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Abstract
While neural text-to-speech (TTS) has achieved
human-like natural synthetic speech, multilingual
TTS systems are limited to resource-rich languages
due to the need for paired text and studio-quality
audio data. This paper proposes a method for zero-
shot multilingual TTS using text-only data for the
target language. The use of text-only data allows
the development of TTS systems for low-resource
languages for which only textual resources are
available, making TTS accessible to thousands of
languages. Inspired by the strong cross-lingual
transferability of multilingual language models, our
framework first performs masked language model
pretraining with multilingual text-only data. Then
we train this model with a paired data in a super-
vised manner, while freezing a language-aware em-
bedding layer. This allows inference even for lan-
guages not included in the paired data but present in
the text-only data. Evaluation results demonstrate
highly intelligible zero-shot TTS with a character
error rate of less than 12% for an unseen language.

1 Introduction
Recent advances in neural text-to-speech synthesis (TTS) [Li
et al., 2019b; Kim et al., 2021] have yielded significant im-
provements in naturalness and speech quality. However, the
data-intensive nature and the requirement of paired text and
studio-quality audio data have limited multilingual TTS sys-
tems to resource-rich languages, which are small portions of
the more than 6,000 languages in the world [Gordon Jr, 2005].
To address the limitation, current research in multilingual
TTS aims not only to exploit resource-rich languages [Zen
et al., 2012; Li and Zen, 2016] but also to build models for
low-resource languages [Prakash et al., 2019].

Previous work has addressed low-resource TTS by using
untranscribed speech data with vector-quantized variational
autoencoder (VQ-VAE) [Zhang and Lin, 2020] or automatic
speech recognition (ASR) models [Ni et al., 2022]. Another
study [Saeki et al., 2022b] has built a massively multilin-
gual TTS model jointly using paired TTS, paired ASR, un-
paired speech, and unpaired text data. However, these ap-
proaches still rely on speech data for the target languages and
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Figure 1: Our concept. We aim to build TTS model on languages for
which only text data is available, to support low-resource languages.

face the challenge of data collection, when audio recordings
for these languages are hard to obtain. In this study, we fo-
cus on the use of a text-only data for multilingual TTS as
shown in Fig. 1. Previous research [Wu and Dredze, 2019;
Pires et al., 2019] has shown the strong cross-lingual trans-
ferability of multilingual language models such as multilin-
gual BERT [Devlin et al., 2019] in natural language pro-
cessing (NLP) tasks. By leveraging multilingual pretrain-
ing, the model can generalize to other languages, even if
it has never seen the target data in those languages. Our
work applies the framework of multilingual masked language
model (MLM) pretraining to TTS, with the goal of achieving
zero-shot cross-lingual transfer of pronunciation and prosody.
Zero-shot TTS using text data enables the development of
TTS systems for languages where only textual resources are
available, which potentially opens up TTS to thousands of
languages [Ebrahimi and Kann, 2021; Li et al., 2022].

In this paper, we propose a multilingual TTS framework
that leverages unsupervised text pretraining. Fig. 2 illus-
trates the proposed framework. We use a typical end-to-end
TTS architecture consisting of token embedding, encoder,
and decoder. Our model also has a language-aware embed-
ding layer, which includes the token embedding layer, a lan-
guage embedding layer, and a bottleneck layer. As shown
in Fig. 2(a), we first pretrain the language-aware embedding
layer and the encoder of the TTS model with multilingual text
data. We then fine-tune the encoder and decoder of the TTS
model with paired data, while the language-aware embedding
layer is frozen, as illustrated in Fig. 2(b). This allows zero-
shot TTS for a language not included in the paired data but
present in the text data, as shown on the right in Fig. 2(c).

Our contributions are as follows. 1) We propose a zero-shot
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Figure 2: Proposed framework. (a) We perform MLM pretraining on
multilingual text data and then (b) train TTS model on paired data
with frozen language-aware embedding layer. (c) Zero-shot TTS is
performed with language IDs that are not included in paired data.

multilingual TTS framework that achieves highly intelligible
TTS for an unseen language, resulting in a character error rate
of less than 12%. 2) Our method also improves TTS for seen
languages, resulting in byte-based models without grapheme-
to-phoneme (G2P) modules that outperform the phoneme-
based baselines. 3) Our ablation studies provide additional
insights, including the effectiveness of the frozen language-
aware embedding layer. The experiments were conducted on
public datasets and the implementation is available1. We en-
courage readers to listen to our audio samples2.

2 Method
Our model has a typical neural TTS model architecture con-
sisting of token embedding, encoder, and decoder. First, we
use MLM pretraining with multilingual text data to learn
cross-lingual representations. Then we perform supervised
learning with paired data to learn the mapping from linguis-
tic features to speech features. The model performs inference
even for languages that are not present in the paired data.

2.1 Unsupervised Multilingual Text Pretraining
Fig. 2(a) illustrates the unsupervised pretraining method. It
uses multilingual text data consisting of languages that are
not included in the paired data. Let X = (xn ∈ V |n =
1, · · · , N) denote the input text token sequence of length N ,
where V denotes a vocabulary constructed for pretraining.

1https://github.com/Takaaki-Saeki/zm-text-tts
2https://takaaki-saeki.github.io/zm-tts-text demo

We define Dtext as the text dataset. Let Ltext denote the set
of language IDs included in Dtext. First, the masked token
sequence Xm and a language ID ltext ∈ Ltext are fed to the
model. Let the token embedding sequence and language em-
bedding be Zm = (zm

n ∈ Rd|n = 1, · · · , N) and el ∈ Rd,
respectively. The embedding layers output Zm and el as:

Zm = Embed(Xm; θT), el = Embed(ltext; θL), (1)

where θT and θL denote the model parameters of the to-
ken embedding and language embedding layers, respectively.
Then the token and language embeddings obtained in Eq. (1)
are added and fed to a bottleneck layer to project them into a
hidden input vector. Let Hin = (hin,n ∈ Rd|n = 1, · · · , N)
and Hout = (hout,n ∈ Rd|n = 1, · · · , N) denote hidden
vectors in the encoder input and output, respectively. Then
the conditional probability p(X|X−Π) is computed as:

Hin = Bottleneck(Zm + el; θB), (2)
Hout = Encoder(Hin; θE), (3)

p(X|X−Π) = Softmax(PredictionNet(Hout; θP)), (4)

where θB, θE, θP denote the model parameters of the bot-
tleneck layer, the encoder and a prediction network, respec-
tively. In Eq. (4), Softmax(·) denotes a softmax function. We
define the network with the model parameters {θB, θT, θL}
as language-aware embedding layer, which jointly embeds
the token sequence X and the language ID ltext as in Eq. (1)
and (2). Let Π = (πk ∈ N|k = 1, · · · ,K) be the indexes
of the masked tokens of length K. With the probability com-
puted in Eq. (4), the training objective can be defined as:

Lmlm =
1

K

K∑
k=1

log p(xπk
|Xm),

{θ̂E, θ̂B, θ̂T, θ̂L} = arg min
θE,θB,θT,θL

Lmlm.

(5)

We use UTF-8 bytes or International Phonetic Alphabet
(IPA) symbols for the input token sequence X . For each to-
ken type, the vocabulary V is constructed from Dtext, which
includes a start/end of sentence token ([SOS/EOS]). We ex-
tracted International IPA sequences using an open-source
toolkit3. To obtain the masked token Xm, we use the same
masking ratio and category as in the original BERT pre-
training [Devlin et al., 2019] for each token type. Randomly,
12 % of the tokens are replaced with the [MASK] token, and
1.5 % of them are replaced with random tokens. Also, 1.5 %
of the tokens are left unchanged and Lmlm is computed as in
Eq. (5) for those 15 % of tokens that have indices Π.

2.2 Supervised Learning with Paired Data
Fig. 2(b) illustrates the supervised learning of the TTS model
with paired data. We define the paired data and the set of lan-
guage IDs as Dpaired and Lpaired, respectively. Note that we
assume Lpaired ⊂ Ltext. Let Y = (yt ∈ RD|t = 1, · · · , T )
denote the speech feature sequence with the length of T .
We first initialize the model parameters {θE, θB, θT, θL} with

3https://github.com/espeak-ng/espeak-ng
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those obtained in the pretraining described in § 2.1. Let θD
denote the model parameter of the decoder. The speech fea-
tures are predicted with teacher forcing as:

Hout = Encoder(Bottleneck(Z + el)), (6)

Ŷ = Decoder(Hout, Y ; θD), (7)

where Z is the unmasked token embedding sequence. Note
that the unmasked token sequence is used in Eq. (6), while
the masked token sequence is used in Eq. (2) Let Ltts(Ŷ , Y )
denote the training objective of the TTS model. Then we
consider two types of schemes.
Updating language-aware embedding layer. We only
freeze the parameter of the language embedding layer θL
while updating the rest of the parameters. Therefore the train-
able model parameters can be written as

{θ̂D, θ̂E, θ̂B, θ̂T} = arg min
θD,θE,θB,θT

Ltts(Ŷ , Y ). (8)

Previous work has confirmed that multilingual BERT has
high cross-lingual transferability for various NLP tasks [Wu
and Dredze, 2019]. This scheme corresponds to a simple fine-
tuning of BERT [Wu and Dredze, 2019], which updates all
the parameters during training for the downstream tasks4.
Freezing language-aware embedding layer. We freeze
the bottleneck layer and the token embedding layer along
with the language embedding, updating the encoder and de-
coder. The training process can be written as

{θ̂D, θ̂E} = arg min
θD,θE

Ltts(Ŷ , Y ). (9)

In contrast to the scheme represented in Eq. (8), the scheme in
Eq. (9) preserves the parameters of the language-aware em-
bedding layer to facilitate cross-lingual transfer. In the evalu-
ation, we use the scheme formulated in Eq. (9), except for the
ablation study in § 3.4.

2.3 Inference
Let Lsyn denote the set of language IDs used for inference.
The text token sequence X and the language ID lsyn ∈ Lsyn

are fed to the model as in Eq. (1), and the encoder output is
predicted as in Eq. (6). Unlike Eq. (7), the speech features are
predicted as:

Ŷ = Decoder(Hout; θD). (10)
The output waveform is obtained by feeding the predicted
features Ŷ to a pretrained neural vocoder.

Fig. 2(c) illustrates the inference process. The left and right
sides of the figure show the typical multilingual TTS and our
zero-shot TTS. Previous work [Li et al., 2019a] has typically
assumed seen languages, and the inference is performed with
the language IDs Lseen ⊂ Lpaired. However, it is challenging
to perform TTS for unseen languages Lunseen ∩ Lpaired = ∅.
While other work [Saeki et al., 2022b] has built a massively
multilingual TTS model that even achieves zero-shot TTS
from ASR data, it uses paired data for the target languages.

4We freeze the language embedding layer to address the mis-
match between language embedding of seen and unseen languages.

Our work attempts to only use the linguistic knowledge to im-
prove the zero-shot TTS. Thus, the inference process is writ-
ten as L′

unseen ∩ Lpaired = ∅ and L′
unseen ⊂ Ltext. In the

evaluation, we denote the inference with Lunseen and L′
unseen

as Fully zero-shot TTS and Text-seen zero-shot TTS, respec-
tively. Fully zero-shot TTS performs zero-shot TTS without
pretraining as in the IPA-based previous method [Staib et al.,
2020], which is the baseline method in our evaluations.

2.4 Model Architecture
Our model is an autoregressive TTS model based on Trans-
former TTS [Li et al., 2019b], which has also been used in
the previous work on byte-based multilingual TTS [He et al.,
2021]. During the supervised learning described in § 2.2 and
inference described in § 2, we use x-vector [Snyder et al.,
2018] for the speaker embedding and add it to the encoder
output through a projection layer. During supervised learn-
ing, we use the average x-vectors computed from the training
data. For evaluation purposes, we perform zero-shot synthe-
sis with the average x-vector from the test data of the target
language and feed it to the model. Note that we also conduct
the evaluation with x-vectors from seen languages.

For the bottleneck layer with θB, we use a residual network
consisting of Layer Normalization [Ba et al., 2016], down
projection, ReLU [Nair and Hinton, 2010], and up projection
with the residual connection, which is used in previous work
on language adaptation [Bapna et al., 2019].

3 Experimental Evaluations
3.1 Experimental Setting
Dataset
We carried out all the evaluations with publicly available
datasets. Table 1 shows the sizes of the data for each lan-
guage. For the unsupervised text pretraining described in
§ 2.1, we used transcripts from VoxPopuli [Wang et al.,
2021], M-AILABS [Munich Artificial Intelligence Labora-
tories GmbH, 2017], and CSS10 [Park and Mulc, 2019], re-
sulting in a total of about 2.8 GB of spoken text across 19
languages. We used CSS10 for the supervised learning de-
scribed in § 2.2, and we selected seven European languages
as the seen languages, with Spanish as the unseen language.
The paired data consisted of one speaker per language. It
should be noted that Spanish is not actually a low-resource
language, but we chose to use it for evaluation purposes in
order to 1) compare our zero-shot TTS methods with the ora-
cle methods using the paired data for the target language and
2) ensure a sufficient number of evaluators for the subjective
evaluation. We used 5 and 100 utterances as dev and test sets,
respectively, with the remaining data used for training.

Training Details
The sampling rate was set to 16 kHz. An 80-dimension
of mel filter bank, 1024 samples of FFT length, and 256
samples of frame shit were used for speech analysis. For
the pretraining described in § 2.1, we trained the model for
1.2M iterations using the Noam optimizer [Vaswani et al.,
2017] with the learning rate and warm-up step set to 1.0
and 10000, respectively. For the TTS model described in
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Languages Code Text-only data Paired data
Text Audio

Seen languages for evaluation Lseen

German de 359MB 0.73MB 16.13h
French fr 372MB 0.94MB 19.15h
Dutch nl 336MB 0.75MB 14.10h
Finnish fi 308MB 0.47MB 21.36h
Hungarian hu 104MB 0.51MB 10.53h
Russian ru 4.9MB 1.5MB 10.00h
Greek el 0.39MB 0.39MB 4.13h

Unseen language for evaluation Lunseen

Spanish es 345MB 0.0MB (1.2MB) 0.00h (23.81h)

Languages not included in CSS10

English en 338MB
Estonian et 87MB
Croatian hr 2.0MB
Italian it 334MB
Lithuanian lt 89MB
Polish pl 102MB
Romanian ro 67MB
Slovak sk 94MB
Slovenian sl 81MB

Table 1: Amount of text-only and paired data for each language.
Parentheses indicate amount of original data in CSS10.

§ 2.4, we used a 6-block Transformer encoder [Vaswani et
al., 2017] and a 6-block Transformer decoder, with a post-
net consisting of five convolutional layers with a kernel size
of five. The attention dimension and the number of atten-
tion heads were set to 512 and 8, respectively. For the bot-
tleneck layer described in § 2.4, we set the hidden dimen-
sion after the down projection to 256. The PredictionNet in
Eq. (4) consisted of a linear layer, a GELU activation func-
tion [Hendrycks and Gimpel, 2016], Layer Normalization,
and a linear layer with the hidden dimension of 512. We
also used guided attention loss [Tachibana et al., 2018] to
improve the training efficiency. For the supervised learn-
ing described in § 2.2, we trained the models for 2.47M it-
erations (200 epochs). The Noam optimizer was used with
the warm-up step of 50000. For the neural vocoder, we
trained HiFi-GAN [Kong et al., 2020] for 2M iterations
with LibriTTS [Zen et al., 2019], VCTK [Veaux et al.,
2017], and CSS10. For the x-vector described in § 2.4, we
used a model trained on VoxCeleb1 and VoxCeleb2 [Na-
grani et al., 2017] published in SpeechBrain [Ravanelli et
al., 2021]. We used ESPnet2-TTS [Watanabe et al., 2018;
Hayashi et al., 2021] for the implementation.

Baselines
We developed baseline models without the pretraining.

Seen language. Monolingual: We trained a model for each
language independently. Our preliminary study found that
Transformer TTS was unstable5 and could not synthesize in-
telligible speech in the monolingual condition due to the lack
of training data. Therefore, we used Tacotron2 [Shen et al.,
2018] only for the monolingual models, as in the original pa-
per of the dataset [Park and Mulc, 2019]. Multilingual w/o
LIDs: We trained a multilingual Transformer TTS model us-
ing the paired data shown in Table 1 without language IDs

5The original paper [Li et al., 2019b] also reports the instability.

(LIDs). Multilingual w/ LIDs: We trained a multilingual
Transformer TTS model with the paired data of the unseen
language. It also used the language IDs.

Unseen language. We compared Fully zero-shot TTS and
Text-seen zero-shot TTS defined in § 2.3. In Oracle, we used
the Monolingual and Multilingual w/ LIDs, which used the
paired data of the unseen language. In Fully zero-shot TTS,
we used Multilingual w/o LIDs to synthesize speech from text
tokens in the unseen language. This method corresponds to
the conventional multilingual TTS model using bytes [He et
al., 2021] or IPA symbols [Staib et al., 2020].

Evaluation Metrics
To objectively measure the synthetic speech quality, we used
mel cepstral distortion (MCD) [Fukada et al., 1992] with
the mel cepstrum dimension set to 25. We also evaluated
the intelligibility using CERs computed with a multilingual
ASR model [Radford et al., 2022]. We used a pretrained
large model that is publicly available6. To evaluate the nat-
uralness, we carried out listening tests to calculate five-scale
mean opinion scores (MOS) of synthesized speech for each
method. Forty native speakers were recruited through Ama-
zon Mechanical Turk [Paolacci et al., 2010] for each of the
tests. Furthermore, we leveraged a publicly available auto-
matic MOS (AMOS) prediction model [Saeki et al., 2022a]
to evaluate the naturalness. Note that the model was trained
on English and Chinese datasets, but previous work [Seki et
al., 2022] has reported that it also showed a correlation coef-
ficient higher than 0.8 for another language (Japanese).

3.2 Evaluation Results on Seen Languages
We evaluated our framework on the seen languages included
in the paired data, as defined in § 2.3. Table 2 lists the results
in MCD and CER. Lower values are better for both metrics.
As we can see, the byte-based or IPA-based models with the
proposed multilingual pretraining performed the best across
all languages and metrics. Among the baselines, byte-based
monolingual and multilingual models tended to have higher
MCD and CER than IPA-based models, and failed to synthe-
size intelligible speech in some languages. For example, the
baseline byte-based models showed the high CER values for
French, which has a deep orthography, meaning that a single
character has different pronunciations depending on the con-
text. We observed that our method improved the byte-based
models and they outperformed the IPA-based baseline models
for all the metrics and languages. It is worth noting that the
proposed byte-based models even outperformed the proposed
IPA-based models except for el and ru. These results suggest
that our framework is effective in building a TTS model for
languages without G2P modules.

3.3 Evaluation Results on Unseen Language
We evaluated our method on zero-shot TTS for the unseen
language defined in § 2.3. As described in § 2.4, we first
used the x-vector from the es speaker to compute the MCD.
Table 3 lists the results. The baseline models showed the
CERs of over 40% and MCDs of over 10.0. However, our

6https://github.com/openai/whisper
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Method de fr ru fi hu nl el
MCD CER MCD CER MCD CER MCD CER MCD CER MCD CER MCD CER

Natural - 2.75 - 4.52 - 2.12 - 4.73 - 4.86 - 6.22 - 7.14

Baseline (Monolingual)

Bytes monolingual 7.70 8.61 11.76 91.82 11.43 >100 8.33 56.03 10.22 93.05 7.49 15.33 10.20 85.98
IPA monolingual 7.38 4.07 8.96 17.86 11.89 25.30 7.23 27.62 7.59 24.62 7.80 19.20 8.16 21.79

Baseline (Multilingual)

Bytes multilingual w/o LIDs 7.68 37.46 8.71 41.35 9.38 45.92 6.26 29.19 6.48 33.82 8.46 46.33 7.64 36.24
Bytes multilingual w/ LIDs 6.51 13.19 10.84 55.79 12.89 >100 6.78 27.22 9.09 42.97 8.47 39.37 7.25 23.56
IPA multilingual w/o LIDs 6.31 10.64 7.44 20.86 8.10 35.32 5.53 19.56 5.59 14.03 7.76 34.49 6.90 19.33
IPA multilingual w/ LIDs 6.16 9.76 6.88 14.97 7.63 23.54 5.17 10.63 5.28 9.11 6.95 19.48 6.90 16.97

Proposed (Unsupervised text pretraining)

Bytes multilingual 5.65 3.79 6.48 7.15 7.38 10.62 4.99 5.28 5.01 6.05 6.52 13.74 6.57 11.75
IPA multilingual 5.88 5.52 6.61 7.72 7.25 15.85 5.18 8.62 5.30 7.37 7.00 14.42 6.53 11.06

Table 2: Evaluation results for seen languages. Bold indicates best scores in baseline and proposed methods.

Method
es

es x-vector fr x-vector
MCD CER CER

Natural - 2.71 2.71

Oracle

Bytes monolingual 8.65 10.70 -
IPA monolingual 8.47 5.28 -
IPA multilingual 6.20 5.32 6.99

Baseline (Fully zero-shot TTS)

Bytes multilingual 11.22 64.07 66.45
IPA multilingual 10.75 44.75 44.37

Proposed (Text-seen zero-shot TTS)

Bytes multilingual 9.05 18.27 13.74
IPA multilingual 9.44 11.69 13.33

Table 3: Evaluation results for unseen language.

proposed text preraining improved the metrics, resulting in
CERs of less than half for both byte and IPA-based methods.
Also, in contrast to the results for the seen languages, the
IPA-based model outperformed the byte-based one in terms
of CER. Compared with the oracle case with the paired data
of the unseen language, our proposed zero-shot TTS showed
higher MCD and CER but achieved only 1% difference in
CER compared to the oracle byte-based monolingual model.
These results demonstrate the effectiveness of our method in
achieving intelligible zero-shot TTS for the unseen language.

To investigate the case where the target speaker informa-
tion is completely unavailable, we also used the x-vector from
a seen language. We chose the fr speaker because es and fr
are both categorized as Western Romance in Glottolog [Ham-
marström et al., 2021]. Table 3 lists the results. Note that
this case does not have the MCD results, since a different
speaker than the ground-truth speech was used. We can see
that the unsupervised text pretraining also improved the zero-
shot performance when using the x-vector from the fr speaker.
In the proposed byte-based model, the cross-lingual x-vector
showed the lower CER. This might result from that the es
x-vector was not present in the training data whereas the fr
x-vector was present in the training data.

(a) Token embedding 𝑍 (b) Encoder inputs 𝐻!"

Figure 3: Visualization of token and language embedding. Pairs of
similar languages (es–fr and de–nl) are overlapping in token embed-
ding space, while output of bottleneck layer separates them.

3.4 Ablation Study
To further evaluate our method, we conducted several abla-
tion studies. Table 4 lists the results. Bytes multilingual rep-
resents the byte-based proposed method in the evaluation of
§ 3.2 and 3.3. Note that it used the frozen language-aware
embedding layer as formulated in Eq. (9). Some additional
studies of our method are also presented in the Appendix.

In W/o bottleneck layer, we excluded the bottleneck layer
and simply added the token and language embedding to ob-
tain the encoder input in Eq. (2). We found that removing
the bottleneck layer led to a performance drop in all the lan-
guages and metrics, with an average increase of 0.53 in MCD
and 4.16% in CER. The largest increase was observed in the
unseen language, with an increase of 1.21 in MCD. This sug-
gests that the bottleneck layer, which projects the token and
language embedding into the hidden input text representation
with nonlinear dimensionality reduction, is effective in im-
proving the generalization for zero-shot TTS.

We also evaluated the effect of including language IDs in
the proposed method by comparing it with a version that ex-
cluded language IDs, referred to as W/o language ID. It cor-
responds to a simple multilingual BERT pretraining [Wu and
Dredze, 2019] that uses only text tokens across different lan-
guages. We observed that the use of language IDs led to an
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Method
Seen Unseen Avg.de fr ru fi es

MCD CER MCD CER MCD CER MCD CER MCD CER MCD CER

Bytes multilingual 5.65 3.79 6.48 7.15 7.38 10.62 4.99 5.28 9.05 18.27 6.46 9.58
W/o bottleneck layer 6.06 5.01 7.15 9.09 7.71 28.52 5.33 6.47 10.26 24.01 6.99 13.74
W/o language ID 6.07 5.09 7.09 9.99 7.77 22.58 5.23 6.99 10.45 32.70 6.96 14.06
W/o initializing encoder 5.59 3.75 6.52 9.31 7.12 16.47 4.86 5.03 9.02 21.91 6.42 11.85
Updating language-aware embedding layer 6.05 6.22 6.75 6.93 7.46 11.42 5.16 8.00 9.48 17.21 6.75 10.62

Table 4: Ablation studies on training and model configurations. Bold indicates best metrics on average (Avg.).
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Figure 4: MOS and AMOS results for seen languages. Error bars in MOS results represent 95% confidence intervals.

Method de hu
MCD CER MCD CER

Natural - 2.75 - 2.12

Oracle

IPA monolingual 7.38 4.07 7.59 24.62
IPA multilingual 6.16 9.76 5.28 9.11

Baseline (Fully zero-shot TTS)

IPA multilingual 10.31 38.75 9.93 52.62

Proposed (Text-seen zero-shot TTS)

Bytes multilingual 10.00 28.01 9.40 50.11

Table 5: Analysis on different unseen languages.

average improvement of 0.5 MCD and 4.48% CER, indicat-
ing the effectiveness of our approach in using language IDs.

In W/o initializing encoder, we did not initialize the en-
coder θE before the supervised leaning described in § 2.2.
Instead, we only initialized the parameters θT, θL, and θB
with the parameters pretrained in § 2.1. Through this eval-
uation, we investigated whether the performance gain with
our method resulted from the initialization of the language-
aware embedding layer or the encoder. We observed that W/o
initializing encoder resulted in an improvement of 0.04 in
MCD and only a 2.27% increase in CER on average, sug-
gesting that our method benefits more from the pretraining of
the language-aware embedding layer than from the encoder.

In Updating language-aware embedding layer, we updated
the language-aware embedding layer during supervised learn-
ing, as formulated in Eq. (8). We observed that freezing the
language-aware embedding layer led to better performance
for most languages and metrics, resulting in an average dif-
ference of 0.29 in MCD and 1.04% in CER.

Natural
Oracle (IPA monolingual)
Oracle (IPA multilingual)
Baseline (IPA multilingual)
Proposed (Bytes multilingual)
Proposed (IPA multilingual)

es (MOS) es (AMOS)
1

1.5

2

2.5

3

3.5

4

4.5

0.556 0.444

es (AB test)

p-value: 0.011

Figure 5: MOS, AMOS, and AB test results for unseen language.
Error bars in MOS results represent 95% confidence intervals.

3.5 Dependency on Unseen Languages
We conducted evaluations on the zero-shot TTS for different
unseen languages. The eight European languages included in
the paired data are composed of Indo-European and Uralic
language families defined in Glottolog [Hammarström et al.,
2021]. In this evaluation, we selected de and hu from each
of the families. During supervised learning in § 2.2, we ex-
cluded the paired data for each of de and hu and instead in-
cluded the paired data for es. Table 5 lists the results. We
chose the IPA-based baseline method, which had shown bet-
ter results in § 3.3. We observed that the pretraining im-
proved the CER by around 10% and MCD by around 0.3 for
de. However, the improvement in CER for hu was limited
to 2%, while the MCD was improved by around 0.5. These
results suggest that the performance of our zero-shot TTS is
language dependent, as observed in previous work on cross-
lingual transfer for NLP tasks [Wu and Dredze, 2019].

Fig. 3 visualize the token embedding Z and encoder in-
puts Hin averaged on each utterance. We used a t-distributed
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stochastic neighbor embeddings (t-SNE) [van der Maaten and
Hinton, 2008]. We observed overlaps in the token embedding
for (es, fr) and (de, nl), which are classified as Western Ro-
mance and West Germanic in Glottolog, respectively. The
encoder inputs are separated in the embedding space for each
language. The results in Table 5 and the visualization sug-
gest that the cross-lingual transfer works better when simi-
lar languages sharing the token embedding space are present
during supervised learning. However, for languages with dis-
tinct token and language embeddings, the cross-lingual trans-
ferability might be limited. We leave the further analysis on
language dependencies as a topic for future research.

3.6 Subjective Evaluations on Naturalness
We conducted evaluations on naturalness as described in
§ 3.1. Fig. 4 shows the results for seen languages. Note
that we conducted the listening tests for de and fr. For each
language, either of the proposed methods showed the high-
est MOS, while we did not observe any significant differ-
ence between the proposed methods and the best baseline
method, which was the IPA-based multilingual model with
LIDs. To further validate our results, we also evaluated the
naturalness with an AMOS prediction model, as shown in
Fig. 4. We observed that the either of the proposed meth-
ods showed the highest scores in all the languages. On aver-
age, the byte-based and IPA-based proposed models showed
2.89 and 2.84, respectively, while the best baseline method
obtained 2.837. Additionally, we observed that the byte-based
proposed model often scored higher than the IPA-based pro-
posed models, which is consistent with the results in Table 2.

Fig. 5 shows the results for unseen languages. The ora-
cle methods had the highest MOS of 3.76 and 3.96, and the
baseline zero-shot method had the lowest MOS of 3.29. The
proposed methods outperformed the baseline method, and the
byte- and IPA-based models had the MOS of 3.44 and 3.32,
respectively. The AMOS results were consistent with the lis-
tening test results, with the proposed zero-shot TTS methods
outperforming the baseline method. In this evaluation, the
proposed byte-based model scored 3.21 on the AMOS, while
the oracle IPA-based model scored 3.20. To further validate
the results, we conducted a preference AB test on naturalness
with 25 rators. As shown in Fig. 5, our byte-based model
significantly outperformed the baseline IPA-based model.

4 Related Work
Multilingual TTS. While previous work on multilingual
TTS has primarily focused on resource-rich languages [Zen
et al., 2012; Li and Zen, 2016], there is growing interest
in developing TTS models on low-resource languages. Sev-
eral studies have explored the input tokens shared across lan-
guages such as bytes [Li et al., 2019a; He et al., 2021], IPA
symbols [Gutkin, 2017], and articulatory features [Lux and
Vu, 2022], to transfer knowledge from resource-rich to low-
resource languages. Grapheme tokens can eliminate the per-

7The AMOS tended to be lower than the MOS. While the MOS
prediction model has a high correlation, it may produce errors in
predicting absolute values, as reported in previous work [Saeki et al.,
2022a]. The relative relationships are more reliable in the AMOS.

language G2P knowledge, and previous work has built a byte-
based TTS model for around 40 languages [He et al., 2021].
There has been work using the phonological features derived
from IPA to achieve the zero-shot TTS [Staib et al., 2020].
Our framework achieves the zero-shot cross-lingual transfer
with bytes by leveraging multilingual text pretraining. There
have been studies on using untranscribed speech data for low-
resource scenarios by leveraging VQ-VAE [Zhang and Lin,
2020] or an ASR model [Ren et al., 2019; Ni et al., 2022].
Other work [Saeki et al., 2022b] has trained a massively
multilingual TTS using paired TTS, paired ASR, unpaired
speech, and unpaired text data. While it also performs text-
only training as in our work, it still uses the paired speech-text
data of the target languages. Our framework is simple and
scalable, while pioneering a novel paradigm with the zero-
shot TTS approach that relies only on text data.
Cross-lingual representation learning for NLP. There
have been studies on learning cross-lingual representations
that can be applied to various NLP tasks in different lan-
guages [Gouws et al., 2015; Ruder et al., 2019]. Recent
work has highlighted the strong cross-lingual transferability
of multilingual BERT [Devlin et al., 2019], which has been
observed to perform surprisingly well when transferred to
other languages [Wu and Dredze, 2019; Conneau and Lam-
ple, 2019]. Building on this, our work leverages multilingual
MLM pretraining for TTS, which improves byte-based TTS
models without G2P knowledge and achieves zero-shot TTS.
Language model pretraining for TTS. Previous research
has explored self-supervised text pretraining techniques for
TTS. BERT models have been used to extract contextual
embeddings and enhance the prosody of TTS [Hayashi et
al., 2019; Xu et al., 2021]. Other studies have used
phonemes jointly with graphemes [Jia et al., 2021] or sub-
phonemes [Zhang et al., 2022] as the inputs of the MLM pre-
training. Our work proposes multilingual MLM pretraining
for TTS using text tokens shared across languages, rather than
focusing on monolingual pretraining.

5 Conclusions
We presented a multilingual TTS framework that leverages
unsupervised text pretraining. Our framework achieved
highly intelligible zero-shot TTS for an unseen language, re-
sulting in a CER of less than 12%. It also improved the
TTS for seen languages, with byte-based models without G2P
modules outperforming the IPA-based baselines. Our abla-
tion studies provided additional insights, including the effec-
tiveness of the frozen language embedding layer.
Limitations and future work. Our proposed framework
has limitations. The performance gap remains between the
oracle models and our zero-shot TTS models in terms of in-
telligibility, speech quality, and naturalness, as seen in the
evaluation in § 3.3 and § 3.6. Further studies are needed to
improve our zero-shot TTS. Our framework also has a limi-
tation with language dependency, as the results in § 3.5 sug-
gest that this dependency is caused by the presence of similar
languages during supervised learning. Our future work will
focus on studying this language dependency further and de-
veloping a method that performs better for various languages.
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