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Abstract

Macro-operators are a common reformulation
method in planning that adds high-level operators
corresponding to a fixed sequence of primitive op-
erators. We introduce meta-operators, which allow
using different sequences of actions in each state.
We show how to automatically verify whether a
meta-operator is valid, i.e., the represented behav-
ior is always doable. This can be checked at once
for all instantiations of the meta-operator and all
reachable states via a compilation into Stackelberg
planning, a form of adversarial planning. Our re-
sults show that meta-operators learned for multiple
domains can often express useful high-level behav-
iors very compactly, improving planners’ perfor-
mance.

1 Introduction
Classical planning deals with the problem of finding a se-
quence of actions to achieve a goal [Bylander, 1994]. Since
the origins of the field, it was noted that reasoning at dif-
ferent levels of abstraction is key for efficient planning on
complex domains. One way of introducing such new lev-
els of abstraction is to introduce meta-actions that model ef-
fects that can be achieved by some sequence of primitive ac-
tions. This idea has been widely explored by using macro-
actions [Fikes et al., 1972; Korf, 1985; Botea et al., 2005],
meta-actions built from a fixed sequence of actions. Macro-
operators go one step further, by considering sequences of
parameterized operators, which are transferable skills to other
instances of the same domain. Plenty of research has consid-
ered how to generate useful macro-operators, e.g., by learning
them from existing plans [Chrpa, 2010; Chrpa et al., 2014;
Chrpa and Vallati, 2022], testing their benefits in combi-
nation with planning techniques [Coles and Smith, 2007;
Gerevini et al., 2009], by restricting the amount of considered
instantiations and/or replacing primitive operators [Chrpa et
al., 2019]. They have shown that, despite increasing the
amount of actions in the reformulated task, this can be ben-
eficial due to introducing shortcuts in the state space and re-
ducing the length of the solution, before replacing the macro-
actions by their corresponding sequences or actions.

We introduce the concept of meta-operator, as an opera-
tor that is not part of the domain but whose effects can al-
ways be achieved on any state satisfying the preconditions
by some, not necessarily fixed, sequence of actions. This is
a lot more general than macro-operators, as completely dif-
ferent plans are allowed when applying the meta-operator on
different states. This generality offers wide opportunities for
defining useful behaviours in all kind of domains.

The main challenge is how to determine if a given meta-
operator is valid, i.e., for any instantiation of the meta-
operator and any reachable state satisfying the precondition,
can it always be replaced by some sequence of primitive ac-
tions? Macro-operators are valid by construction, as they are
derived from a fixed sequence of operators whose precondi-
tions and effects are uniquely defined. However, we turn the
problem around, defining meta-operator candidates as useful
high-level behaviours and then verifying if they are indeed
valid. This seems unfeasible, as it requires to find a plan for
exponentially many states in the size of the planning task and
exponentially many actions in the number of operator param-
eters. However, we show that it can be solved by compil-
ing the problem into a single Stackelberg planning task, and
leveraging Stackelberg planners [Speicher et al., 2018]. Ver-
ifying meta-operators has benefits beyond their use to refor-
mulate planning domains. We show that it generalizes the
problem of testing whether actions are undoable [Daum et
al., 2016], i.e., whether their effects can be reversed.

After solving the reformulated task, meta-actions are re-
placed by a corresponding sequence of primitive actions. We
propose a simple approach, based on re-planning for the miss-
ing parts of the plan. Finally, we extend techniques for
deriving macro-operators in order to learn candidate meta-
operators. We show that our compilation is effective at check-
ing which candidates are valid, and that using meta-operators
can pay off even when considering the time it takes to recon-
struct the solution.

2 Background
A STRIPS planning task [Fikes and Nilsson, 1971; Bylander,
1994] is a tuple Π = (F,A, I,G), where F is a finite set of
facts, A is a finite set of actions, I ⊆ F is the initial state and
G ⊆ F is the goal. Each action a ∈ A has a precondition
pre(a) ⊆ F , and effects add(a), del(a) ⊆ F . We assume
add(a) ∩ del(a) = ∅.
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turn_to (?s ?dn ?dp)
:pre (pointing ?s ?dp)
:add (pointing ?s ?dn)
:del (pointing ?s ?dp)

switch_on (?i ?s)
:pre (on_board ?i ?s), (power_avail ?s)
:add (power_on ?i)
:del (calibrated ?i), (power_avail ?s)

calibrate (?s ?i ?d)
:pre (on_board ?i ?s),(pointing ?s ?d),
(calibration_target ?i ?d),(power_on ?i)
:add (calibrated ?i))

Figure 1: Example operators from the Satellite domain. Parameter
types are indicated by the parameter name: satellite (?s), instrument
(?i), and directions (?d, ?dn, ?dp).

A STRIPS planning task induces a state space over the set
of states S = 2F . Each state s ∈ S is a subset of facts,
which are currently true. An action a is applicable on a state
s if pre(a) ⊆ s. In that case, the result of applying a to s is
sJaK = (s ∪ add(a)) \ del(a). By S[a] we denote the set of
states to which a is applicable. The goal states SG = {s ∈
S | G ⊆ s} are the states that satisfy the goal.

An action sequence a⃗ = ⟨a1, . . . , an⟩ can be applied on a
state s if there exists a sequence of states s0, . . . , sn, where
s0 = s, and for i ∈ [1, n], ai is applicable on si−1 and si =
si−1JaiK. The result is the state sJ⃗aK = sn. We say that
a state s is reachable if there exists a sequence of actions a⃗
such that I J⃗aK = s. By R(Π) we denote the set of states
reachable from I . A solution for I is called a plan for Π and
is a sequence of actions from the initial state to a goal state.
Additionally, we consider a cost function c : A 7→ N0. The
cost of a plan is the sum of all its actions’ cost. We use c(⃗a)
to denote the cost of the sequence of actions, and c∗(s, s′) to
denote the cost of the cheapest path from s to s′.

Tasks are often specified in lifted form, e.g., in the PDDL
language [McDermott, 2000]. A lifted task Πl is a tuple
(P, O, C, I,G) where P is a set of (first-order) atomic predi-
cates, O is a set of operators1, C is a set of object constants,
I is the initial state, and G is the goal. Predicates and ac-
tion schemas have parameters. Both parameters and objects
have types so that a parameter can be substituted by an object
in C if their type matches. We denote individual parameters
with x, y, z and sets of parameters with X,Y, Z. An operator
o[X] is a triple (pre(o), add(o), del(o)), consisting of precon-
ditions, add list, and delete list, all of which are a set of P
instantiated with objects in C or parameters in X . I and G
are subsets of P , instantiated with objects from C.

A lifted task Πl can be transformed into a STRIPS task
ground(Πl), by instantiating the set of predicates and opera-
tors with the set of objects C to obtain the set of facts and ac-
tions, respectively [Helmert, 2009]. As an example, consider

1Operators are also often called action schemas. We follow the
convention used in other macro-operator approaches of using “ac-
tions” to refer to the grounded level, and operators to the lifted level.

turn_to-switch_on-calibrate (?s ?i ?dn ?dp)
:pre (pointing ?s ?dp), (power_avail ?s),

(calibration_target ?i ?dn),
(on_board ?i ?s)

:add (calibrated ?i), (pointing ?s ?dn),
(power_on ?i)

:del (pointing ?s ?dp), (power_avail ?s)

Figure 2: Macro-operator combining 3 Satellite operators.

the Satellite domain [Long and Fox, 2003], where a set of ob-
servation tasks must be performed by several satellites, which
are equipped with different instruments. Fig. 1 shows three of
the action schemas, which are used to prepare instruments so
that they can take images. The set of actions of an opera-
tor o, Ao[C], contains an action for each valid substitution of
the parameters. For example, the instantiations of turn to
could include turn to(satellite1, sun, earth),
turn to(satellite1, earth, moon), etc.

2.1 Macro-operators
Given two actions a1, a2 ∈ A, the macro-action, M(a1, a2)
represents the application of a1 followed from a2 as follows:

• pre(M(a1, a2)) = pre(a1) ∪ (pre(a2) \ add(a1)),
• add(M(a1, a2)) = (add(a1) \ del(a2)) ∪ add(a2), and
• del(M(a1, a2)) = (del(a1) \ add(a2)) ∪ del(a2).
Such a macro-action is valid if del(a1) ∩ pre(a2) = ∅. In

that case, in any state s satisfying pre(M(a1, a2)), we can
apply a1 followed by a2 to reach sJM(a1, a2)K. Similarly,
we can define macro-actions from any sequence of action
a⃗ = ⟨a1, . . . , an⟩ as M (⃗a) = M(M(M(a1, a2), a3), . . . , an).
Checking whether such macro-action is valid can be done by
checking every pair of actions within the recursion.

Macro-operators follow the same idea at a lifted level. We
can consider any sequence of operators, along with a uni-
fication of their parameters to define a new macro-operator
following the same rules as described for macro-actions. In
satellite, in order to use an instrument one needs to turn the
satellite towards a calibration target, switch on, and calibrate
the instrument. Therefore, it may be useful to bundle these
operators together into a macro-operator, as shown in Fig. 2.

2.2 Stackelberg Planning
Stackelberg planning is a framework of adversarial planning
introduced by Speicher et al. [2018], inspired by Stackelberg
security games [Tambe, 2011]. A Stackelberg planning task
Πst = (F,AL, AF , I, G) is an extension of a STRIPS task,
where there are two agents with separate sets of actions, the
leader (AL) and the follower (AF ). The follower’s objective
is to reach a state that satisfies the goal G, as in STRIPS. But
the leader acts first with the objective of maximizing the fol-
lower’s plan cost. For each state in s ∈ 2F , we define its
leader cost L∗(s) as the cost of a cheapest sequence of ac-
tions in AL starting from I and ending in s (or ∞ if no such
sequence exists). The follower cost F ∗(s) is the optimal plan
for the follower starting from s, i.e., the solution of a STRIPS
task (F,AF , s,G). A state s dominates another s′ if L∗(s) ≤
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L∗(s′), F ∗(s) ≥ F ∗(s′) and one of the inequalities is strict.
The solution of Πst is the set of all leader-reachable non-
dominated states S∗ ⊆ 2F . For our use case, it is not needed
to compute multiple entries with the same leader and follower
cost. Therefore, we focus on approaches that compute the
Pareto front PF (Πst){⟨L∗(s), F ∗(s)⟩ | s ∈ S∗} containing
all non-dominated pairs of leader and follower cost [Torralba
et al., 2021]. Intuitively, a pair ⟨cL, cF ⟩ ∈ PF (Πst) means
that the leader can make the cost of the follower’s optimal
plan as high as cF by spending as little as a cost of cL.

One can define lifted Stackelberg planning tasks in an ana-
log manner as for STRIPS tasks [Sauer et al., 2023].

3 Meta-Operators
We start by defining meta-actions, as behaviours that can be
achieved by arbitrary sequences of actions.

Definition 1 (Meta-action). Let Π = (F,A, I,G) be a
STRIPS planning task. An action aM is a valid meta-action
for Π if and only if for all reachable states s ∈ R(Π)
where pre(aM) ⊆ s, there exists an action sequence a⃗ =
⟨a1, . . . , an⟩ ∈ A such that sJ⃗aK = sJaMK.

We remark that this property can refer to any action, and
in fact this property is interesting only when aM ̸∈ A. The
notion can be naturally extended to the lifted case.

Definition 2 (Meta-operator). An operator oM is a valid
meta-operator for a lifted planning task Πl if and only if
all instantiations aM ∈ AoM[C] are valid meta-actions for
ground(Πl).

Figure 3 shows an example of a meta-operator. Meta-
switch-on-calibrate achieves the same useful effects as the
macro-operator in Figure 2, without the side-effect changing
the direction the satellite is pointing to. This is beneficial for
having more focused meta-actions, that can achieve the de-
sired effect with fewer preconditions and/or side effects.

Meta-operators generalize the standard notion of macro-
operator. The key difference is that in the definition of macro-
action, the sequence −→a is the same for all states. Similarly,
macro-operators require that the sequence −→a can be lifted,
i.e., for all instantiations of o the sequence −→o uses the same
action schemas and parameter mappings.

Considering the special case of macro-operators has sev-
eral advantages. First of all, it makes trivial the process of
identifying if the meta-operator is valid, as it suffices to check
if the precondition of one of the actions in the sequence is
contradicted by the effect of a previous action. Second, it
is always straightforward to translate a plan that depends on
macro-actions to one that only uses primitive operator: as
we know in advance for each macro-action exactly what se-
quence of actions should it be replaced by.

Meta-actions, on the other hand, are hard to validate. Even
when considering a meta-action that is applicable only on a
single state, if the effect of the meta-action consists of achiev-
ing the goal, then validating whether it is valid is as hard as
deciding solvability of planning, i.e., PSPACE-hard.

But, the generality of meta-operators has strong advantages
too, as it opens widely the space of possible reformulations

meta-switch-on-calibrate (?s ?i)
:pre (on_board ?i ?s) (power_avail ?s)
:add (calibrated ?i) (power_on ?i)
:del (power_avail ?s)

Figure 3: Meta-operator to switch on and calibrate an instrument

that can be applied to the planning task. For example, macro-
operators have a hard time modelling scenarios where an ob-
ject needs to traverse multiple locations to reach a final desti-
nation. In those cases, to ensure that there is a fixed sequence
of actions for all possible instantiations, it is necessary to in-
troduce parameters that model all intermediate locations vis-
ited along the way. This is not only cumbersome, but utterly
impractical, as the number of instantiations grows exponen-
tially. With meta-operators, we can instead “assume” that the
target will be reachable by some sequence of actions. En-
suring validity of the meta-operator will necessarily involve
checking this for all pairs of source and destination. Simi-
larly, in our example, we can get rid of certain parameters
such as the direction the satellite is pointing to, making the
meta-operator more applicable with less instantiations.

4 Validation via Stackelberg Planning
We compile the problem of testing whether a given action
schema is a valid meta-action for a given task as a Stackelberg
planning task. The idea of the compilation is that the leader
can apply any sequence of actions to choose any reachable
state s ∈ R(Π) where some instantiation of the operator is
applicable, and choose one such action. Then, the goal of the
follower will be to go from the resulting state, to a state where
the effects of the action have been accomplished.

Definition 3. Let Π = (F,A, I,G) be a STRIPS plan-
ning task, AM a set of actions. The meta-action task of Π
and AM is the Stackelberg planning task ΠM(Π, AM) =
(F st, AL, AF , Ist, Gst) where:

• F st = F ∪ {gp, okp | p ∈ F} ∪ {turnL}
• Ist = I ∪ {turnL} ∪ {okp | p ∈ F} ∪ {gp | p ∈ I}
• Gst = {okp | p ∈ F}
• AL = {αL | α ∈ A}∪{passTurnL[aM] | aM ∈ AM}
• AF = {αF | α ∈ A} ∪ {achieveGoalF }
where the actions are defined as shown in Table 1.

For each fact p ∈ F , our compilation includes three dif-
ferent copies: p represents the current value; gp represents
whether the follower’s goal is to make p true or false; and okp

represents whether the current value of p is the desired one.
In other words, the value of okp can be derived from p and
gp, as there is always an invariant such that okp = (p ↔ gp).
Finally, there is an additional fact turnL indicating when the
leader passes the turn to the follower by choosing which ac-
tion aM should the follower verify from the current state.

The leader has two types of actions, αL, and
passTurnL[aM]. αL is a copy of the original actions,
and allows the leader to navigate through the state space to
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Action Precondition Effect Cost

αL pre(α) ∪ {turnL} {p, gp | p ∈ add(α))} ∪ {¬p,¬gp ∈ del(α))} 0

passTurnL[aM] pre(aM) ∪ {turnL} {¬turnL} ∪ {gp, (¬p → ¬okp) | p ∈ add(aM))} ∪
{¬gp, (p → ¬okp) | p ∈ del(aM))}

0

αF pre(α) { p, (gp → okp), (¬gp → ¬okp) | p ∈ add(α)} ∪ c(α)
{¬p, (gp → ¬okp), (¬gp → okp) | p ∈ del(α)}

achieveGoalF {turnL} Gst 0

Table 1: Action definition for all actions in the Stackelberg planning task to verify if d is a valid meta-action. In the effect definition, positive
literals means that they are add effects, whereas negative literals represent delete effects. As syntactic sugar, we use conditional effects of the
form (cond → eff ), where the effect eff is applied if and only if the cond holds in the state where the action is applied.

reach any reachable state. Through this process, we also up-
date gp so that gp = p. Then, the passTurnL actions allow
the leader to pick one action in AM, if the preconditions are
satisfied. Note that, due to the fact turnL, only one such
action may be applied, and it must be the last action applied
by the leader. The action passTurnL[aM] sets the goal for
the follower, by applying the effects of aM on the gp facts.
Also, it keeps the okp = (p ↔ gp) invariant. Note that, after
applying aM, the value of gp facts corresponds to the state
that would be obtained by applying aM on the current state
(so that all facts in add(aM) are true, all facts in del(aM) are
false, and all remaining facts should retain the same value).

Then, the follower will apply actions to reach the state that
results from applying aM in the current state. This is so, be-
cause it must achieve all okp facts, whose value satisfies the
invariant okp = (p ↔ gp). As actions αF do not have any
effect over gp, the only way is to change the values of the cur-
rent facts p until they have the same value as gp. Finally, the
action achieveGoalF simply forces the leader to end their
plan with a passTurnL action, as otherwise it is trivial for
the follower agent to reach the goal with a cost of 0.

The formulation of Definition 3 uses some syntactic sugar
to define the effects of the αF actions, for the sake of sim-
plifying the presentation. Namely, it uses conditional effects,
some of which have negated literals (¬gp) in the conditions.
This can be compiled away into the standard formalism of
Stackelberg planning introduced in Section 2.2 by:
• Eliminating negative conditions, e.g., using an additional

fact per p ∈ F that always has the opposite value than gp.
In practice, this is not needed as the Stackelberg planner we
use supports negative preconditions.

• Compiling conditional effects away [Nebel, 2000]. In our
implementation, we create multiple copies of each action,
one per combination of conditional effects [Gazen and
Knoblock, 1997]. This is feasible because there are not
too many conditional effects, and we can exclude any com-
bination with mutually exclusive conditions.
Action costs are not strictly needed to test validity. How-

ever, using costs is convenient because the leader just tests
reachability and the distance from the initial state is not rele-
vant. Moreover, as Thm 1 shows, this allows us to obtain what
is the maximum cost required for applying the meta-operator.
Theorem 1. Let Π = (F,A, I,G) be a STRIPS planning task
and AM a set of actions. Then, the solution of ΠM(Π, AM),

PF (ΠM(Π, AM)), contains a single entry (0, cM), and
cM = max

aM∈AM
max

s∈R(Π)
c∗(s, sJaMK) if s ∈ S[aM] else 0

Proof. PF (ΠM(Π, AM)) contains a single entry because
all leader actions have a cost of 0. By definition of
Stackelberg planning, the follower cost of such entry is
maxπL minπF c(πF ), where πL and πF range over all possi-
ble leader and follower plans, respectively. We need to show
that this is equal to cM.

The leader plan πL maximizing the expression necessarily
corresponds to a path ⟨αL

1 , . . . , α
L
m, passTurnL[aM]⟩. The

only exception is if no such path is applicable. In that case,
the meta-operator is trivially valid due to its preconditions not
being met in any reachable state, and cM = 0. Otherwise, as
the leader attempts to maximize cM, passTurnL[aM] should
be applied (otherwise the follower can reach the goal with
cost 0 using achieveGoalF ). And due to turnL, it is nec-
essarily the last action in πL. As there is a direct correspon-
dence between each πL = ⟨αL

1 , . . . , α
L
m, passTurnL[aM]⟩,

and the set of reachable states R(Π) where aM is applica-
ble, it suffices to show that given such a path c∗(s, sJaMK) =
minπF c(aF ), where s = I[πL].

Let πF be the optimal follower plan. Again, there is one
such plan for every sequence of actions applicable from s,
as the preconditions and effects of each αF over facts p are
exactly the same as those of the original actions α. It remains
to show that such a path satisfies the follower’s goal Gst iff
s[πF ] = s[aM]. Gst requires to have all okp facts, which
as explained above keep the invariant okp = (p ↔ gp). As
passTurnL[aM] sets the gp facts to exactly the set of facts
true in s[aM] this is equivalent to reach a state in which p ↔
gp.

However, for testing whether a meta-operator is valid, it
is sufficient to run the compilation with unit costs. Indeed,
a meta-operator is valid as long as the Pareto front does not
contain an entry where the follower cost is ∞.
Corollary 1. Let Π = (F,A, I,G) be a STRIPS planning
task and aM an action. Then, aM is a meta-action if and
only if PF (ΠM(Π, AM)) does not contain an entry (x,∞).

To test if a candidate operator o is a valid meta-operator on
a task Π, we can simply set AM to be all valid instantiations
of o on Π. Note that then the actions passTurnL[aM] can
also be written as an operator (action schema) in PDDL.
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5 Relation to Undoability
The problem of testing whether a meta-operator is valid
is related to the notion of undoability [Eiter et al., 2007;
Eiter et al., 2008; Daum et al., 2016; Morak et al., 2020],
i.e., testing whether the effects of a given action/operator can
always be undone. This is the case, if for every reachable
state s where a is applicable, c∗(sJaK, s) < ∞. Daum et
al. [2016] showed that the problem of testing whether an ac-
tion is undoable can be compiled into a contingent planning
task. This can also be done with our compilation. For any
planning action, we can always define a reverse action, which
has the opposite effects.2 Then, testing whether the action is
undoable, is equivalent to testing whether the reverse action
is a valid meta-action.

Our Stackelberg compilation is inspired by their compila-
tion to Contingent planning, but also has several advantages.
We do not need to approximate the set of reachable states by
using state invariants, as our encoding automatically lets the
leader enumerate exactly the set of reachable states. Further-
more, in order to test whether an operator is undoable, the
contingent planning compilation requires to solve a separate
contingent planning task for each action instantiation. Our
compilation instead is able to test validity of a meta-operator
by solving a single Stackelberg planning task.

6 Learning and Using Meta-Operators
Following previous work on macro-operators, our approach is
based on learning a set of meta-operators on a set of training
instances, for which we already have found a plan. Then, to
solve a new planning task, we reformulate the domain PDDL
file by introducing our meta-operators. Finally, after finding
a plan on the reformulated task we replace any meta-action in
the plan by a sequence of actions achieving the same effects.

6.1 Generate Meta-Operator Candidates
We base our approach to generate candidates on previous
macro-operator approaches. Specifically, we start from a
set of selected macro-operators and generate more compact
meta-operators that can get similar effects, but reducing the
amount of parameters and preconditions. This increases the
applicability of the meta-actions and reduces the amount of
instantiations that are needed. We generate candidates by ap-
plying three types of modifications to the macro-operators.

Remove precondition parameters (Cpre ) Our first
method, removes parameters that are absent in the effect
of the macro. This aims at obtaining meta-operators that
are improved versions of the original macro-operators,
with the same useful effects of macros while reducing the
number of parameters. When a parameter is removed, all
predicates containing this parameter are removed from the
action precondition as well. If this causes a parameter to not
be mentioned anymore in the precondition and/or effect of
the macro, we remove it as well. Given a macro-operator,
we attempt to remove the parameters one by one. Note
that removing preconditions of an invalid candidate can

2This may require considering multiple actions, e.g. if some
added facts could already be true.

never cause it to become a valid meta-operator, as this only
increases the amount of instantiations and reachable states
where they are applicable. Therefore, we only consider
removing additional parameters over successful candidates.

Remove effect parameters (Ceff ) A limitation of the Cpre

method, is that in many cases there is no parameter that is
not mentioned at all in the effects. In our running exam-
ple, turn to-switch on-calibrate, all parameters
are mentioned in the effect, so Cpre is not applicable. How-
ever, often only some effects are useful, whereas others are
side effects. In our running example, the effects modifying
the direction the satellite is pointing to are not essential.

Our second method, Ceff , eliminates a parameter appear-
ing in the effects, removing any precondition and/or effect
that depends on it. This may cause other parameters to be
removed as well. In contrast to Cpre , we could in princi-
ple remove additional parameters even if intermediate results
were not valid candidates. However, this leads to too many
candidates so we stick with removing a single parameter.

Remove additional effects (Cinv ) Removing effect pa-
rameters might cause the resulting candidates to be auto-
matically invalid, whenever they do not comply with the
state-invariants. For example, removing ?d new from
turn to-switch on-calibrate results in a meta-
operator that deletes (pointing ?s ?d prev) without
adding a new direction. This meta-operator is invalid, as it
contradicts the state-invariant that a satellite always points in
a direction. In principle, it is possible to automatically ex-
tract lifted mutex groups [Helmert, 2009; Fišer, 2020]. Here,
we just approximate this by observing that many lifted invari-
ants refer to the same predicate. Therefore, we take the Ceff

candidates, and remove other preconditions and effects with
the same predicate as the ones removed by the Ceff method.
In our running example, we remove preconditions and effects
with calibration target and pointing. The result
is the meta-operator from Fig. 3, which does not violate any
invariant and is in fact valid.

6.2 Solving New Instances
Once we have collected a set of meta-operator candidates,
we use our compilation from Section 4 on the set of training
instances. We then extend the domain with a set of meta-
operators that were valid on all training instances, so that
any classical planner can be called on the reformulated do-
main. When a new instance arrives, we do not validate the
meta-operators again, as that would be prohibitive. Instead,
we rely on the training instances being representative of the
entire domain, which is a common assumption in learning
and/or generalized planning approaches. Note that the be-
haviour described by valid meta-operators was doable for all
instantiations of the operator on all states of the training task,
so a few training instances suffice to obtain a strong evidence
that this behaviour is always doable in the domain.

After solving the instance on the reformulated domain, we
obtain a plan which may contain one or more meta-actions.
The next step is to reconstruct a plan composed only of prim-
itive actions. This was easy for macro-actions as they cor-
respond to fixed action sequences. For meta-actions, how-
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ever, one needs to find a specific plan for the state in which
they are applied. In principle, the validation process may give
hints about the structure of such plans. However, transferring
this from the training instances to the new instance is an open
problem. Instead, we follow a very simple approach: calling
a classical planner for each meta-action on the original do-
main to find a plan from the current state to the exact state
that results from applying the meta-action.

At first glance, this solution reconstruction procedure may
look completely unfeasible: solving multiple classical plan-
ning problems which could be as hard as the original one. In-
deed, in some domains the overhead is noticeable. However,
there are several reasons why this can still pay off. First, the
goal is fully specified, which tends to make heuristics more
informed. Second, if a meta-operator could be validated, then
it was possible to find plans that work for all states in the
state-space of the training instance. Thus, one can expect
these plans to not be too long, nor particularly difficult to find.

7 Experiments
We evaluate meta-operators on a standard set of IPC bench-
marks. All experiments were conducted on a cluster of
Intel Xeon CPU E5-2660 with 2.20GHz using Downward
Lab [Seipp et al., 2017]. Each run had a time limit of 1800
seconds and a memory limit of 4 GB. The code and data are
publicly available [Pham and Torralba, 2023].

7.1 Learning and Verifying Meta-Operators
First, we analyze the set of meta-operators that can be learned
by our approach. For this, we use a small set of 5 instances
per domain generated with the publicly available random gen-
erators of these IPC domains. As a seed to our method we
use macro-operators generated with the Planning Task Trans-
former (PTT) tool, which implements multiple generation
methods: exploiting action dependencies in plans [Chrpa,
2010], MUM [Chrpa et al., 2014], and using inner entangle-
ments [Chrpa et al., 2019]. We learn macros with all three
configurations and take the union (which we denote PTT) as
a basis for generating meta-operator candidates. Henceforth,
we focus on domains for which the PTT set is not empty.

As a sanity check, we ran our validation tool on the set of
PTT macro-operators. Interestingly, despite being valid by
construction, our tool reported a few cases invalid. As the
tool provides the leader plan, this can be used to analyze in
what kind of states and instantiations lies the issue. In this
case, two parameters were being instantiated by the same ob-
ject, so that the resulting action had the same fact on the add
and delete effects. We fix this by introducing an additional
precondition requiring both parameters to be different. This
shows that our validation tool can have uses beyond learning
meta-actions, like finding bugs during domain modelling.

We validate the candidates by using our meta-operator
compilation into a single Stackelberg planning tasks. As
Stackelberg planner, we use the symbolic leader search al-
gorithm [Torralba et al., 2021]. We use two configurations
that differ on whether the plans computed for the follower are
optimal or not. The SLS-opt configuration, used by Tor-
ralba et al. [2021], is an optimal symbolic search configu-
ration [Torralba et al., 2017]. The SLS-sat configuration,
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Figure 4: Left: Runtime of optimal and satisficing Stackelberg plan-
ners for validating meta-actions/operators. Right: Total and search
(excluding plan reconstruction) time with/without meta-operators.

on the other hand, uses Greedy Best-First Search with the
FF heuristic [Hoffmann and Nebel, 2001]. In the SLS-sat
configuration, we also modify the symbolic leader search al-
gorithm by initializing the initial follower cost to a large con-
stant (105). This indicates that the exact follower cost is ir-
relevant, as we are mainly interested in whether the meta-
operator is valid (has a cost lower than ∞) or not. We con-
sider both the problem of validating the entire meta-operator,
as well as validating a single meta-action (i.e., a specific in-
stantiation of the operator). For the latter, we sampled 10
instantiations for each instance and meta-operator candidate.

Fig. 4 (left) compares both configurations in terms of run-
time. Overall, SLS-sat solves more cases, which is not sur-
prising given that it is a satisficing configuration. But the plot
shows that in many cases, we can find the maximum cost re-
quired to emulate such behaviour on a specific planning task.
Table 2 gives an overview of the number of candidates cre-
ated by our three methods and how many of them were vali-
dated. A meta-operator is validated if either SLS-opt and/or
SLS-sat is able to prove that is valid on all 5 training in-
stances. We also considered validated two candidates in the
transport domain, where the meta-operator compilation ran
out of memory but all sampled instantiations were validated
by the meta-action compilation. For most of the rejected can-
didates, they were shown to not be valid in at least one of
the instances. The set of learned meta-operators contains all
validated candidates except those that were subsumed either
by another candidate, an operator of the domain, or a macro-
operator in the PTT set. Here, we consider a meta-operator
to be subsumed if it has the same effect and the same or more
preconditions, up to renaming of the parameters.

In most domains, we learned meta-operators that describe
the effects of the macro-operators in a more succinct way.
Our three criteria are very complementary, finding interest-
ing meta-operators in different domains. While many meta-
operators have a low cost, meaning that they can be replaced
by short sequences of primitive operators, there are also a sig-
nificant number of cases where the behaviour described by
the meta-operator is non-trivial, i.e., at least in some cases it
requires more than a handful of primitive actions.

7.2 Planning with Meta-Operators
Our next experiment evaluates whether meta-operators can
enhance satisficing planners. We compare the performance
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# candidates # validated
Domain PTT Cpre Ceff Cinv

∑
Cpre Ceff Cinv

∑
cM

Barman 4 12 18 15 45 12 2 2 16 10
Blocks 4 0 7 4 11 0 0 0 0 –
Childsnack 4 2 19 2 23 1 1 2 4 6
Depots 4 2 20 14 36 2 4 0 6 6
Driverlog 3 1 13 9 23 1 1 0 2 10
Freecell 2 7 12 12 31 0 0 0 0 –
Grid 4 0 12 6 18 0 1 2 3 13
Gripper 1 0 4 2 6 0 1 0 1 7
Hiking 1 0 5 2 7 0 0 0 0 –
Logistics 6 3 24 12 39 0 2 0 2 5
Miconic 3 0 9 6 15 0 0 6 6 5
Mprime 2 0 16 16 32 0 0 0 0 –
Mystery 2 1 13 11 25 0 1 1 2 2
Nomystery 3 4 20 17 41 0 1 0 1 2
Parking 1 0 5 4 9 0 0 0 0 –
Rovers 3 8 14 5 27 8 1 3 12 7
Satellite 3 1 13 5 19 1 2 4 7 13
TPP 2 9 11 8 28 9 0 0 9 7
Transport 2 0 15 13 28 0 2 0 2 8
Zenotravel 1 0 6 5 11 0 3 1 4 8

Table 2: Number of macro-operators used as seed (PTT), candidate
meta-operators, and number of validated macros. cM shows the
maximum plan length required to replace a meta-operator by primi-
tive actions across all training instances and valid candidates.

of two planners, implemented in the Fast Downward plan-
ning system [Helmert, 2006]: GBFS with the FF heuristic,
which is a standard baseline for satisficing planning; and
LAMA [Richter and Westphal, 2008], which is a state-of-
the-art satisficing planner. We use the same configuration
for finding the plan on the reformulated domain, as well as
for reconstructing the plan with only primitive operators. We
evaluate on the instances from the IPC, which were not used
for learning or validating the meta-operator candidates.

We used three sets of meta-operators. The first set includes
all meta-operators validated in the previous phase. Then, we
identified the most useful meta-operators by solving a sepa-
rate set of validation instances, distinct both from the training
and the evaluation set. We solve those with multiple domain
files: one with all meta-operators, as well as variants with ex-
actly one meta-operator added. Our second set, rel, selects
any meta-operator used by any of the plans found. This fil-
ters any irrelevant meta-operator that will not be used in plans
anyway. Finally, to focus on useful meta-operators, we select
only the top 2 (tp2) according to the performance of configu-
rations including exactly one meta-operator on the validation
instances. We pick the two that lead to highest coverage, and
among those, the ones with lowest total runtime, including
the time to find a plan as well as the repair time.

Fig. 4 (right) shows the runtime on IPC instances of the
top 2 configuration. Meta-operators are not always helpful,
specially on easy instances solved in less than 100s by the
baseline. But despite the overhead, there are a number of
instances that are solved up to two orders of magnitude faster
with meta-operators. This is also reflected in the coverage
results of Table 3. Meta-operators improve the coverage on
the baseline and, even though they are outperformed when

GBFS + FF LAMA
Domain # – PTT all rel tp2 – PTT all rel tp2

Barman11 20 14 3 19 19 19 20 20 20 20 20
Barman14 20 5 0 17 19 18 20 20 20 20 20
Childsnack 20 1 4 8 6 8 6 18 0 18 18
Depot 22 16 19 14 13 19 20 21 21 21 22
Driverlog 20 18 18 16 16 16 20 20 20 20 20
Grid 5 4 4 4 4 5 5 5 4 4 5
Logistics98 35 28 26 34 34 34 35 32 34 34 34
Mystery 30 17 16 16 16 16 19 18 16 18 18
Nomystery 20 9 4 12 12 12 11 6 12 12 12
Rovers 40 26 20 21 25 26 40 40 32 36 40
Satellite 36 27 30 27 27 28 36 31 27 27 36
TPP 30 23 21 30 30 30 30 30 30 30 30
Transport08 30 17 13 13 13 13 30 14 13 13 30
Transport11 20 0 0 0 0 0 18 0 0 13 13
Transport14 20 0 0 0 0 0 16 0 0 0 5∑

586 423 396 449 452 462 544 493 467 504 536

Table 3: Coverage of standard planners with the original domain (–),
macro-operators learned by PTT, and three sets of meta-operators.

using LAMA, coverage still improves in specific domains like
depots or nomystery. This shows that meta-operators have a
huge potential to reduce search effort on hard planning tasks.

Regarding the overhead, this is partially due to adding too
many additional actions, which explains why using all meta-
operators may be detrimental. We alleviated this by using
only the top 2 meta-operators, but there is still margin of
improvement, e.g. using known enhancements on macro-
operators such as outer-entanglements [Chrpa et al., 2018].
On the other hand, the overhead of plan reconstruction can be
observed by comparing search and total time in Fig. 4. This
is a bottleneck on easy instances, where meta-operators were
not too helpful. But when meta-operators significantly reduce
search effort on hard instances, it still pays off in total time.

8 Conclusions
Combining multiple primitive operations into macro-
operators is a well-known method to reformulate planning
problems and plan at a more abstract level. We introduce
meta-operators, which define behaviours that can always be
accomplished in any state satisfying their precondition, pos-
sibly with very different action sequences for different states.
This allows for more compact high-level actions with fewer
parameters and more focused on useful effects.

We show how to validate whether any invented, or user-
provided, meta-operator is valid or not. This requires to
check whether there exists any reachable state and instanti-
ation of the meta-operator in which the preconditions are met
but achieving the effects is not possible. This can be done
efficiently by leveraging Stackelberg planners. This is a pow-
erful tool, that opens many opportunities such as new ways of
domain debugging, analyzing properties like undoability, or
finding new reformulations for the planning task.

Our experimental results show the potential for using meta-
operators as a reformulation technique. Using meta-operators
can pay off on hard instances, even when considering the non-
trivial plan reconstruction process.
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ter Kissmann, and Stefan Edelkamp. Efficient symbolic
search for cost-optimal planning. Artificial Intelligence,
242:52–79, 2017.
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