to generate text rubbish examples. The
AGPS replaces the words with nonsensical prepositions
to alleviate the decrease in the model’s confidence.

• We design an effective annealing genetic algorithm to
optimize the word replacement priority, which steps out
of the local optima with a probabilistic strategy. This
is significant to find the global optimal of the objective
function, i.e., a high word modification rate and high
model confidence.

• We evaluate the effectiveness of our AGPS on five pop-

ular datasets by attacking seven representative DNNs
models. Experimental results manifest that the AGPS
outperforms the baseline and also shows good proper-
ties in retraining and transfer attacks.

2 Related Works
In this section, we first introduce the adversarial sample and
the rubbish sample, then we briefly review the classical ge-
netic algorithm and the simulated annealing algorithm.

2.1 Textual Adversarial Attack
There is a growing body of research on NLP adversarial sam-
ples, where researchers have studied various invariant text
transformations for different tasks. [Papernot et al., 2016]
first focused on the adversarial samples in Natural Language
Processing (NLP) field for text classification and proposed
to generate adversarial input sequences on Recurrent Neural
Networks (RNN). [Jia and Liang, 2017] fooled reading com-
prehension systems by linking a distracting sentence to the
input paragraph. [Ebrahimi et al., 2017] presented a token-
flipping method, which crafted adversarial samples based on
the gradients of the one-hot input vectors. [Zang et al., 2019]
developed a sememe-based word substitution method and
particle swarm optimization-based search algorithm, which
treats word-level attacks as combinatorial optimization prob-
lems. [Wang et al., 2022] proposed SemAttack, a unified and
effective semantic adversarial attack framework that lever-
ages diverse semantic perturbation functions to generate nat-
ural adversarial text.

2.2 Rubbish Examples
Unlike the large volume of research on adversarial examples,
the effect of rubbish examples is greatly underestimated. In
the text domain, [Feng et al., 2018] introduced rubbish sam-
ples to explore the limitations of the NLP interpretation ap-
proaches. They achieved this by iteratively removing the least
important words from the input while keeping the model pre-
dictions constant. The importance of each word is evaluated
utilizing gradient-based approximation, and the word dele-
tion optimization is completed using beam search. As a re-
sult, valid inputs are gradually transformed into rubbish sam-
ples, which lack prominent information to support humans
to make a convincing decision but keep the original predic-
tion of DNNs with high confidence. However, employing in-
put reduction to craft rubbish examples has three challenges.
Firstly, without the local optimal jump-out strategy, beam
search might neglect potential global optimal solutions. Sec-
ondly, the rubbish example may contain significant words for
effective human predictions since input reduction does not
consider the semantics of the words. Thirdly, experiments
indicate that in most cases, the reduction of input causes a
decrease in model confidence, severely affecting the quality
of generated rubbish samples.

2.3 Genetic Algorithm
Inspired by biological evolution in nature, the Genetic Al-
gorithm (GA) is a heuristic algorithm that iteratively searches
for the optimal solution by imitating natural selection. Specif-
ically, the quality of population members is evaluated by the
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fitness function in each generation. Following the principle
of survival of the fittest, parents are usually selected based on
the fitness of individuals in the current generation. The next
generation is generated through crossover and mutation. It
has been proven effective in solving the optimization prob-
lems such as text clustering [Song and Park, 2009], text clas-
sification [Bidi and Elberrichi, 2016], and textual adversarial
attacking [Alzantot et al., 2018]. However, there is a contra-
diction between the convergence speed and the global optimal
solution of the basic genetic algorithm, and the basic genetic
algorithm is prone to premature convergence.

2.4 Simulated Annealing Algorithm
The Simulated Annealing algorithm (SA) is inspired by the
physical annealing procedure of metals. Generally, the SA
starts from a high temperature with the initial molecules and
aims to optimize the position of these molecules with the tem-
perate drops. At each temperature, the simulation must pro-
ceed long enough for the system to reach equilibrium. The
Metropolis principle allows the algorithm to jump out of the
local optimal by chance. It accepts all solutions that are supe-
rior to the current solution and accepts inferior solutions by
a probability related to the annealing temperature. The SA
has been used in solving the optimization problems such as
text summarization [Mosa et al., 2019] and textual adversar-
ial attacking [Yang et al., 2021]. However, SA is highly de-
pendent on the parameters (e.g., initial temperature, chilling
temperature, and sampling times at each temperature), and
inappropriate cooling methods or too fast cooling speed will
also limit the solution quality of the algorithm.

3 Methodology
In this section, we discuss the details of the proposed AGPS
algorithm, including the problem definition of black-box rub-
bish example generation (§ 3.1), the preposition-based word
substitution (§ 3.2), and the annealing genetic optimization
(§ 3.3). Figure 2 shows the workflow of our AGPS.

3.1 Problem Definition
Similar to the adversarial attack, the black-box rubbish ex-
ample attacker can not access the model architecture, param-
eters, or gradients. We can only query the target model with
supplied inputs to obtain the prediction results and confidence
scores, which are closer to a real-world scenario.

Given an input space containing K samples
X = {X1,X2, · · · ,XK} and an output space
Y = {Y1,Y2, · · · ,YL} containing L labels, the classi-
fier F needs to learn a mapping f : X → Y from any input
sample X ∈ X to the correct label Ytrue, by maximizing the
posterior probability:

argmax
Yi∈Y

P (Yi|X) = Ytrue (1)

The rubbish sample generation method aims to make heavy
modifications to the input X to produce rubbish example X∗,
which is unreadable to humans but does not change the clas-
sifier’s prediction:

argmax
Yi∈Y

P (Yi|X∗) = Ytrue (2)

Figure 2: The framework of the proposed AGPS algorithm.

Formally, the objectives are maximizing the difference △X
between input X and rubbish output X∗ as shown in Eq. (3)

△X = len(X∗ ̸= X) (3)

and simultaneously ensuring the classifier gives high confi-
dence in the original label

Ptrue =

{
F (X∗) , Y = Ytrue

0 , Y ̸= Ytrue
(4)

Eq. (4) indicates that if the predicted label is not equal to the
original label, we regard the modification as a failure and set
the confidence to 0. The final objective function balances Eq.
(3) and Eq. (4) with a parameter δ

J (F,X,X∗, δ) = v × (△X + δ × Ptrue) (5)

where v is a constant to adjust the function value to an appro-
priate range. Therefore, the black-box rubbish example gen-
eration problem is equal to maximizing the objective function
J . To optimize the objective function, we need to address
two problems, i.e., (1) how to select substitution candidates,
and (2) how to determine the word attack priority.

3.2 Preposition-based Word Substitution
In this work, we propose to make preposition-based word
substitution to produce human unreadable modifications, i.e.,
△X, because the prepositions usually contain no real seman-
tic information. To this end, we collect 37 commonly used
prepositions as a set of meaningless substitutions S. The
attack starts with a Part-of-Speech (POS) tagging for each
word. To achieve efficiency, we only replace four kinds of
input words, i.e., only nouns, adjectives, verbs, and adverbs,
and filter out all the other words. For each modifiable word
wi, we search for the substitution word w

′

i from S.
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Every w
′

i ∈ S is a potential candidate for replacing the
original word wi. To select the best candidate from S, we
define the candidate score as the original label probability:

Sw
′
i
= P (Ytrue|X

′

i), ∀w
′

i ∈ S (6)

where
X

′

i = {w1, w2, · · · , w
′

i, · · · , wn} (7)

Then we identify the candidate w
′

i that maximizes the predic-
tion probability of the original label as the best substitution
word, i.e.,

w∗
i = argmax

w
′
i∈S

Sw
′
i

(8)

This solves the first problem.

3.3 Annealing Genetic Algorithm
After candidate selection, each input word can be replaced as
a determined preposition. Then we need to optimize the word
modification priority. In this work, we propose an annealing
genetic algorithm to determine the attacking sequence, which
allows the traditional GA to jump out of local optimal with
the Metropolis principle. Specifically, after the crossover, the
proposed annealing genetic accepts some individuals with a
worse objective value than their parents by a probability. This
allows the evolution proceeds to the global optimal solution.
Besides, it can also avoid the excessive dependence of the SA
on parameters and improve the solution stability.

To detail our algorithm, we first introduce the subroutine
Crossover and Mutation.

• Crossover: The input of this subroutine is two parent in-
dividuals, i.e. P1 and P2, which are two sentences. It
scans each modifiable word in P1 in turn and then ex-
changes words with the corresponding position of P2,
where the input words are independent of each other
and have the same crossover probability. This process
also follows the substitution principle in section 3.2, i.e.,
only exchanging nouns, adjectives, verbs, and adverbs.

• Mutation: We adopt a single point mutation strategy.
The input of the subroutine is a single individual, which
can be the original input sentence or its modification. It
randomly selects a modifiable word wi in the original
sentence to replace. The substitution candidate w

′

i be-
longs to S. The best substitution word selection method
follows Eq. (8).

The optimization procedure is given in Algorithm 1. Next,
we describe our algorithm step by step.

Firstly, we initialize the first generation by repeating the
mutation subroutine for N times to get N population mem-
bers X0 = {X0

1,X0
2, · · · ,X0

N} as shown in line 2-4 of Al-
gorithm 1. Then, we obtain the fitness of each population
member in the initial generation by querying the victim model
function J .

We adopt the proportional selection approach to select the
parents to breed the next generation population. To make the
well-performing population members have a higher probabil-
ity of being selected as parents, the ith individual in the cur-
rent population is selected with a probability proportional pi

Algorithm 1: The proposed AGPS algorithm
Input: Input sentence Xori = (w1, · · · , wn)
Input: DNNs classifier F
Output: Rubbish example X∗

1 Initialization: the population size N = 40, the number
of iteration times G = 15, the temperature T = 1000,
the attenuation factor α = 0.85, the balance parameter
δ = 2.5, the initial rubbish example X∗ = Xori;
/* Initialize the first generation */

2 for i = 1, · · · , N do
3 X0

i ←Mutation(Xori);
4 y0i = J (X0

i );

5 X∗ = X0
argmaxjy0

j
; ▷ Optimal individual

/* The Annealing Genetic Starts */
6 for g = 1, · · · , G do
7 for i = 1, · · · , N do
8 Select parents P1 and P2 from Xg−1 with

pselect in Eq. (9);
9 child← Crossover(P1, P2);

/* Metropolis accept crossover */

10 Xg
i = PargmaxjJ (Pj);

11 if J (child) ≥ J (Xg
i ) then

12 Xg
i = child;

13 else
14 p = e−(J (Xg

i )−J (child))/T ;
15 r = random(0, 1);
16 if r < p then
17 Xg

i = child;

18 childm ←Mutation(Xg
i );

/* Metropolis accept mutation */

19 if J (childm) ≥ J (Xg
i ) then

20 Xg
i = childm;

21 else
22 p = e−(J (Xg

i )−J (childm))/T ;
23 r = random(0, 1);
24 if r < p then
25 Xg

i = childm;

26 T = α× T ; ▷ Porportional annealing
/* Optimal individual preservation */

27 for i = 1, · · · , N do
28 ygi = J (Xg

i );
29 Xg

best = Xg
argmaxjy

g
j
;

30 if J (Xg
best) > J (X

∗) then
31 X∗ = Xg

best;

32 return X∗

to its fitness J (Xi) in line 8.

J (Xi)∑N
i=1J (Xi)

(9)

In the population evolution step, we perform crossover and
mutation operations on the selected parent members. Specif-
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ically, the new child sample is synthesized by calling the
Crossover subroutine. To decide whether the child is ac-
cepted or not, we follow the typical Metropolis principle.

p =

{
1 , J (child) ≥ y

e−(y−J (child))/T , J (child) < y
(10)

If the fitness score of the child is higher than that of the par-
ents, we directly accept it as the next generation population
member. Otherwise, we accept an inferior sample by Eq.
(10) as shown in lines 14-17. If not accepted, pick the par-
ent with higher fitness to be the child for the next iteration in
line 10. Finally, the Mutation subroutine is implemented to
the resulting child and the Metropolis principle is employed
to determine whether to accept this mutation. As these two
subroutines are based on individuals rather than populations,
we iteratively perform the Crossover and Mutation subroutine
to generate N population members of the new generation.

In line 26, we select the proportional cooling strategy to
reduce the temperature

T = α× T (11)

where the attenuation factor α = 0.85.
Then we record the best individuals after each iteration

by computing the fitness of all individuals in each generation
and preserving optimal individuals to promote the population
evolution. Finally, the optimization will be terminated if the
evolution reaches the upper bound or it generates a good rub-
bish example. This solves the second problem.

4 Experiments
We provide the source code in the GitHub1 to ensure that all
the results in this section are reproducible.

4.1 Datasets and Victim Models
We assess the attack performance on five public datasets,
such as Stanford Sentiment Treebank (SST-2), Movie Re-
views (MR), Stanford Natural Language Inference (SNLI),
Quora Question Pairs (QQP), and Microsoft Research Para-
phrase Corpus (MRPC).
• SST-2 [Socher et al., 2013] consists of 67349 training ex-

amples and 1821 testing samples, and each example is a
movie review with binary classes. The task is to predict if
the text comment belongs to positive or negative emotions.

• MR [Pang and Lee, 2005] is also a sentiment classifica-
tion dataset, containing 8530 training data and 1066 test
data. Similar to SST-2, all the examples belong to positive
or negative comments for movies.

• SNLI [Bowman et al., 2015] is a popular question inference
corpus with 550152 examples for training and 10000 exam-
ples for testing, where each example consists of a question
pair. The two questions are duplicate or not duplicate.

• QQP [Shankar et al., 2017] is another question inference
database with the same labels as SNLI, i.e., duplicate and
not duplicate. It covers 363846 and 390965 examples in the
train set and test set, respectively.

1https://github.com/soar-create/AGPS

• MRPC [Wang et al., 2018] includes 3668 sentence pairs for
model training and 1725 sentence pairs for testing, which
can be divided into two categories, i.e., the two sentences
are semantically equivalent or not equivalent.

We attack seven victim models to test the capability
of our AGPS, such as CNN, LSTM, BERT (bert-base-
uncased) [Devlin et al., 2018], DistilBERT (distilbert-base-
uncased, distilbert-base-cased) [Sanh et al., 2019], RoBERTa
(roberta-base) [Liu et al., 2019], ALBERT (albert-base-
v2) [Lan et al., 2019], and XLNet (xlnet-base-cased) [Yang
et al., 2019]. We download the models from HuggingFace2.

4.2 Baseline Method
To evaluate the effectiveness of our AGPS, we compare it
with Input Reduction (IR) [Feng et al., 2018]. To the best of
our knowledge, this is the single rubbish example generation
work in the text field. The IR crafts the rubbish samples by
iteratively removing unimportant words from the input with
beam search. The objective are (1) craft short rubbish text
examples that lack enough information for a human to make
a decision, and (2) keep the model’s prediction unchanged.

4.3 Evaluation Metrics
We evaluate the quality of rubbish samples with the following
three metrics.

Modification rate. The percentage of modified words.
Since we only modify the input words with semantic mean-
ings, including nouns, adjectives, verbs, and adverbs, we only
take these words into account when reporting the word mod-
ification rate.

Model confidence. The true label probability of the classi-
fier for the rubbish sample.

Semantic similarity. The semantic similarity between the
original sample and the rubbish sample. Following [Jin et al.,
2019; Morris et al., 2020a], we employ the universal sentence
encoder (USE) [Cer et al., 2018] with cosine similarity to
estimate the semantic similarity.

4.4 Experimental Setup
The parameter settings for our AGPS are given in the initial-
ization, i.e., line 1, of Algorithm 1. For the baseline, we use
the author-recommended parameter settings. We randomly
select 500 examples from each dataset to implement the text
rubbish attack for a fair comparison. In the natural language
inference task (i.e., SNLI), we only modify the hypothesis,
while keeping the premise unchanged. All experiments are
implemented on the NLP attack package TextAttack [Morris
et al., 2020b].

4.5 Experimental Results
The experimental results of model confidence, modification
rate, and semantic similarity are shown in Table 1. We ask
the following three questions to manifest the contributions as
claimed in the Introduction section.

2https://huggingface.co/models
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Dataset Model ACC Length
Con Mod Sim

Original IR AGPS IR AGPS IR AGPS

SST-2

CNN 84.60% 8.44 87.59% 70.26% 92.79% 74.86% 95.66% 0.63 0.57
LSTM 96.20% 8.44 95.06% 95.60% 98.87% 79.34% 95.47% 0.63 0.58
BERT 98.80% 8.44 99.29% 98.89% 99.61% 79.19% 95.79% 0.63 0.59

RoBERTa 97.20% 8.44 98.65% 97.43% 99.55% 79.35% 96.01% 0.62 0.59
DistilBERT 98.60% 8.44 99.35% 98.73% 99.68% 79.12% 95.08% 0.63 0.59

AlBERT 97.80% 8.44 97.38% 96.23% 97.65% 79.16% 96.06% 0.63 0.58

MR

CNN 98.00% 18.62 88.54% 67.29% 93.99% 92.34% 94.84% 0.56 0.56
LSTM 89.60% 18.62 86.36% 91.08% 95.30% 92.58% 94.66% 0.56 0.56
BERT 99.80% 18.62 99.68% 98.28% 98.56% 92.36% 93.70% 0.56 0.57

RoBERTa 95.20% 18.62 94.38% 90.89% 98.37% 91.28% 94.64% 0.56 0.57
XLNet 98.20% 18.62 97.68% 96.79% 99.24% 92.33% 94.76% 0.56 0.57

SNLI
BERT 95.60% 22.19 96.17% 87.07% 98.64% 75.88% 98.75% 0.63 0.58

DistilBERT 86.80% 22.19 91.40% 83.94% 92.45% 73.69% 98.39% 0.64 0.58
AlBERT 92.60% 22.19 92.88% 78.51% 95.73% 78.35% 98.49% 0.62 0.58

QQP
BERT 96.20% 22.00 97.00% 97.95% 99.53% 89.20% 89.29% 0.57 0.66

DistilBERT 95.20% 22.00 97.06% 95.14% 98.26% 88.95% 90.05% 0.58 0.65
AlBERT 98.20% 22.00 98.18% 98.56% 99.50% 88.62% 89.38% 0.58 0.65

MRPC
DistilBERT 91.00% 39.03 88.54% 68.34% 91.93% 90.32% 95.93% 0.61 0.66

XLNet 95.40% 39.03 93.53% 83.87% 96.49% 94.27% 95.29% 0.60 0.65

Aervage — — 94.67% 89.20% 97.17% 84.80% 94.85% 0.6000 0.5968

Table 1: The average word modification rate (Mod), the average model confidence (Con), and the average semantic similarity (Sim) of
different algorithms on five text classification datasets. The best results are highlighted in bold. The “ACC” column represents the original
accuracy of models, and the “Original” column represents the original average model confidence without attacks.

MR Example: Positive (99%)
Chicago is sophisticated, brash, sardonic, completely joyful
in its execution.

IR: Positive (99%)
joyful.

AGPS: Positive (100%)
before is as, across, through, up for in its within.

QQP Example: Duplicate (99%)
Question 1: How can I lose 4kg weight?
Question 2: What are the ways of losing weight?

IR: Duplicate (97%)
Question 1: weight?
Question 2: weight?

AGPS: Duplicate (99%)
Question 1: out can I to under besides?
Question 2: What are the up of down besides?

Table 2: The rubbish examples crafted by IR and AGPS.

Question 1: Is the preposition substitution better than
word deletion in keeping the model’s confidence? To an-
swer this question, we list the model confidence on the text

rubbish examples generated by IR and our AGPS as well as
the original sentences in Table 1. From the Con part, we can
see that our AGPS outperforms the baseline by a large mar-
gin, i.e. improves by 7.97% on average. Besides, the seven
victim models even exhibit higher confidence (by 2.5%) in
our AGPS rubbish examples than the original examples. This
strongly validates the superiority of preposition-based word
replacement in generating text rubbish examples.

Question 2: Is the Annealing Genetic algorithm supe-
rior to the beam search in skipping the local optimal? To
reply to this question, we list the word modification rate in
Table 1, as the common objective of beam search and the an-
nealing genetic is to modify the maximal number of words.
The results in Table 1 show that our AGPS improves the Mod
by 10.05% in comparison with the baseline. A higher word
modification rate indicates a higher quality of the rubbish ex-
ample because either word deletion or preposition substitu-
tion can improve semantic confusion for human readers.

Question 3: Can our AGPS avoid generating semantic
consistency text? We answer this question by comparing the
semantic similarity in Table 1 ‘Sim’ column. The results im-
ply that our AGPS achieves comparable semantic similarity
with IR, i.e., superior to the IR by only 0.0032. However, we
observe that the IR frequently preserves important label in-
formation in the final rubbish examples. Table 2 exhibits two
rubbish examples crafted by IR and AGPS. Intuitively, the IR
examples containing ‘joyful’ clearly suggest a positive senti-
ment for humans, while AGPS properly solves this problem.
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Sentence (Label: positive) Confidence

0.95
0.97
0.99
0.99

1.00
1.00

Ultimately , it ponders the reasons we need stories so much .        0.95
Ultimately , it ponders the reasons we need stories so within .        
Ultimately , it at the reasons we need stories so within .                  
Through , it at the reasons we need stories so within .                      
Through , it at the into we need stories so within .

Through , it at the into we need for so within .
Through , it at the into we from for so within .

Figure 3: A replacement path for an MR example with visualization
of attributions for each word token in the sequence. Darker color in-
dicates more importance. The substitutions are highlighted in bold.

IR-500 AGPS-500 IR-1000 AGPS-1000 IR-2000 AGPS-2000
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85.5

86.0

Figure 4: Adversarial retraining results on MR dataset.

Overall AGPS achieves better performance than the base-
line on these three metrics across different datasets, which
demonstrates the superiority of our approach.

4.6 Attribution Visualization and Analysis
Feature attribution is a popular strategy for model interpreta-
tion. Figure 3 visualizes the word replacement path and the
dynamic changes in word importance. Our AGPS example
satisfies the definition of rubbish example: (1) humans can
not make any predictions for the nonsensical preposition se-
quence, but (2) the model’s confidence is enhanced from 95%
to 100%. Besides, we observe three interesting properties of
DNNs models. Firstly, the model tends to pay more atten-
tion to those unmodified words (e.g. ‘it’ in the third step),
although it is not important before. Secondly, sometimes re-
placing the most important words does not reduce the model’s
confidence but increases it, e.g., the ‘Ultimately→ Through’
improves the confidence by 2%. These phenomenons bring
challenges to the interpretation methods, which interpret the
model properties relying on the word importance [Feng et al.,
2018; Ghorbani et al., 2019]. We hope these findings promote
the development of model interpretation theory.

4.7 Adversarial Training
Adversarial training is a prevalent defense strategy on adver-
sarial robustness by incorporating adversarial examples into
the training set. In this part, we randomly generate and join
{500, 1000, 2000}MR rubbish samples as the negative sam-
ple set to the training data and retrain the BERT model. Then

Metric Before Retrain500 Retrain1000 Retrain2000

Mod 96.03% 75.11% 76.72% 77.46%
Con 98.78% 97.84% 93.29% 93.39%
Sim 0.57 0.65 0.65 0.64

Table 3: Defense performance test after model retraining.

Figure 5: Transferability test results. BERT is the victim model.

we re-attack the retrained model to test the defense perfor-
mance. As shown in Table 3, adversarial training improves
the difficulty of attack, because attacking the retrained model
with fewer modification rates, lower model confidence, and
the rubbish example carries more semantics. Besides, Fig-
ure 4 shows the multi-retrain classification accuracy on the
test set. Figure 4 illustrates that AGPS brings greater robust-
ness improvement than the baseline.

4.8 Transferability
For rubbish examples, transferability refers to whether the
rubbish sample designed for a model F1 can also hold the
same prediction on another unknown model F2. We evaluate
the transferability on SST-2 dataset. Specially, we collect the
rubbish examples crafted for BERT and then test the transfer-
ability on four unknown models (CNN, RoBERTa , AlBERT,
and DistilBERT). The experimental results in Figure 5 illus-
trate that both IR and AGPS exhibit high transferability on
most models (i.e., RoBERTa, ALBERT, DistilBERT), and our
AGPS outperforms IR in most cases.

5 Conclusion
In this paper, we proposed an innovative AGPS algorithm for
generating text rubbish examples. The AGPS employs the
preposition substitution strategy instead of word deletions to
reduce the loss of model confidence. We also designed an
annealing genetic algorithm to determine the word modifica-
tion priority, which allows the optimization to jump out of
local optima. The research exposes the under-sensitivity of
neural models: the input can be modified to the nonsensical
word sequences, but the model even exhibits higher original
label confidence. In the future, our works can be employed
to test the interpretation methods, and we hope these results
encourage further work in improving the robustness and in-
terpretability of natural language models.
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