
K∗ Search over Orbit Space for Top-k Planning

Michael Katz , Junkyu Lee
IBM T.J. Watson Research Center, Yorktown Heights, USA

{michael.katz1, junkyu.lee}@ibm.com

Abstract
Top-k planning, the task of finding k top-cost plans,
is a key formalism for many planning applications
and K∗ search is a well-established approach to
top-k planning. The algorithm iteratively runs A∗
search and Eppstein’s algorithm until a sufficient
number of plans is found. The performance of K∗
algorithm is therefore inherently limited by the per-
formance of A∗, and in order to improve K∗ per-
formance, that of A∗ must be improved. In cost-
optimal planning, orbit space search improves A∗
performance by exploiting symmetry pruning, es-
sentially performing A∗ in the orbit space instead
of state space. In this work, we take a similar
approach to top-k planning. We show theoreti-
cal equivalence between the goal paths in the state
space and in the orbit space, allowing to perform
K∗ search in the orbit space instead, reconstructing
plans from the found paths in the orbit space. We
prove that our algorithm is sound and complete for
top-k planning and empirically show it to achieve
state-of-the-art performance, overtaking all exist-
ing to date top-k planners. The code is available
at https://github.com/IBM/kstar.

1 Introduction
Top-k planning is essential to many planning applications, in-
cluding malware detection [Boddy et al., 2005], hypothesis
generation [Sohrabi et al., 2016], scenario planning [Sohrabi
et al., 2018], and machine learning pipeline generation [Katz
et al., 2020]. There are currently three main approaches to
top-k planning. The last one chronologically is based on a
so-called symbolic search [Speck et al., 2020]. Another ap-
proach to top-k planning is called Forbid Iterative (FI). It is
based on iteratively reformulating the input task, excluding
the previously found plans from the task plans space [Katz
et al., 2018b]. The third approach is based on a K∗ search
[Aljazzar and Leue, 2011]. In planning, it was first imple-
mented within a planner for an SPPL language [Riabov and
Liu, 2006], with some simplifications [Riabov et al., 2014].
Later, a similar variant was implemented within a PDDL
planner [Katz et al., 2018b], and most recently the original
variant of Aljazzar and Leue [2011] was implemented on top

of a PDDL planner [Lee et al., 2023]. That last variant signif-
icantly improves the performance of K∗ search, compared to
the previous one and for the first time allows for using incon-
sistent heuristics. It works in two interchanging phases, A∗
search and Eppstein’s k shortest paths algorithm [Eppstein,
1998] on the developed search space. Thus, the performance
of K∗ algorithm is inherently limited by that of A∗ and in
order to improve K∗ performance, one must improve A∗.

In cost-optimal planning, the issue of A∗ performance
was tackled, among other, by using search space prun-
ing techniques. Two main such techniques are partial or-
der reduction [Wehrle and Helmert, 2012] and symmetry
based search pruning [Pochter et al., 2011; Domshlak et al.,
2012b]. For the latter, two search algorithms were suggested,
DKS [Domshlak et al., 2012b] and orbit space search (OSS)
[Domshlak et al., 2015]. While DKS performs the search in
problem state space, pruning states that deem symmetric to
the previously encountered ones, OSS is essentially perform-
ing A∗ search in a so-called orbit space instead of the state
space. In the orbit space, nodes correspond to equivalence
classes of states, with the equivalence relation based on de-
tecting states as symmetric. In both algorithms, the symmetry
detection is done via so-called canonical states. While there
is no clear dominance of one of the methods over the other,
DKS requires storing two states per search node, the actual
state and the canonical one. OSS, on the other hand, requires
only storing the canonical state. Thus, in principle, it should
have a smaller memory consumption.

In this work, we take a similar approach to top-k plan-
ning. First, as K∗ requires transforming the input planning
task into a task with a single goal state, we propose a trans-
formation into a planning task with a single goal state that
preserve the symmetries of the input task. Next, focusing on
the orbit space search, we establish the theoretical grounds
for performing K∗ search in the orbit space. We do that by
showing the equivalence between the goal paths in the state
space and the orbit space. These goal paths in the orbit space
can then be cast into actual plans. We then prove that our
suggested algorithm is sound and complete for top-k plan-
ning. Last, we perform an extensive empirical evaluation of
the proposed algorithm with a variety of admissible heuris-
tics, both consistent and inconsistent, and comparing to all
existing top-k planners. Our evaluation shows the new ap-
proach to be competitive with the current state-of-the-art.
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2 Background
This section introduces necessary concepts in top-k planning,
K∗ search algorithm for top-k planning, and OSS for cost op-
timal planning.

2.1 Top-k Classical Planning
A planning task Π = 〈V ,O, s0, s?〉 in SAS+ formalism
[Bäckström and Nebel, 1995] consists of a finite set of finite-
domain state variables V , a finite set of actions O, an initial
state s0, and the goal s?. Each variable v ∈ V is associated
with a finite domain dom(v) of values. An assignment of a
value d ∈ dom(v) to a variable v ∈ V denoted by a pair 〈v, d〉
is called fact, and the set of all facts is denoted byF . A partial
assignment p maps a subset of variables vars(p) ⊆ V to val-
ues in their domains. For a variable v ∈ V and partial assign-
ment p, the value of v in p is denoted by p[v] if v ∈ vars(p)
and we say p[v] is undefined otherwise. A full assignment s
is called a state, and the set of all states is denoted by S . State
s is consistent with a partial assignment p if they agree on all
variables in vars(p), denoted by p ⊆ s. Each action o in O
is a pair 〈pre(o), eff (o)〉, where pre(o) and eff (o) are partial
assignments called precondition and effect. Further, o has an
associated non-negative cost denoted by cost(o) ∈ R0+. An
action o is applicable in state s if pre(o) ⊆ s. Applying o in s
results in a state denoted by sJoK, where sJoK[v] = eff (o)[v]
for all v ∈ vars(eff ) and sJoK[v] = s[v] for all other vari-
ables. An action sequence π = 〈o1, . . . , on〉 is applicable in
state s if there are states 〈s0, . . . , sn〉 such that oi is applica-
ble in si−1 and si−1JoiK = si for 0 ≤ i ≤ n. We denote
sn by sJπK. An action sequence with s? ⊆ s0JπK is called a
plan. The cost of a plan π, denoted by cost(π) is the summed
cost of the actions in the plan. The set of all plans is denoted
by PΠ, and an optimal plan is a plan in PΠ with the lowest
cost.

Example 1 (Gripper Task). We will use a famous gripper task
introduced by Jana Koehler as a running example through-
out the paper. There is a robot R with two grippers l and r,
and each can carry a ball. The goal is to move four balls,
b1, b2, b3, b4, from room A to room B.

• A state can be represented by seven SAS+variables: one
variable R with dom(R) = {A,B} for encoding the lo-
cation of the robot, four variables, {bi|i ∈ [1..4]} with
dom(bi) = {A,B,R} for encoding the location of the
four balls, and two variables, l and r for grippers with
domain {E, b1, b2, b3, b4} for encoding the object a grip-
per holds, where E represents holding nothing.

• For brevity, we denote a state with five letters, compris-
ing the location of the robot and four balls. Namely,
ARLBB stands for a state with facts: 〈R,A〉, 〈b1, r〉,
〈b2, l〉, 〈b3,B〉, 〈b4,B〉, 〈l, b2〉, and 〈r, b1〉.

• Actions are pick, drop, and move for manipulating the
balls and moving between rooms, abbreviated as fol-
lows. P1LA denotes a pick action taking b1 with the left
gripper in room A, D2RB denotes a drop action drop-
ping b2 from the right gripper in room B, MAB denotes
a move action moving from room A to B, etc.

Next, we present the top-k planning problem, as defined by
Sohrabi et al.; Katz et al. [2016; 2018b].
Definition 1 (top-k planning problem). Given a classical
planning task Π and a natural number k, top-k planning
problem is finding a set of plans P ⊆ PΠ satisfying the fol-
lowing properties.

1. For all plans π ∈ P , if there exists a plan π′ ∈ PΠ such
that C(π′) < C(π), then π′ ∈ P ,

2. |P | ≤ k, and if |P | < k, then P = PΠ.
We say a top-k planning problem 〈Π, k〉 is solvable if
|P | = k and unsolvable if |P | < k. Note that cost-optimal
planning is a special case of top-k planning for k = 1.

2.2 K∗ Search for Top-k Planning
Given a top-k planning problem 〈Π, k〉, K∗ applies Epp-
stein’s algorithm (EA) to the search graph revealed by A∗
until the task is solved or proven to be unsolvable. In this
section, we only review necessary concepts and refer to Al-
jazzar and Leue [2011] and Eppstein [1998] for details.

Single Goal State Reformulation of Planning Tasks
The fact that any state consistent to s? is a goal state in a
planning task Π = 〈V ,O, s0, s?〉 calls for a single goal state
reformulation sinceK∗ assumes a single terminal node in the
search graph. Katz et al. [2018b] showed such a reformulated
task Πg = 〈Vg,Og, sg0, s

g
?〉, where Vg = V ∪ {vg} with a

binary indicator variable vg for reaching a goal state, Og =
{〈pre(o) ∪ 〈vg, 0〉, eff (o)〉|o ∈ O} ∪ {og} with a zero cost
goal-achieving action og such that pre(og) = s? ∪ {〈vg, 0〉}
and eff (og) = {〈vi, t[vi]〉|vi ∈ vars(t)} ∪ {〈vg, 1〉} for an
arbitrary full state t, sg0 = s0 ∪ {〈vg, 0〉}, and sg? = eff (og).

Implicit Path Representation of Eppstein’s Algorithm
A∗ explores a state transition graph TΠ=〈S, E〉 comprised of
nodes associated with states S and edges E , induced by oper-
ators O, namely, {〈s, sJoK; o〉|pre(o) ∈ s ∀s ∈ S, ∀o ∈ O}.
Denoting by GA∗ an explicit search graph revealed by A∗,
EA uses an implicit path representation relative to the short-
est path tree TA∗ using a sequence of “side-tracked” edges
(STE), the edges of GA∗ that are not in TA∗ . For each STE
(u, v), we can compute the deviation cost δ(u, v) against the
cost of the incoming edge toward v in TA∗ by δ(u, v) =
g(u) +cost(o)− g(v) iff v= uJoK. We denote an arbitrary
goal reaching path from sg0 in GA∗ by ρA∗(s

g
0, s

g
?), and the

unique path from u to v in TA∗ by ρ∗A∗(u, v) if it exists. Then,
any ρA∗(s

g
0, s

g
?) can be uniquely represented by an ordered

sequence of STEs, denoted by SIDETRACKS(ρA∗(s
g
0, s

g
?)) =

〈(u1, v1), . . . , (uq, vq)
〉
, where an STE closer to sg? appears

earlier in the sequence. Namely, ρA∗(s
g
0, s

g
?) can be recon-

structed from SIDETRACKS(ρA∗(s
g
0, s

g
?)) by

ρA∗(s
g
0, s

g
?) = ρ∗A∗(s

g
0, uq) ◦ [◦2i=q{(ui, vi) ◦ ρ∗A∗(vi, ui−1)}]

◦ (u1, v1) ◦ ρ∗A∗(v1, s
g
?),

where ◦ concatenates edges and paths from left to right.
EA performs Dijkstra’s algorithm over its own search

graph, called path graph P (GA∗) in which each node repre-
sents SIDETRACKS(ρA∗(s

g
0, s

g
?)) with the total deviation cost∑q

i=1 δ(ui, vi). Therefore, k-shortest paths are found in the
order of their costs.
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2.3 Orbit Space Search for Cost Optimal Planning
Symmetry breaking techniques [Pochter et al., 2011; Domsh-
lak et al., 2012b; Shleyfman et al., 2015] significantly im-
proved heuristic forward state space search for cost optimal
classical planning. Given a planning task Π, and its state
transition graph TΠ, a graph automorphism in the automor-
phism group of TΠ, denoted by Aut(TΠ), permutes states
while preserving the adjacency between states. Any subgroup
of Aut(TΠ) partitions the state space by orbits, which offers
opportunity for pruning the search space. In this section, we
introduce necessary concepts in OSS.

2.4 Structural Symmetries and Canonical States
Since state transition graphs are implicit, we find graph au-
tomorphisms from the syntactic structure of planning tasks,
called structural symmetries [Shleyfman et al., 2015], and
follow the definition shown in Sievers et al. [2017].

Definition 2 (Structural Symmetry). Given a planning task
Π = 〈V ,O, s0, s?〉, a structural symmetry is a permutation
σ : V ∪ F ∪ O → V ∪ F ∪ O with the following properties.

1. σ(V) = V and σ(F )=F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′=σ(v),

2. σ(O)=O such that for o∈O, σ(pre(o)) = pre(σ(o)),
σ(eff (o))=eff (σ(o)), and cost(σ(o))=cost(o),

3. σ(s?)=s?,

where σ({x1, . . . , xn}) :={σ(x1), . . . , σ(xn)}.
Note that the third property ensures that a structural sym-

metry σ stabilizes the goal. In practice, a set of structural
symmetries can be detected by using tools for finding auto-
morphisms of colored digraphs, such as Bliss [Junttila and
Kaski, 2007]. These structural symmetries are the generators
of the symmetry group Γ, a subgoup of Aut(TΠ).

Given two states s and t, it is crucial to quickly check
whether s and t are symmetric or not for speeding up search.
Unfortunately, finding σ ∈ Γ for s = σ(t) is PSPACE-hard
[Shleyfman and Jonsson, 2021]. Instead of finding such σ,
Pochter et al. [2011] proposed to use canonical form [Emer-
son and Sistla, 1996], which we call canonical states.

Definition 3 (Canonical States). Given a planning task Π =
〈V ,O, s0, s?〉 over the states S , and a group Γ of structural
symmetries for Π, canonical state CΓ(s) of s ∈ S is a state
generated by a mapping CΓ : S → S such that for all s, t ∈
S , CΓ(s) = CΓ(t) iff there exists σ ∈ Γ such that s = σ(t).

The common choice ofCΓ implements a greedy search that
outputs local lexicographically minimum states since finding
the global minimum is NP-hard [Luks, 1993]. Nevertheless,
missing to match structurally symmetric states only skips
pruning symmetric states and it doesn’t forfeit the soundness
and completeness of search [Domshlak et al., 2012a].

Example 2 (Sturctural Symmetries in Gripper Task). Using
the tools mentioned above, we can find a structural symme-
tries group with four generators as follows. Each of these
structural symmetries is of order 2, meaning if σ(x) = y then
also σ(y) = x must hold, so for brevity we describe only one
of these. For unmentioned elements x, we have σ(x) = x.

ALAAA

ALRAA

BLRAA

BLBAA

BBBAA

ABBAA

ABBLA

ARBBL

BBBRL

BBBRB

BBBBB

ABBRA

ABBRL

AAAAA

ARAAA

ARLAA

BRLAA

BRBAA

BBBAA

ABBAA

ARBBA

ARLBB

BRLBB

BRBBB

BBBBB

P1AL = Pick B1 roomA left
ARLBB = Robot in roomA,

holding B1 right,
holding B2 left,
B3, B4 in roomB

P1AL

P2AL

MAB

D2BL

D1BR

MBA

P3AL

P4AL

MAB

D2BL

D1BR

σ1

σ1

σ1

σ1

σ1

σ1

σ1 σ2

σ3σ1 ◦ σ2

σ1 ◦ σ2 ◦ σ3

σ1 ◦ σ2 ◦ σ3

σ1 ◦ σ2 ◦ σ3

P2AR

MAB

D2BR

D1BL

MBA

P3AR

P4AL

MAB

D4BL

D3BR

σ-1
1

σ-1
1

σ-1
1

σ-1
1

σ-1
1

σ-1
1

σ-1
2 ◦ σ

-1
1

σ-1
3 ◦ σ

-1
2 ◦ σ

-1
1

σ-1
3 ◦ σ

-1
2 ◦ σ

-1
1

σ-1
3 ◦ σ

-1
2 ◦ σ

-1
1

Figure 1: Gripper example: TRACE-FORWARD algorithm.

1. Permuting the left gripper l and the right gripper r:
σlr(l) = r, ∀d ∈ dom(l), σlr(〈l, d〉) = 〈r, d〉,
∀X ∈ {1..4}, ∀Y ∈ {A,B}, σlr(PXYL) = PXYR,
∀X∈{1..4}, ∀Y∈{A,B}, σlr(DXYL) = DXYR,

2. permuting balls b1 and b2: σ12(b1)=b2, ∀d∈dom(b1),
σ12(〈b1, d〉) = 〈b2, d〉, ∀v∈{l, r}, σ12(〈v, b1〉) = 〈v, b2〉,
∀X ∈ {A,B}, ∀Y ∈ {L,R}, σ12(P1XY) = P2XY,
∀X ∈ {A,B}, ∀Y ∈ {L,R}, σ12(D1XY) = D2XY,

3. σ23, permuting balls b2 and b3, similarly to the above,
4. σ34, permuting balls b3 and b4, similarly to the above.

Orbit Space Search
Unlike A∗, which must expand all the symmetric states, OSS
prunes them and explores a compact canonical state transition
graph defined as follows.
Definition 4 (Canonical State Transition Graph). Given a
planning task Π and its state transition graph TΠ(S, E) over
states S with labeled state transitions E induced by appli-
cable operators in O, we define a canonical state transition
graph T ′Π(S ′, E ′) relative to a structural symmetry group Γ
such that:

1. S ′ = {σ(s)|s ∈ S, CΓ(s) = σ(s)},
2. E ′={〈σi(si), σjσi(sj);σi(o)〉|〈si, sj ; o〉 ∈ E , CΓ(si) =
σi(si), CΓ(sj) = σj(sj)},

where σi ∈ Γ maps state si to its canonical state CΓ(si), and
the transition labels are induced by operators applicable in
canonical states.

OSS explores T ′Π(S ′, E ′) by A∗ and traverses an explicit
search graph GOSS, which replaces any generated state s with
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its canonical state CΓ(s). Denoting by ρOSS(u, v) a path from
u to v in GOSS, and by ρ∗OSS(s

′
0, s
′
n) a goal reaching path from

s′0 = CΓ(s0) to a goal state s′n ∈ Ss? , we call a path ρOSS

in GOSS surrogate path, and a sequence of operator labels
in T ′Π surrogate plan, denoted by π′. OSSterminates search
when it reaches a goal state t ∈ Ss? since Γ stabilizes the
goal. The final step is tracing back the optimal surrogate path
ρ∗OSS(CΓ(s0), t) in the search tree TOSS to obtain a surrogate
plan π′, and tracing forward surrogate path to decode an op-
timal plan π from π′. We illustrate the final decoding step for
the gripper task in Figure 1.
Example 3 (TRACE-FORWARD in Gripper Task). A plan,
corresponding to a black trace from the initial state, is ex-
tracted from a surrogate plan, which corresponds to a blue
trace in Figure 1. These red nodes represent canonical states,
while black nodes are the actual states obtained by apply-
ing the actions, when different from the canonical. Structural
symmetries σ1, σ2, and σ3 are obtained from the canonical
mappings and are used to map actions on the trace into an
applicable sequence of actions that is a plan.

3 Orbit Space K∗ Search
In this section, we present the orbit space K∗ search algo-
rithm (OK∗) for top-k planning, which alternates OSS and
EA. We start by presenting a symmetry preserving single-
goal state reformulation since the earlier reformulation breaks
structural symmetries. Then, we show the equivalence be-
tween plans of given planing task Π and surrogate plans re-
constructed in EA, which is the basis for the soundness and
completeness of OK∗ search algorithm for top-k planning.
We conclude this section by highlighting the difference be-
tween K∗ and OK∗ search algorithms.

3.1 Symmetry and Single Goal State
Reformulation

Some structural symmetries for the input planning task Π
can disappear in a single goal state reformulated task Πg .
Consider a reformulated gripper task following Katz et al.
[2018b], where its single goal state sg? inherits facts in an ar-
bitrary full state in Π. It is trivial to check a structural sym-
metry permuting ball b1 and b2 shown in Example 2 fails to
stabilize sg? if {〈b1,A〉, 〈b2,B〉} ⊆ sg?. In order to preserve
the structural symmetries of Π, we propose a new single goal
state reformulation.
Proposition 1. A single goal state planning task Πg =
〈Vg,Og, sg0, s

g
?〉 can be obtained from a planning task Π =

〈V ,O, s0, s?〉 as follows.

• Vg = {v | v ∈ V} ∪ {vg}, where dom(v) = dom(v) ∪
{U} and dom(vg) = {I,U},

• sg0 = s0 ∪ {〈vg, I〉},
• sg? = {〈vg,U〉} ∪ {〈v,U〉 | v ∈ V},
• Og={〈pre(o)∪{〈vg, I〉}, eff (o)〉|o ∈ O}∪{og}, where

pre(og)=s? ∪ {〈vg, I〉}, eff (og)=s
g
?, and cost(og) = 0.

The cost of existing actions remains the same.

Note that the additional goal-achieving zero-cost action og
can be applied only once when the original goal was achieved.

No action is applicable in the new goal state, and therefore
there is one-to-one correspondence between the plans of Π
and those of Πg .

Theorem 1. Given a planning task Π = 〈V ,O, s0, s?〉 and
the reformulated task Πg = 〈Vg,Og, sg0, s

g
?〉 shown in Propo-

sition 1, there exists a bijective mapping between structural
symmetries of Π and of Πg .

Proof. A structural symmetry σg of Πg stabilizes sg? by def-
inition, and it also stabilizes og since eff (og) = sg?. Thus,
〈vg, I〉 in pre(og) is mapped to itself, and so is the fact
〈vg,U〉. σg restricted to V , F , andO is a structural symmetry
of Π. In the other direction, let σ be a structural symmetry of
Π. We extend σ to σg of Vg , F g , and Og as follows. The
variable vg and its facts 〈vg, I〉 and 〈vg,U〉, as well as the
action og are mapped to themselves. Each extra fact 〈v,U〉
for the variable v other than vg is mapped to 〈σ(v),U〉. It is
trivial to see that σg satisfies all properties of the structural
symmetries in Definition 2.

3.2 Plans in State Space and Orbit Space
OSS has shown its practical merit for cost-optimal planning
[Alkhazraji et al., 2014; Sievers and Katz, 2018; Katz et al.,
2018a]. The computation gain compared to A∗ stems from
the fact that OSS explores a significantly smaller search space
when symmetries are detected. In cost-optimal planning, or
top-k planning with k=1, it is sufficient for only one optimal
plan to be preserved while pruning symmetric states. For top-
k planning in general, however, all plans need to be preserved
while pruning symmetric states.

Proposition 2. Given a planning task Π = 〈V ,O, s0, s?〉, let
P denote the set of all plans in the state transition graph TΠ,
and P ′ denote the set of all surrogate plans in the canonical
state transition graph T ′Π relative to a structural symmetry
group Γ of the planning task Π. Then, there exists a bijective
mapping between plans in P and surrogate plans in P ′.

Proof. We define a bijective mapping Φ between plan traces
(state action sequences) in TΠ and in T ′Π, from which the de-
sired mapping can be straightforwardly extracted. Given a
plan π=〈o1, . . . , on〉 in P that traverses a sequence of states
〈s0, s1, . . . , sn〉 over the state transition graph TΠ, let us con-
sider a sequence φ=〈s0, o1, s1, . . . , on, sn〉, and a mapping Φ
that maps φ to φ′ = 〈s′0, o′1, s′1, . . . , o′n, s′n〉 as follows.

• s′0 = CΓ(s0) and σ0 is such that σ0(s0) = CΓ(s0),

• o′1 = σ0(o1),

• s′i = CΓ(s′i−1Jo′iK) and σi is such that σi(s′i−1Jo′iK) =
CΓ(s′i−1Jo′iK), and

• o′i+1 = σ0:i(oi+1), where σ0:i := σi ◦ σi−1 ◦ · · · ◦ σ0.

Given that, we can also derive that s′i = σ0:i(si). Figure 2 de-
picts the mapping described above. The plan π and its corre-
sponding sequence φ on the left is mapped to the sequence φ′
of red states and blue action edges, which corresponds to the
surrogate plan 〈o′1, . . . , o′n〉. To see that φ′ corresponds to a
surrogate plan, observe that (i) each state σ0:i(si) is a canon-
ical state, (ii) the action σ0:i(oi+1) is applicable in σ0:i(si)
since oi+1 is applicable in si, and (iii) applying σ0:i(oi+1)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5371



s0
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Figure 2: The visualization of the mapping between the plan π = o1 . . . on and a surrogate plan.

in σ0:i(si) results in a state σ0:i(siJoi+1K) = σ0:i(si+1),
whose canonical state is σ0:i+1(si+1). Finally, since sn is
a goal state, so is s′n = σ0:n(sn). We show now that
Φ is injective. For sequences φ1 = 〈s1

0, o
1
1, s

1
1, . . . , o

1
n, s

1
n〉

and φ2 = 〈s2
0, o

2
1, s

2
1, . . . , o

2
n, s

2
n〉 with s1

0 = s2
0 = s0, if

Φ(φ1) = Φ(φ2), then we show by induction that the two se-
quences must be equivalent. Note that Φ(φ1) can be written
as 〈σ1

0(s0), σ1
0(o1

1), σ1
0:1(s1

1), . . . , σ1
0:n−1(o1

n), σ1
0:n(sn)〉, and

Φ(φ2) in a similar way. Base: s1
0 = s2

0 = s0 and σ1
0(s0) =

σ2
0(s0) = CΓ(s0). Therefore σ1

0 = σ2
0 . Step: if s1

i = s2
i

and σ1
i = σ2

i for i ≤ m, we show that o1
m+1 = o2

m+1 and
s1
m+1 = s2

m+1. From the equivalence of Φ(φ1) and Φ(φ2),
we have σ1

0:m(o1
m+1) = σ2

0:m(o2
m+1). Since σ1

0:m = σ2
0:m,

we must have o1
m+1 = o2

m+1. Since φ1 and φ2 correspond to
plans, we have s1

m+1 = s1
mJo1

m+1K and s2
m+1 = s2

mJo2
m+1K,

giving us s1
m+1 = s2

m+1.
We conclude by showing that Φ is surjective. For a surro-

gate plan π′ = 〈o′1, . . . , o′m〉 and its corresponding sequence
φ′ = 〈s′0, o′1, s′1, . . . , o′n, s′n〉, we have s′0 = CΓ(s0) and s′i =
CΓ(s′i−1Jo′iK). Let σ0 be such that σ0(s0) = s′0 = CΓ(s0)
and for 1 ≤ i ≤ n, let σi be such that σi(s′i−1Jo′iK) = s′i. Let
oi = σ−1

0:i−1(o′i) be the actions that are obtained by applying
the inverse of the structural symmetry σ0:i−1 to o′i. We show
that π = 〈o1, . . . , on〉 is a plan and for its corresponding se-
quence φ we have Φ(φ) = φ′. Let si = σ−1

0:i (s′i). First, ob-
serve that s0 = σ−1

0 (s′0). We need to show that (i) oi is appli-
cable in si−1 and (ii) applying oi in si−1 results in si. For (i)
we know that o′i is applicable in s′i−1 and for any σ ∈ Γ, σ(o′i)

is applicable in σ(s′i−1), and in particular for σ−1
0:i−1. For (ii),

s′i = σi(s
′
i−1Jo′iK) and therefore σ−1

i (s′i) = s′i−1Jo′iK. Now,
si−1JoiK = σ−1

0:i−1(s′i−1)Jσ−1
0:i−1(o′i)K = σ−1

0:i−1(s′i−1Jo′iK) =

σ−1
0:i−1(σ−1

i (s′i)) = σ−1
0:i (s′i) = si.

3.3 Implicit Path Representation in Orbit Space
Given a single goal state reformulated planning task Πg =
〈Vg,Og, sg0, s

g
?〉, EA in K∗ builds path graph P (GA∗) from

an explicit search graph GA∗ of A∗ by exploring TΠg (S, E).
When EA traverses a path graph P (GOSS) derived from an
explicit search graph GOSS of OSS, the implicit path represen-

Algorithm 1 OK∗ Search

Require: Reformulated planning task Πg , k
Ensure: Top-k solution

1: Initialize OSS search
2: P ← ∅
3: while True do
4: while ¬

(
OPENOSS= ∅ ∨ SWITCH-TO-EA( )

)
do

5: Expand an OSS node
6: PREPAREEA()
7: while ¬

(
OPENEA= ∅ ∨ SWITCH-TO-OSS( )

)
do

8: Expand an EA node n
9: Reconstruct surrogate plan π′ from n

10: P ← P ∪ { TRACE-FORWARD(π′)}
11: if |P | = k then return P
12: if OPENOSS= ∅ ∧ OPENEA= ∅ then return P

tation of EA is defined relative to the canonical state transi-
tion graph T ′Πg (S ′, E ′). Nevertheless, for any goal reaching
surrogate path ρOSS(CΓ(sg0), sg?), the implicit path representa-
tion SIDETRACKS(ρOSS(CΓ(sg0), sg?)) still holds becauseGOSS

is merely another digraph. Therefore, any path graph node
generated by EA in orbit space can be safely reconstructed
to a surrogate path, which in turn, decoded back to a plan in
the state space as shown in Proposition 2.

3.4 Orbit Space K∗ Search Algorithm
Algorithm 1 showsOK∗ search algorithm for top-k planning,
which takes a single goal state reformulated task Πg and k as
input. Initialization steps for OSS detects structural symme-
tries of Πg and creates necessary data structure to explore
the canonical state transition graph T ′Πg (line 1). After ini-
tializing P to store found plans (line 2), OK∗ alternates OSS
(line 4–5) and EA (line 7–11). OSS explores T ′Πg until it ex-
hausts the search space or SWITCH-TO-EA() triggers to stop
expanding nodes in OSS. The latter happens when either the
lowest f value in the OSS queue is no smaller than the one in
the EA queue, or a pre-defined threshold on the number of
expanded nodes since previous switch is reached. Before ini-
tiating EA, PREPAREEA() builds necessary data structures
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LMcut M&S CEGAR iPDB BLIND

SymK FI K∗ OK∗ (+)K∗ K∗ OK∗ K∗ OK∗ K∗ OK∗ K∗ OK∗

SymK 0 36 27 20 33 34 28 36 31 30 25 46 37
FI 20 0 19 6 29 30 23 27 20 21 14 31 26

LMcut K∗ 26 37 0 1 32 34 28 30 30 17 15 46 40
OK∗ 32 45 30 0 45 47 35 45 36 30 19 57 50

M&S
(+)K∗ 17 29 15 8 0 6 2 25 16 11 8 41 29
K∗ 17 30 12 6 2 0 0 22 12 7 5 41 27
OK∗ 20 34 23 12 22 24 0 31 23 20 9 48 41

CEGAR
K∗ 19 31 11 9 20 22 20 0 8 10 10 39 28
OK∗ 23 34 22 10 30 32 22 25 0 23 9 48 33

iPDB
K∗ 30 38 22 19 35 36 32 32 28 0 1 48 38
OK∗ 34 41 33 25 44 47 35 41 36 22 0 54 46

BLIND
K∗ 11 28 3 1 7 7 7 2 1 3 2 0 0
OK∗ 15 31 14 3 17 17 7 19 2 12 2 29 0

Overall Coverage 892 652 933 1022 786 769 834 803 868 862 932 587 695

Table 1: Pair-wise domain level comparison of top-k planners for k = 1000. Each entry in the table represents the number of domains where
the row configuration achieves better coverage than the column one. The last row depicts the overall coverage.

such as OPENEA and heap graphs [Eppstein, 1998]. EA tra-
verses the path graph of the sub-graph of T ′Πg developed by
OSS. For a path graph node, OK∗ first reconstructs surrogate
plan π′, and then decodes it to a plan π by TRACE-FORWARD
[Domshlak et al., 2015]. If the lowest f value in the OSS queue
is smaller than the one in the EA queue, SWITCH-TO-OSS()
triggers, forcing a switch back to OSS. All the changes from
the K∗ algorithm are marked in blue. OK∗ terminates either
when it finds top-k plans for a solvable top-k problem (line
11) or it exhausts both open lists before finding k plans for an
unsolvable top-k problem (line 12).
Theorem 2. Algorithm 1 (OK∗) is sound and complete for
top-k planning.

Proof. Let Π be a planning task and let P ⊆ PΠ be the set
of plans found by Algorithm 1 for k. We show that P is a
solution to top-k planning problem. First, if |P | < k, then the
algorithm terminated in line 12. Thus, it has exhausted the
orbit space and reconstructed plans that correspond to all sur-
rogate plans in the orbit space. From Proposition 2 we have
an isomorphism between the (finite) set of surrogate plans in
the orbit space and PΠ, the set of plans of Π. Therefore, we
must have P = PΠ.

Now, suppose the algorithm terminated in line 11 and let
ρ′ be the surrogate path extracted last before the termination.
Then for all π ∈ P , we have cost(π) ≤ cost(ρ′), since EA
nodes are expanded in the order of their costs. Assume to the
contrary that there exists a plan π 6∈ P , such that cost(π) <
cost(π′) for some π′ ∈ P . Then, according to Proposition 2,
let ρ be the surrogate plan that corresponds to π. Since π 6∈ P ,
EA did not expand the node that corresponds to ρ yet. How-
ever, note that we have cost(ρ) < cost(ρ′), contradicting the
expansion order of EA.

4 Experimental Evaluation
To empirically evaluate the effectiveness of using structural
symmetries with K∗, we have implemented our suggested
algorithm OK∗ on top of an existing K∗ implementation

[Lee et al., 2023] within the Fast Downward planning system
[Helmert, 2006]. All experiments were performed on Intel(R)
Xeon(R) Gold 6248 CPU @ 2.50GHz machines, with the
timeout of 30 minutes and memory limit of 8GB per run. The
benchmark set consists of all benchmarks from optimal tracks
of International Planning Competitions 1998-2018, a total of
1827 tasks in 65 domains. We have experimented with four
admissible heuristics, LMcut [Helmert and Domshlak, 2009],
merge-and-shrink abstraction (denoted by M&S) [Helmert et
al., 2007], counterexample-guided Cartesian abstraction re-
finement (denoted by CEGAR) [Seipp and Helmert, 2018],
and pattern database heuristic iPDB [Haslum et al., 2007], as
well as with the blind heuristic. We measure the total time for
finding the top-k solution for a given k, as well as the cover-
age: 1 per task if the top-k solution was found, 0 otherwise. In
addition to comparing OK∗ to K∗ with the aforementioned
heuristics, we compare to the planners that implement the
other two approaches to top-k planning, bi-directional sym-
bolic search (SymK) [Speck et al., 2020] and Forbid Iterative
(FI) [Katz et al., 2018b]. Following previous work, all plan-
ners are using the same translator and no additional prepro-
cessing, as the preprocessing can remove some actions that
could otherwise be part of valid plans. The merge-and-shrink
abstraction performs an optimization, pruning abstract states
that are unreachable from the (abstract) initial state. This op-
timization must be turned off when using orbit space search.
In our experiments, we compare to both with and without the
optimization when using K∗. To differentiate the two, we
mark the configuration with the optimization by (+).

Table 1 shows the pairwise comparison of the tested ap-
proaches for k = 1000. Each entry denotes the number of
domains where the row planner achieves a better summed
coverage than the column planner. Additionally, the last row
denotes the overall coverage for each planner. The winners
are marked in bold. For the pairwise comparison, the value
in (x,y) is bolded if it is larger than the value in (y,x), that is
planner x excelled over planner y in more domains than plan-
ner y excelled over planner x. First, note that there are a few
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Figure 3: Anytime performance of selected configurations.

instances solved by K∗ but not by OK∗, specifically 25 for
the CEGAR heuristic and one for each of the other heuristic.
While a few of these instances are due to minor time fluctua-
tions, the rest appear to be due to (abstraction based) heuris-
tics not being as informative on canonical states as on states
reachable from the initial state. Despite that shortcoming,
we observe that OK∗ consistently significantly outperforms
K∗. The largest overall coverage increase occurs for the blind
heuristic, 108 tasks. Next is LMcut with 89 tasks, iPDB with
70 tasks, and CEGAR and M&S with 65 tasks each. The best
performing overall configuration is OK∗ with LMcut heuris-
tic, passing SymK by 130 tasks overall. Looking at domain
level performance, LMcut wins over SymK in 32 domains and
loses in 20, showing superior performance. Comparing to
other configurations on a domain level coverage, LMcut al-
most always wins in more domains than it loses in. The only
exception is OK∗ with iPDB, which is the best domain level
performer, always winning in more domains than it is losing
in and winning over LMcut in 25 domains, loosing in 19.

As many planning applications might require a shorter
planning time, we test the any-time performance of OK∗
compared to the other approaches. The results for top-k cov-
erage for k = 1000 as a function of time are depicted in
Figure 3. The lines for the same heuristic are depicted with
the same color, solid line for OK∗ and dashed line for K∗.
Our first observation is that for all heuristics and all timeouts,
the configurations that run OK∗ significantly outperform the
K∗ configurations. The overall best performer for almost all
tested timeouts is OK∗ with LMcut heuristic. Only between
100 and 150 seconds it loses the first place toOK∗ with iPDB.
For these timeouts, the difference in overall coverage between
the two approaches peaks at 6 tasks. Somewhat surprisingly,
for small timeouts of up to 45 seconds, the second best is K∗
with LMcut. From 50 seconds to 1700 seconds, OK∗ with
iPDB is the second best. From 1700 till 1760 it is tied with
K∗ with LMcut, which takes the lead for the last 40 seconds.
It is worth mentioning that OK∗ with iPDB achieves almost
its maximal coverage (922 out of 932) and levels out in under
400 seconds. The coverage of OK∗ with LMcut, on the other
hand, keeps rising up with more allocated time.
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Figure 4: Any-k performance of selected configurations.

Finally, to test the performance of our approach for smaller
k values, Figure 4 depicts the top-k coverage as a function
of k. Note here that for very small values of k, FI still out-
performs all other approaches. For k = 1, as in cost-optimal
planning, FI achieves the overall coverage of 1056 vs. 1036
for OK∗ with LMcut. Since FI uses internally OSS with
LMcut and partial order reduction, and OK∗ for k = 1 is
essentially equivalent to OSS, the difference stems from our
methods not being able yet to benefit from partial order re-
duction. As FI needs to iteratively run a cost-optimal planner,
it quickly loses its benefit andOK∗ with LMcut takes the lead
already for k = 5 and keeps the first place for all k ≥ 5. FI
keeps the second place until k = 72, where OK∗ with iPDB
catches up, keeping the second place from that point onward.
SymK takes the third place starting from k = 107. It is worth
noting that OK∗ configurations (as well as SymK and K∗)
do not lose much coverage when going to larger k values,
allowing to generate many plans quickly.

5 Conclusions and Future Work
In this work, we exploit structural symmetries to improve the
performance ofK∗ search. For that, we propose a new single-
goal planning task transformation that preserves the symme-
tries of the input task. We formally prove a property of the
orbit space that allows us to apply K∗ to it. We show that the
proposed algorithm is sound and complete for top-k planning
and perform an experimental evaluation that establishes our
approach as the new state of the art for top-k planning.

In the future work we intend to further improve OK∗ for
top-k planning by integrating another pruning technique, par-
tial order reduction [Wehrle and Helmert, 2012]. In contrast
to symmetry based pruning, applying partial order reduction
does prune some of the goal paths in the search space [Katz
and Lee, 2023], and therefore great care must be taken to en-
sure that all plans can be found. Another promising direction
is integrating symmetries explicitly into Eppstein’s algorithm,
to reduce both the computational effort and the memory con-
sumption required for storing all paths by storing symmetric
paths within the same node.
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