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Abstract
The task of extracting overlapping and nested
events has received significant attention in recent
times, as prior research has primarily focused on
extracting flat events, overlooking the intricacies of
overlapping and nested occurrences. In this work,
we present a new approach to Event Extraction
(EE) by reformulating it as an object detection task
on a table of token pairs. Our proposed one-stage
event extractor, called ODEE, can handle overlap-
ping and nested events. The model is designed
with a vertex-based tagging scheme and two aux-
iliary tasks of predicting the spans and types of
event trigger words and argument entities, lever-
aging the full span information of event elements.
Furthermore, in the training stage, we introduce
a negative sampling method for table cells to ad-
dress the imbalance problem of positive and nega-
tive table cell tags, meanwhile improving compu-
tational efficiency. Empirical evaluations demon-
strate that ODEE achieves the state-of-the-art per-
formance on three benchmarks for overlapping and
nested EE (i.e., FewFC, Genia11, and Genia13).
Furthermore, ODEE outperforms current state-of-
the-art methods in terms of both number of pa-
rameters and inference speed, indicating its high
computational efficiency. To facilitate future re-
search in this area, the codes are publicly available
at https://github.com/NingJinzhong/ODEE.

1 Introduction
Event Extraction (EE), a vital and intricate task within the
realm of Information Extraction (IE), endeavors to identify
event triggers of specific types and their corresponding argu-
ments. As a case in point, the Gene Expression event
depicted in Figure 1(b) contains a trigger “expression” and
the Theme argument “ICAM-1”.

Traditionally, EE has been approached as a sequence la-
beling task[Chen et al., 2015; Nguyen et al., 2016; Liu et
al., 2018; Yang et al., 2019], with the assumption that event
mentions do not overlap. However, these methods fail to
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Figure 1: Examples that showcase two types of events, including
overlapped events (a) and nested events (b). Different event men-
tions are highlighted in distinct colors. The triggers are highlighted
in red, while the arguments involved in the event are underlined.
“Sub.”, “Tar.”, “Obj.” and “Pro.” are the abbreviations of “Subject”,
“Target”, “Object” and “Proportion”, respectively.

account for complex, irregular EE scenarios, such as over-
lapped [Sheng et al., 2021] and nested [Cao et al., 2022]
EE. In reality, events frequently appear in sentences in a
complicated manner, with triggers and arguments potentially
overlapping within a single sentence. As depicted in Fig-
ure 1(a), there are two events, Investment and Share
Transfer, that overlap and share the same trigger word
“acquired” and Subject argument words “Grand Pharma”.
Figure 1(b) shows an example of nested events, where the
trigger word “reduce” of the Gene Expression event also
serves as the Theme argument in another event, Positive
Regulation. In this study, we focus on a challenging and
realistic problem in event extraction: Overlapping and Nested
Event Extraction.

Previously, overlapping and nested event extraction has
been approached using pipeline-based methods that extract
event triggers and arguments in a series of successive stages
[Yang et al., 2019; Li et al., 2020] or that consecutively per-
form event type detection, trigger extraction, and argument
extraction [Sheng et al., 2021]. The main issue with this ap-
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Figure 2: A comparison is made between object detection and event
extraction based on the table-filling method. It should be noted that
the table cells (representing pairs of tokens), the table itself, and the
regions of the table occupied by triples are aligned with pixels, the
image, and objects on the visual side, respectively. This alignment
allows for a correspondence between the representations in the table
and the visual elements in the image. “ST|S” represents the “Share
Transfer” event type and the “Subject” argument role, while “ST|O”
represents the “Share Transfer” event type and the “Object” argu-
ment role.

proach is that errors can propagate from one stage to the next,
as the latter stage relies on the results of the former stage. Re-
cently, the table-filling method OneEE [Cao et al., 2022] has
introduced a novel tagging scheme that converts the extrac-
tion of overlapping and nested events into the recognition of
word-word relations.

While CasEE [Sheng et al., 2021] and OneEE have
achieved significant success as the current state-of-the-art
methods for overlapping and nested event extraction, they
still have the following limitations: 1) The span informa-
tion of trigger words and argument entities in OneEE is not
fully exploited due to its table-filling tagging scheme. 2)
The incorporation of event type information in CasEE and
OneEE enhances their performance, but the diverse represen-
tation of text (derived from pretrained language models) and
event types (initialized randomly) impairs the interaction be-
tween them. 3) OneEE, like other table-filling methods [Li et
al., 2022; Shang et al., 2022] in information extraction, also
struggles with an imbalance between positive and negative
table cell tags.

As shown in Figure 2, we transform the EE task into
a triple extraction problem, referred to as the relational
triple extraction of trigger and argument (RTE-TA) task in
this paper, in the form (trigger,argument,trigger
type|argument role). We noticed a strong similarity
between the table-filling-based RTE-TA task and the Ob-
ject Detection (OD) task in computer vision. As depicted
in Figure 2, both tasks require the identification of Re-
gions of Interest (ROIs) within a two-dimensional array of
pixels or table cells. Further, inspired by the keypoint-
based one-stage object detection methods [Duan et al., 2019;
Law and Deng, 2018; Zhou et al., 2019], we propose a
one-stage Object Detection framework for Event Extraction

(ODEE) to address the overlapping and nested event extrac-
tion problem.

The primary contributions of this research, along with the
point-by-point solution of our proposed method, address the
three issues mentioned above in the current state-of-the-art
methods as follows:

• ODEE directly predicts bounding boxes through the
identification and grouping of four vertices of each Re-
gion of Interest as shown in Figure 2. By using vertex-
based bounding box detection and type and span predic-
tion of trigger words and argument entities, our method
fully utilizes the span information of trigger words and
argument entities, in contrast to the existing table-filling
method OneEE.

• We map candidate event types to natural language text
based on their semantic definitions, and then combine
them with sentences into a continuous sequence. We
then use a pretrained transformer language model (PLM)
to encode the sequence, and obtain a unified representa-
tion of event types and text through the interaction of the
two in the transformer blocks of the PLM.

• During the training phase, we incorporate a negative
sampling approach for table cells as a means of enhanc-
ing the training efficiency and mitigating the imbalanced
distribution of positive and negative table cell tags.

2 Related Work
2.1 Event Extraction
Event extraction (EE) is a crucial and intricate challenge in
the realm of information extraction. Traditional approaches
to event extraction frequently involve formulating it as a se-
quence labeling task, in which each token in the text is as-
signed a single label using a tagging scheme such as BIO.
Representative models, such as CNN [Chen et al., 2015],
RNN [Nguyen et al., 2016], attention-based GCN [Liu et
al., 2018], are utilized to model the dependency information
in the text. However, these methods are not able to han-
dle event extraction tasks that involve overlapping and nested
events. Recently, overlapping and nested event extraction has
received widespread attention due to its challenging and prac-
tical nature. Early methods [Yang et al., 2019; Li et al., 2020;
Sheng et al., 2021] used a pipeline approach that sequentially
cascades multiple modules to extract nested and overlapping
entities, resulting in error accumulation. Recently, the OneEE
method [Cao et al., 2022] based on table-filling achieved one
stage extraction of overlapping and nested events by trans-
forming the EE task into a word-word relation recognition
problem.

2.2 Table-filling Information Extraction Method
The task of information extraction can be transformed into
word-word relation prediction problem using a table-filling
method, enabling the extraction of information to be per-
formed in a single stage. Recently, the table-filling method
has gained widespread use in a variety of information extrac-
tion tasks, including opinion mining [Wu et al., 2020], rela-
tion extraction [Shang et al., 2022], and named entity recog-
nition [Li et al., 2022]. This method is characterized by its
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ability to represent relations between tokens, which makes it
particularly well-suited to these tasks. Recently, the table-
filling method has also been applied to tasks involving over-
lapping and nested event extraction [Cao et al., 2022]. In
contrast to this approach, we propose a novel tagging scheme
from a unique perspective of object detection. Additionally,
for the issue of imbalanced positive and negative table cell
tags which exists in most table-filling methods , we introduce
a negative sampling strategy for table cells to alleviate this
problem.

2.3 Object Detection (OD)
Object detection, a task in computer vision which involves
locating and identifying objects of interest within natural im-
ages, has garnered significant attention in recent years. While
two-stage object detection models such as R-CNN [Girshick
et al., 2014], Faster-RCNN [Ren et al., 2015], and Mask-
RCNN [He et al., 2017] have achieved notable success, one-
stage models like YOLO [Redmon et al., 2016], SSD [Liu
et al., 2016] and FCOS [Tian et al., 2019] have gained pop-
ularity due to their real-time performance capabilities. Our
approach is inspired by keypoint-based one-stage object de-
tection methods [Duan et al., 2019; Law and Deng, 2018;
Zhou et al., 2019]. Shen et al.[2022] also proposed a two-
stage detector which considers the nested named entity recog-
nition task as an object detection task. In contrast to this two-
stage nested NER detector, our proposed one-stage detec-
tor, ODEE, demonstrates improvements in both performance
and computational efficiency for the task of overlapping and
nested event extraction.

3 Reformulation of EE Task
3.1 Task Definition
The objective of event extraction is to detect and extract event
triggers and their related arguments, which may exhibit over-
lapping or nested relationships. To address this complexity,
we propose a solution of transforming the EE task, character-
ized by overlapping and nested triggers and arguments, into
the task of RTE-TA (as outlined in the Section 1).

The RTE-TA task involves identifying a set of all N po-
tential relational triples of trigger and argument, referred to
as TAR triples, from a given sentence. The sentence, repre-
sented as a sequence of words S = {w1, w2, · · · , wL}, where
L is the length of the sentence S. Each TAR triple Γi =
(ti, ai, ri) contains a trigger ti, an argument ai, and a relation
ri between ti and ai which is a combination of event type
typei and argument role rolei represented as typei |rolei as
illustrated in Figure 3. The event type and argument role are
chosen from pre-defined sets of candidate event types E and
candidate argument roles Υ , respectively.

3.2 OD-style TAR Triple Tagging Scheme
The Figure 2 and Figure 3 illustrate that the trigger and ar-
gument of a TAR triple can be represented by a rectangu-
lar region in a table of token pair representations. Previous
research [Cao et al., 2022] has demonstrated that the span
and type of elements in an event can be inferred from the

relations of bounding tokens and that one-stage object detec-
tion can be achieved through the identification and grouping
of key points within the bounding box [Duan et al., 2019;
Law and Deng, 2018; Zhou et al., 2019]. Inspired by these
ideas, the proposed approach utilizes the four vertices of the
rectangular region enclosed by the trigger and argument in a
TAR triple in a relation-specific table to determine the rele-
vant region of the TAR triple. These vertices include the up-
per left (UL) vertex, which indicates the start position of both
the trigger and argument, the upper right (UR) vertex, which
indicates the start position of the trigger and the end position
of the argument, the lower left (LL) vertex, which indicates
the end position of the trigger and the start position of the ar-
gument, and the lower right (LR) vertex, which indicates the
end position of both the trigger and argument.

4 Methodology
In this section, we provide a detailed explanation of the im-
plementation of ODEE, the overall structure of which is illus-
trated in Figure 3.

4.1 Unified Encoder of Event Types and Sentence
The process begins by utilizing a verbalizer to convert each
event type within the schema into a sequence of natural lan-
guage words, which are selected manually. Due to the in-
tricacies of the event types, it may be necessary for a cer-
tain event type to be represented by multiple words. For in-
stance, the Share Transfer event type depicted in Figure
3 is expressed as a sequence composed of the words “share”
and “transfer”. The resulting concatenation of the input sen-
tence S and the text sequence of event types, represented
as ET = [et1, · · · , etM ], is then inputted into a pre-trained
BERT [Kenton and Toutanova, 2019] encoder (as illustrated
in Figure 3):

input = concat (ET, S) (1)
[Het, Hw] = BERT (input) (2)

The output of BERT encoder includes representations of
ET and S, which are denoted as Het = [het1, · · · , hetM ] ∈
RM×768 and Hw = [hw1, · · · , hwL] ∈ RL×768, respec-
tively, where M is the length of ET .

The multi-layer Transformer blocks in BERT possess ad-
vanced capabilities for modeling global dependencies within
sequences. The steps described above facilitate the interac-
tion and representation of event types and the input sentence
within BERT in a unified semantic space.

4.2 Span-aware Word Representation
In order to fully exploit the span information of event ele-
ments, we propose the incorporation of two auxiliary tasks:
predicting the span and type of both trigger words and ar-
gument entities. These tasks serve as guidance for BERT to
obtain span-aware word representations.

For the task of predicting the type and span of trigger
words, we formulate it as a classification problem of iden-
tifying the relationship between words in ET and words in
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Lucent Industry reduced its total share capital by 5%.

trigger
Event: Share Transfer(ST.)

TAR triple1: (“reduced”,“Lucent Industry”, ST.|Sub.)
TAR triple2: (“reduced”,“Lucent Industry”, ST.|Tar.)

TAR triple3: (“reduced”,“5%”, ST.|Pro.)
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Unified encoder of event 
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Figure 3: The overall architecture of ODEE. The UL, UR, LL and LR denote the upper left vertex, upper right vertex, lower left vertex and
lower right vertex, respectively. In this figure, the total number of tokens after negative sampling, NS, is 5.

S. The representation of token pair, consisting of eti ∈ ET
and wj ∈ S, is calculated as:

h(eti,wj) = ReLU
(
W(et,w)

[
heti ;hwj

]
+ b(et,w)

)
(3)

where ReLU (·) is the ReLU [Agarap, 2018] activation
function, [·; ·] is the concatenation operators, W(et,w) ∈
Rde×1536 and b(et,w) ∈ Rde are learnable parameters.

The prediction score p(eti,wj) for token pair (eti, wj) is
calculated as follows:

p(eti,wj) = σ
(
Wetwh(eti,wj) + betw

)
(4)

where σ denotes sigmoid function, Wetw ∈ R1×de and
betw ∈ R1 are learnable parameters. If wi is found to be
within the span of a trigger word triggerm, and if triggerm
and etj are of the same event type, then the ground truth value
of p(eti,wj) is assigned as 1, as illustrated in Figure 3. Con-
versely, if these conditions are not met, the ground truth value
of p(eti,wj) is assigned as 0.

For the task of predicting the span and type of argument
entities, we construct it as a role-specific span tagging task
of S. We first employ a Transformer [Vaswani et al., 2017]
layer to obtain the argument-specific hidden representations:

H(T )
w = Transformer (Hw) =

[
h(T )
w1

, · · · , h(T )
wL

]
(5)

For each word wi in the set S, the probability score
p
(rolem)
wi of it being within the span of an entity with a role

rolem in the set Υ is computed using the following equation:

p(rolem)
wi

= σ(Wrolemhw
(T )
i + brolem) (6)

where σ represents the sigmoid function, and Wrolem ∈
R1×de and brolem ∈ R1 are the learnable parameters.

4.3 TAR Triple Region Detector
Negative Sampling Method for Table Cells
Existing table-filling methods for information extraction
(such as discussed in Section 2.2) generate all possible token
pairs from the input text, resulting in a high computational
cost, particularly when the input text is long. Additionally,
considering all tokens leads to an imbalance in the positive
and negative labels for table cells, causing the model to have
a bias towards predicting negative labels. We propose a nega-
tive sampling strategy for table cells to alleviate these issues.
For each word wi in sentence S, if it is within the span of any
trigger or argument entity, we define it as a positive token,
otherwise, we define it as a negative token.

For the input sentence S, we obtain a sampled token se-
quence S̃ through negative sampling:

S̃ = NegSample (S,NS) = [w̃1, · · · , w̃NS ] (7)

Where the NegSample(S,NS) denotes the operation of
preserving all the positive tokens in S, randomly sampling the
negative tokens, and ensuring that the total number of posi-
tive and negative tokens is NS. Then, we generate the table
of token pair representations by only using the tokens in the
sequence S̃.
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Relation-specific Vertice Regressor
For a given token pair (w̃i, w̃j), the representation of the to-
ken pair h(w̃i,w̃j) is computed as follows:

h(w̃i,w̃j) = ReLU
(
Www

[
hw̃i

;hw̃j

]
+ bww

)
(8)

Where Www ∈ Rde×1536 and bww ∈ Rde are learnable
parameters, and hw̃i and hw̃j are the BERT representation of
tokens w̃i and w̃j respectively.

Then the probability scores of each token pair (w̃i, w̃j) for
a certain vertex tag type vk (as defined in Section 3.2) under
the specific relation rm (as defined in Section 3.1) between
trigger and argument are calculated as follows:

S
(vk)
(i,j,rm) = σ

(
W (vk)

rm h(w̃i,w̃j) + b(vk)
rm

)
(9)

where W
(vk)
rm ∈ R1×de and b

(vk)
rm ∈ R1 are learnable pa-

rameters, S(vk)
(i,j,rm) ∈ R is the probability score indicating the

probability that the token pair (w̃i, w̃j) is tagged as vertex tag
type vk. The candidate types for vk are UL, UR, LL and LR.

4.4 Loss Function
The objective function of ODEE is designed based on the
BCE (Binary Cross Entropy) loss, taking into account the
task of vertices tagging of token pairs, as well as the auxil-
iary tasks of predicting the type and span of trigger words and
argument entities. The BCE loss function can be formulated
as:

BCE (gt, p) = gt log (p) + (1− gt) log (1− p) (10)

The objective function of ODEE is defined as follows:

Lver =

∑
vk∈Ψ

∑ReN
m=1

∑NS
i=1

∑NS
j=1 bce

(vk)
(i,j,rm)

4×ReN ×NS ×NS
(11)

bce
(vk)
(i,j,rm) = BCE

(
gt

(vk)
(i,j,rm), S

(vk)
(i,j,rm)

)
(12)

Ltri =

∑M
i=1

∑N
j=1 BCE

(
gt(eti,wj), p(eti,wj)

)
M ×N

(13)

Larg =

∑RoN
i=1

∑N
j=1 BCE

(
gt

(rolei)
wj , p

(rolei)
wj

)
RoN ×N

(14)

Ltotal = Lver + λLtri + γLarg (15)

where gt
(vk)
(i,j,rm), gt(eti,wj) and gt

(rolei)
wj are ground truth

value of S(vk)
(i,j,rm), p(eti,wj) and p

(rolei)
wj , respectively. Ψ is a

collection of all vertex types, consisting of UL, UR, LL and
LR. ReN is the total number of relationship types between
trigger words and arguments in the schema. RoN is the num-
ber of roles for argument in the schema. λ and γ are the
tuning factors of the loss function.

4.5 Decoding Method
For each sentence, the tagging results of all sampled to-
ken pairs for different vertices under the relation rm are
stored into a matrix called the vertice tagging matrix V Tm ∈
RNS×NS×4 (as shown in Figure 3). To decode the TAR

#Sent. #Events #Ovlp. #Nest.

FewFC
train 7,185 10,227 1,560 -
dev 899 1,281 205 -
test 898 1,332 210 -

Genia11
train 8,730 6,401 954 1,628
dev 1,091 824 121 199
test 1,092 775 125 197

Genia13
train 4,000 2,743 347 784
dev 500 352 44 100
test 500 320 42 88

Table 1: Statistics of three datasets. “Ovlp.” and “Nest.” denote the
sentences with overlapping and nested events, respectively.

triples contained in each sentence under the relation rm, we
propose a bidirectional decoding method that decodes the
triples in two diagonal directions of the object region. The
triples are decoded along two decoding directions in parallel:
decoding direction 1 (UL→UR→LR) and decoding direction
2 (LR→LL→UL). Specifically, for the decoding direction 1,
we first enumerate all token pairs located at the UL vertices,
and then for each UL token pair search for the nearest fol-
lowing token pair located at the UR vertex. Next, for each
UR token pair, we search for the nearest following token pair
located at the LR vertex. As a result, the tokens between ver-
tices UL and UR form the argument entity, and the tokens
between vertices UR and LR form the trigger. Similarly, the
meaning of decoding direction 2 (LR→LL→UL) is similar
to that of decoding direction 1 (UL→UR→LR). Finally, the
TAR triples decoded by both decoding direction 1 and decod-
ing direction 2 are consolidated in the final decoding results
to ensure that both overlapping and nested TAR triples under
the relation rm can be accurately identified.

5 Experiments
5.1 Experiments Setting
Datasets
In this study, we evaluated the performance of our proposed
method on three benchmark datasets for overlapping and
nested event extraction. Specifically, we utilized the FewFC
dataset [Zhou et al., 2021], a Chinese financial event extrac-
tion benchmark, which annotates 10 event types and 18 argu-
ment role classes, with a significant proportion of sentences
containing overlapped events (22%). Additionally, we also
conducted experiments on two biomedical event extraction
datasets, namely Genia11 [Kim et al., 2011] and Genia13
[Kim et al., 2013], which contain a significant proportion of
nested events (18%). Genia11 contains 9 event types and 10
argument role classes, and Genia13 contains 13 event types
and 7 argument role classes. The train/dev/test split for these
datasets is in accordance with previous work [Sheng et al.,
2021; Cao et al., 2022], with an 8:1:1 ratio.

Implementation Details
In this study, we employed the Chinese-BERT-Base1 model
for the FewFC dataset and BioBERT2 [Lee et al., 2020] for
the Genia11 and Genia13 datasets. The optimization algo-
rithm used was Adam, with a learning rate of 3e-5. The batch

1https://huggingface.co/bert-base-chinese
2https://github.com/dmis-lab/biobert
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TI(%) TC(%) AI(%) AC(%)

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Flat EE
methods

BERT-softmax 89.8 79.0 84.0 80.2 61.8 69.8 74.6 62.8 68.2 72.5 60.2 65.8
BERT-CRF 90.8 80.8 85.5 81.7 63.6 71.5 75.1 64.3 69.3 72.9 61.8 66.9
BERT-CRF-joint 89.5 79.8 84.4 80.7 63.0 70.8 76.1 63.5 69.2 74.2 61.2 67.1

Multi-
stage

PLMEE 83.7 85.8 84.7 75.6 74.5 75.1 74.3 67.3 70.6 72.5 65.5 68.8
MQAEE 89.1 85.5 87.4 79.7 76.1 77.8 70.3 68.3 69.3 68.2 66.5 67.3
CasEE 89.4 87.7 88.6 77.9 78.5 78.2 72.8 73.1 72.9 71.3 71.5 71.4

One-
stage

OneEE 88.7 88.7 88.7 79.1 80.3 79.7 75.4 77.0 76.2 74.0 72.9 73.4
ODEE(ours) 88.9 93.6 91.2 80.7 85.0 82.8 77.5 80.7 79.0 75.7 78.8 77.2

Table 2: Results of event extraction on FewFC dataset. The results are the median values obtained from 5 runs of our model with different
random seeds. The best results are highlighted in bold.

• Genia11 TI(%) TC(%) AI(%) AC(%)

BERT-softmax 67.8 64.4 57.4 56.0
BERT-CRF 68.3 64.8 58.3 56.9

BERT-CRF-joint 67.0 64.1 60.2 58.1
PLMEE 67.3 65.5 60.7 59.4
CasEE 70.0 67.0 62.0 60.4
OneEE 71.5 69.5 65.9 62.5
ODEE 76.2 73.3 71.0 69.1

• Genia13 TI(%) TC(%) AI(%) AC(%)

BERT-softmax 77.4 75.9 69.9 67.7
BERT-CRF 78.8 77.4 70.1 68.2

BERT-CRF-joint 77.6 75.7 71.9 68.2
PLMEE 79.3 78.3 72.1 70.7
CasEE 80.5 78.5 73.7 71.9
OneEE 81.9 80.8 76.8 72.7
ODEE 83.8 81.5 79.8 79.3

Table 3: Results (F1 score) on Genia11 and Genia13 datasets.

size was set to 8 and the hidden size of the model de was set
to 768. All the hyper-parameters were tuned on the develop-
ment set. Additionally, the tuning factors of the loss function,
λ and γ, were set to 0.1 and 0.01, respectively. And the num-
ber of negative samples for token NS is set to 0.4 times the
length of the input sentence L. The attention heads number
of the Transformer layer is set to 8.

Evaluation Metrics & Baselines
In this study, we evaluated the performance of our proposed
method using traditional criteria established in previous work
[Chen et al., 2015; Sheng et al., 2021; Cao et al., 2022]. We
used the following evaluation metrics: 1) Trigger Identifica-
tion (TI), where a trigger is considered correctly identified if
the predicted trigger span matches the golden label; 2) Trig-
ger Classification (TC), where a trigger is considered cor-
rectly classified if it is correctly identified and assigned the
correct type; 3) Argument Identification (AI), where an argu-
ment is considered correctly identified if its event type is cor-
rectly recognized and the predicted argument span matches
the golden label; 4) Argument Classification (AC), where an
argument is considered correctly classified if it is correctly
identified and the predicted role matches any of the golden
labels. We report Precision (P), Recall (R), and F-measure
(F1) for each of these four metrics.

In line with previous work [Sheng et al., 2021; Cao et
al., 2022], we selected three types of baseline models for
comparison in this study: 1) Sequence Labeling Methods
for Flat Event Extraction (BERT-softmax, BERT-CRF, and

TI(%) TC(%) AI(%) AC(%)

OneEE 88.7 79.7 76.2 73.4
ODEE 91.2 82.8 79.0 77.2

w/o TTSP 90.0 81.3 78.4 76.5
w/o ATSP 90.6 81.9 77.8 76.3
w/o NST 90.7 82.0 78.3 76.3

Table 4: An ablation study of the proposed model. F1 scores were
evaluated on the testset of FewFC. TTSP and ATSP refer to the trig-
ger word type and span prediction task and the argument type and
span prediction task, respectively. NST refers to the negative sam-
pling method for tokens.

BERT-CRF-joint), 2) Multi-stage Methods for Overlap-
ping and Nested Event Extraction (PLMEE [Yang et al.,
2019], MQAEE [Li et al., 2020] and CasEE [Sheng et al.,
2021]) and 3) One-stage Methods Based on Table-filling
for Overlapping and Nested Event Extraction (OneEE
[Cao et al., 2022]).

5.2 Experiments Results
Main Results
In our study, we compared our proposed ODEE model with
several strong baseline models and the results are reported in
Table 2 and Table 3. It is evident that ODEE outperforms
all baselines and achieves the state-of-the-art performance in
terms of F1 scores on all datasets. Through these experimen-
tal results, we can conclude that:

1) Comparing with the sequence labeling methods that can
only extract flat events, our proposed ODEE model achieved
significant improvements in recall and F1 scores, indicating
the effectiveness of our model in extracting overlapping and
nested events.

2) Comparing with multi-stage methods, our proposed one-
stage method still achieved notable improvements in recall
and F1 scores, demonstrating the advantage of reducing er-
ror propagation in the extraction of nested and overlapping
events.

3) When compared with the current state-of-the-art one-
stage table-filling method, OneEE, ODEE still achieved a no-
table improvement in F1 scores. Specifically, the average
growth rate on three datasets for TC is 3.41% and for AC
is 8.27%, respectively. This highlights the effectiveness of
ODEE in utilizing span information of trigger words and ar-
gument entities. Additionally, the high average AC growth
rate also indicates that our method effectively models the re-
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Model Stage #Param. Inference(sent/s) GPU Memery(GB) TC(F1%) AC(F1%)
CasEE three 120.7M(18.4M∅) 59.3ȷ(62.3ℓ) 12.5 78.2 71.4
OneEE one 114.2M(11.9M∅) **(186.5ℓ) ** 79.7 73.4
ODEE one 110.4M(8.1M∅) 204.3 14.7 82.8 77.2
ODEE† one 110.4M(8.1M∅) 204.3 23.8 82.0 76.3

Table 5: Comparison of the efficiency with state-of-the-art methods, CasEE and OneEE, on the FewFC dataset. The superscript † indicates
an ODEE without negative sampling of tokens. The subscript ∅ denotes the number of parameters in the model that do not include the
BERT component. The subscript ȷ indicates the results obtained from the publicly available implementation of the model. The subscript ℓ
indicates the results obtained from original paper. The symbol ** denotes that the results for this model are currently unavailable due to the
unavailability of its publicly available implementation, but will be included once it becomes accessible.
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Figure 4: The results of our model’s performance in extracting both
overlapped triggers (a) and arguments (b) from the FewFC dataset,
as well as nested triggers (c) and arguments (d) from the Genia13
dataset are presented. It is important to note that only sentences con-
taining at least one such event were used in these evaluations. Ad-
ditionally, the results of the comparison experiment are taken from
previous research.

lationship between triggers and arguments, leading to supe-
rior performance in argument extraction.

Ablation Study
In order to evaluate the effectiveness of each component in
our model, we conducted ablation experiments on the FewFC
dataset, and the results are reported in Table 4. Firstly, for
the two auxiliary tasks of predicting the types and spans of
trigger words and argument entities, removing either one of
them will result in a decrease in model performance, indi-
cating that both of them contribute to improving the model’s
ability to perceive the span information of event elements.
Specifically, our experimental results reveal that the auxiliary
task of TTSP has a more significant impact on the perfor-
mance of the model in terms of TC, while the auxiliary task
of ATSP has a more significant impact on the performance
of the model in terms of AC. Secondly, removing the neg-
ative sampling method for tokens also leads to a significant
decrease in model performance, indicating that this method
effectively alleviates the imbalance of positive and negative
labels for token pairs.

Results of Overlapped Events and Nested Events
In order to assess the performance of our proposed model
in identifying overlapping and nested event mentions, we
present results on sentences containing at least one overlap-

ping event in the FewFC dataset, and sentences containing
at least one nested event in the Genia13 dataset. Figure 4
shows the results for trigger classification (TC) and argument
classification (AC) on overlapping and nested sentences in
the test set. The results demonstrate that our method out-
performs other methods in detecting overlapping and nested
events. The superior performance of ODEE in recognizing
overlapping and nested event mentions is primarily attributed
to two factors. Firstly, the single-step event extraction process
effectively reduces the accumulation of errors. Secondly, our
model is able to more fully perceive and utilize the span in-
formation of event triggers and arguments.

Analysis on Model Efficiency
In order to evaluate the efficiency of our proposed OD-RTE
model in comparison to the state-of-the-art methods, CasEE
and OneEE, we conduct experiments and analyze the results
from three perspectives: number of parameters, inference
speed and GPU memory usage in training stage. The re-
sults of the experiments are presented in Table 5. To en-
sure fairness, the results for the above mentioned efficiency
metrics are obtained using the same model configurations for
all methods. Our model, ODEE, achieves the state-of-the-
art performance while utilizing the minimal number of pa-
rameters due to the optimizations in its design. Additionally,
our model demonstrates the fastest inference speed, indicat-
ing high parallelism on GPU. Furthermore, the introduction
of negative sampling for tokens not only alleviates the im-
balance of positive and negative labels, but also significantly
improves performance, particularly in terms of GPU memory
usage and inference speed.

6 Conclusion
In this paper, we present a novel one-stage object detection
framework (ODEE) to address the problem of overlapping
and nested event extraction. Our approach utilizes a vertex-
based tagging scheme in combination with the prediction of
trigger and argument types and spans to better exploit the
event element’s contextual information. Furthermore, we
leverage BERT to achieve unified interaction and represen-
tation of sentence and event types. Additionally, the intro-
duction of token negative sampling not only alleviates the is-
sue of imbalanced labels for token pairs but also significantly
improves the model’s performance. Experimental results
demonstrate that our proposed model not only achieves state-
of-the-art performance on three datasets but also achieves
competitive computational efficiency.
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