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Abstract
We study a new online assignment problem, called
the Online Task Assignment with Controllable Pro-
cessing Time. In a bipartite graph, a set of online
vertices (tasks) should be assigned to a set of of-
fline vertices (machines) under the known adver-
sarial distribution (KAD) assumption. We are the
first to study controllable processing time in this
scenario: There are multiple processing levels for
each task and higher level brings larger utility but
also larger processing delay. A machine can re-
ject an assignment at the cost of a rejection penalty,
taken from a pre-determined rejection budget. Dif-
ferent processing levels cause different penalties.
We propose the Online Machine and Level Assign-
ment (OMLA) Algorithm to simultaneously assign
an offline machine and a processing level to each
online task. We prove that OMLA achieves 1/2-
competitive ratio if each machine has unlimited re-
jection budget and ∆/(3∆ − 1)-competitive ratio
if each machine has an initial rejection budget up
to ∆. Interestingly, the competitive ratios do not
change under different settings on the controllable
processing time and we can conclude that OMLA
is “insensitive” to the controllable processing time.

1 Introduction
In this paper, we study an online task assignment problem
with controllable processing time. In this problem, we have a
set of online vertices (tasks) and a set of offline vertices (ma-
chines). Online tasks arrive sequentially and each can be pro-
cessed by a machine, but each task can only be processed by
a subset of machines [Dickerson et al., 2021; Sumita et al.,
2022]. We focus on the controllable processing time: Each
task has multiple levels of processing time [Wang et al., 2019;
Shabtay and Steiner, 2007]. If a task is processed with a
higher level, it obtains a higher reward, but needs to wait
for a longer time. Each machine can only process one task
at one time, and can only take another after the previous
one is finished. The machines do not always accept task as-
signment, and they lose an amount of rejection budget ev-
ery time they reject. The higher processing level of the re-
jected assignment is, the larger amount of the budget is taken.

When a machine runs out of its rejection budget, it will be
removed from the system immediately and permanently. In
this paper, we consider the online tasks arriving under known
adversarial distributions (KAD) [Dickerson et al., 2021;
Tong et al., 2020]. The arrival probability of each task at each
time is known ahead. The goal is to maximise the expected
reward without the knowledge of future task arrivals (online
setting).

Although a number of works have studied the online as-
signment problem, this paper is the first to consider control-
lable processing time. This is motivated by real-world sce-
narios in various fields, such as:

1. Task offloading in edge computing [Mahesh, 2020].
With the help of edge computing, end user devices can of-
fload computing intensive tasks to edge computers, especially
the ones processing machine learning (ML) models. Each
user (task) has only a set of edge computers (machines) near
them, so the tasks from this user can only be processed by
these computers. When we assign an edge computer to a
task, we can further control the processing time by imple-
menting different ML models. A better processing quality re-
quires a model with longer processing time, but a lightweight
model (e.g., a pruned and sparsified model) finishes sooner,
with lower accuracy.

2. Ride-sharing with tolls [Andani et al., 2021]. Ride-
sharing system assigns passenger requests (tasks) to available
drivers (machines). Each request has an origin and can only
be processed by drivers near this area. For each ride, we can
choose to go through toll roads (high cost) for a shorter pro-
cessing time, or to avoid toll for less cost.

3. Translation service [Taia, 2022]. Customers place
orders (tasks) to the language service agencies (machines),
and the agency can provide different degrees of service (e.g.,
one-off translation, translation and proofreading, etc.). Each
translation request has a target language and can only be pro-
cessed by translators with a certification of this language. The
agency can choose to assign more time for a translation task,
resulting in a higher processing quality; but the agency can
also assign a shorter processing time to a task, so that more
customer requests can be processed.

In many situations, because the arrival of tasks can only
be known when they arrive, online algorithms are required.
We are motivated to design such an online algorithm that can
maximize the worst ratio against the offline optimal perfor-
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mance (competitive ratio). In short, the online assignment
problem studied in this paper has the following features:
A. Known adversarial distribution (KAD): the probability
of the arrival of each task at each time is known in advance.
B. Reusable machines: the machine returns to the system
after completing a task; the processing delay is drawn from
known distributions.
C. Controllable processing time: each task can be processed
with different levels; a higher processing level generates a
higher reward but the expected delay is also higher.
D. Budgeted machine rejections: when a machine is as-
signed, it can reject the assignment with a penalty; reject-
ing a higher processing level task will cause higher penalty.
When the budget runs out, the machine is permanently re-
moved from the system.

The main contribution of this paper is designing an On-
line Machine and Level Assignment (OMLA) Algorithm for
the above problem, especially with multiple processing lev-
els. We prove that our algorithm achieves a 1/2-competitive
ratio when every machine has an infinite rejection budget, and
a ∆/(3∆ − 1)-competitive ratio when each machine has a
finite rejection budget, where ∆ is the largest budget of ma-
chines at the beginning. The conclusion shows that regardless
of the limited rejection budgets, the competitive ratio does not
depend on the processing levels, indicating that OMLA is in-
sensitive to controllable processing time.

Controllable processing time makes the problem studied in
the paper more realistic but also introduces substantially more
challenges to the online algorithm design and competitive
analysis. Controllable processing time expands the search-
ing space. Since each processing level causes different re-
wards, delays, and rejection budgets. The algorithm should
balance these dimensions as a result of coupled objective and
constraints. To tackle this challenge, in our online algorithm
design, we first use the joint probabilities of choosing a ma-
chine and a level as decision variables to formulate an offline
linear programming (LP). The optimal solution to the LP is
then leveraged to calculate the activation value and the base-
line value for each machine and level. These two values will
determine our decision on the machine and level when we
make decisions online. To bound the competitive ratio, we
introduce a reference system where each task with L levels
are reconstructed as L tasks with a single level. Then the
performance of the reference system is employed as an in-
termediate value to bound the competitive ratio. Mathemati-
cal derivations demonstrate that multiple processing levels do
not worsen the competitive ratio because the reference sys-
tem uniformly bounds different processing levels, and thus
the competitive ratio is insensitive to the controllable process-
ing time.

2 Related Work
One category of works related to this paper is Online Bi-
partite Matching, where the system needs to assign offline
machines to online tasks to maximize the utility [Mehta,
2013]. One subcategory of works focuses on the adversary
arrival order [Karp et al., 1990], and another subcategory as-
sumes known adversarial distribution (KAD) [Lowalekar et

al., 2020; Alaei et al., 1993] or known identical independent
distributions (KIID) [Shabtay and Steiner, 2007], where task
arrival follows known distributions. Motivated by real-world
scenarios, [Dong et al., 2021] and [Dickerson et al., 2021]
studied the case that machines are reusable, and [Jaillet and
Lu, 2014; Mehta et al., 2015; Andani et al., 2021] studied the
case that machines can reject task assignment. [Sumita et al.,
2022] studied both reusable machines and rejections. Other
topics studied in this field include fairness for task assign-
ment [Nanda et al., 2020; Ma et al., 2020], multi-unit demand
(a task may need multiple machines to process) [Goyal et al.,
2020; Hosseini et al., 2022], and multi-capacity agent (a ma-
chine can process multiple tasks) [Alonso-Mora et al., 2017;
Lowalekar et al., 2021]. However, there is no existing work
considering controllable processing time in the online bipar-
tite matching problem. A majority part of [Sumita et al.,
2022] can be regarded as a special case of our work when
controllable processing time is not considered. It gives a 1/2-
competitive algorithm when each offline machine can reject
unlimited times, and a ∆/(3∆ − 1)-competitive algorithm
when each machine can reject no more than ∆ times. Inter-
estingly, our proposed algorithm also gives the same compet-
itive ratios, but with substantially more complicated designs
and analyses. To this end, a key conclusion derived in our pa-
per is that the competitive ratio is “insensitive” to the process-
ing levels. Please note that another work [Hikima et al., 2022]
studied controllable reward and different arrival probabilities,
where the assignment impacts reward and arrival probabili-
ties, which is different from controllable processing time in
nature. Online bipartite matching is leveraged to solve many
real-world problems other than machine allocation, such as
ride-sharing [Lowalekar et al., 2020; Dickerson et al., 2021;
Nanda et al., 2020], crowd-sourcing [Goyal et al., 2020;
Liu et al., 2021; Hikima et al., 2022] and AdWords [Mehta et
al., 2007]. Still none of the existing work considered control-
lable processing time.

Another category of works related to this paper is Con-
trollable Processing Time. Controllable processing time is
studied in the context of scheduling. We can reduce the
processing time of a job at a cost of reduced processing re-
ward [Shabtay and Steiner, 2007; Tafreshian et al., 2020].
[Janiak and Kovalyov, 1996], [Chen et al., 1997] and [He
et al., 2007] study single machine scheduling. [Alidaee and
Ahmadian, 1993] and [Shabtay and Kaspi, 2006] study mul-
tiple parallel machine scheduling. [Cheng et al., 1996] em-
ploys bipartite matching to analyze multiple parallel machine
scheduling. The above works focus on the offline schedul-
ing problem. [Lu et al., 2017] and [Wang et al., 2017] study
online scheduling with controllable processing time. [Lu et
al., 2017] focuses on single machine scheduling and [Wang
et al., 2017] focuses on the flow shop scheduling. Con-
trollable processing time is also analyzed in the context of
stochastic lot-sizing problem. We can compress the produc-
tion time with extra cost, so that a better performance of
planning can be obtained [Tunc, 2021; Koca et al., 2015;
Koca et al., 2018]. These works optimize the performance
in an offline manner. To the best of our knowledge, no ex-
isting work considered controllable processing time for the
bipartite matching problem.
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3 Model
We present a formal description of our problem in this sec-
tion. We have a bipartite graph G = (U, V ;E), where U is
the set of machines and V is the set of repeatable tasks.1 E is
the set of edges indicating if a task v ∈ V can be processed by
a machine u ∈ U . For each task, we have L processing levels
L = {1, ..., L}, indicating the L quality levels. If task v is
processed by machine u ((u, v) ∈ E) with processing level
l, it will generate a reward of ru,v,l. Without loss of gener-
ality (WLOG), we have ru,v,l < ru,v,l′ when l < l′ (larger
processing level gives larger reward). The system runs on a
finite time horizon T ∈ N+. Each processing level l ∈ L
causes a random processing delay dl, which presents the oc-
cupation time to process a task with level l. In other words, if
a machine starts to process a task with level l, it becomes un-
available to any other tasks until time t+dl. dl is drawn from
a known distribution Dl. We have E[dl] < E[dl′ ] when l < l′

(larger processing level requires longer processing time). For
the convenience, we denote the set of edges connected to task
v by Ev for all task v (Ev = {(u, v)|(u, v) ∈ E}), and simi-
larly Eu is set of edges connected to machine u.

At each time t, task v may arrive with probability pv,t.
With a probability of 1 −

∑
v∈V pv,t, no task arrives at t.

The set of probability distributions {pv,t}v∈V,t∈[T ] is known
in advance (time variant but independent across time). When
a task v arrives, we immediately and irrevocably either assign
one machine which is a neighbor to v and is available, or dis-
card v. When we assign task v to machine u, we also specify
a processing level l. When receiving the assignment of task
v, machine u has two possible actions: with probability qe, u
accepts the assignment; with probability 1− qe, u rejects the
assignment (e = (u, v)). Suppose this assignment is specified
with processing level l, these two actions have two different
results. If u accepts this assignment, it immediately gets a
reward ru,v,l and becomes unavailable for a random period
dl. A machine u has a limited rejection budget (initialized
as ∆u). If u rejects this assignment, a rejection-penalty θl
is introduced. We assume that ∆u and θl are integers. This
penalty is taken from the remaining budget of u, denoted by
δu. We denote θ = maxl∈L θl. When a machine u runs out
of its remaining budget (δu ≤ 0), it is removed from the sys-
tem immediately and permanently. If a machine u is removed
from the system, it receives no more task assignments.

Each machine has a positive initial budget (∆u > 0).
Please note we allow ∆u = ∞ to indicate unlimited rejec-
tion. We also allow θl = 1 to indicate homogeneous rejection
penalty (to limit the number of rejections).

3.1 Solution Overview
Our objective is to maximize the sum reward. We focus on
the online setting: we only know the arrival of a task when it
arrives. We know the distribution of task arrival in advance
and the distribution of occupation time (KAD).

We first construct a linear programming (LP) Off to get an
optimal solution x∗ and an upper bound of the offline optimal
value, which is referred to as LP(Off). The optimal solution

1v ∈ V actually indicates a type of tasks. For presentation con-
venience, v is also called “a task” throughout this paper.

x∗ is then employed to construct our online algorithm. In
the meanwhile, the upper bound of the offline optimal value
LP(Off) will be set as a benchmark to evaluate the online
algorithm, so that we then evaluate the competitive ratio be-
tween the performance of online algorithm and the offline op-
timal value.

3.2 Offline Optimal Value and Competitive Ratio
We consider the offline optimization version of the original
problem as the benchmark and define the competitive ratio.
In the offline setting, the full task sequence I is known in
advance. However, we do not know whether a machine will
accept or reject an assignment until it happens. We only have
the probability of acceptance qe. Given a full task sequence
I , if an offline algorithm maximizes the expected reward, it is
an offline optimal algorithm for I . This maximized expected
reward for I is denoted by OPT(I). The expected OPT(I) on
every sequence I is EI∼I [OPT(I)], which is referred to as
the offline optimal value.

An online algorithm ALG is α-competitive if the expected
reward obtained by ALG is at least α times the offline optimal
value (ie., if EI∼I [ALG(I)] ≥ αEI∼I [OPT(I)] for any I).

3.3 Linear Programming
It is not straightforward to quantify the offline optimal value
EI∼I [OPT(I)]. In what follows, we construct an offline LP
to get the upper bound of the offline optimal value.

max
xe,l,t,
∀e∈E,
l∈L,
t∈[T ]

∑
t∈[T ]

∑
e∈E

qe
∑
l∈L

ru,v,lxe,l,t

s.t.
∑
t′<t

∑
e∈Eu

qe
∑
l∈L

xe,l,t′Pr{dl ≥ t− t′ + 1}

+
∑
e∈Eu

qe
∑
l∈L

xe,l,t ≤ 1, (∀u ∈ U, t ∈ [T ]), (1)

∑
t∈[T ]

∑
e∈Eu

∑
l∈L

xe,l,t

[
θqePr{dl > T − t}

+ (1− qe)θl
]
≤ ∆u + θ − 1, (∀u ∈ U), (2)

0 ≤
∑
e∈Ev

∑
l∈L

xe,l,t ≤ pv,t, (∀v ∈ V, t ∈ [T ]), (3)

0 ≤
∑
l∈L

xe,l,t ≤ pv,t, (∀v ∈ V, e ∈ Ev, t ∈ [T ]), (4)

0 ≤
∑
e∈Eu

∑
l∈L

xe,l,t ≤ 1, (∀u ∈ U, t ∈ [T ]), (5)

This LP is referred to as Off. The optimal solution to Off is
x∗ def

= {x∗
e,l,t}, and the optimal value for the objective func-

tion of Off is referred to as LP(Off). LP(Off) is the upper
bound for EI∼I [OPT(I)] (as shown in Lemma below). In
addition, x∗ is to be employed in the online algorithm.

In the following Lemma, we show that LP(Off) is a valid
upper bound for the offline optimal value EI∼I [OPT(I)].
Lemma 1. (LP(Off) Upper Bound) LP(Off)
≥ EI∼I [OPT(I)]
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Proof. Proofs of all Lemmas and Theorems are in the full
version [Wu et al., 2023].

3.4 Online Machine and Level Assignment
(OMLA) Algorithm

In this section, we use the optimal solution to Off to con-
struct our OMLA algorithm.

Design overview. In the online algorithm, we first decide
the probability that we choose machine-level pair (u, l) when
task v arrives at time t. Then we decide whether or not to as-
sign machine u to task v with processing level l, by compar-
ing the different expected rewards (of machine u) brought by
different decisions. We present our online algorithm (OMLA)
in Algorithm 1 and we discuss them line by line.

OMLA. Upon the arrival of task v, we first choose a ma-
chine u and a processing level l with probability x∗

e,l,t/pv,t
(Line 4). Suppose u has a remaining rejection budget of δ at
t. If u has run out of the rejection budget (δ ≤ 0) or is occu-
pied by a previous task, we do not assign u or assign any other
machine to v (Line 5). Then, we define the baseline value (R-
value) of u at t as the expected sum reward of u at and after t
without knowing the arrival at t, which is denoted by Rδ

u,t; we
define the activation value (Q-value) of u at t as the expected
sum reward of u at and after t if u is assigned to v with pro-
cessing level l, which is denoted by Qδ

e,l,t. More details on
the derivations of baseline values and activation values will
be given shortly. Baseline value and activation value will be
compared to make a decision. We compare activation value
at t and the baseline value at t + 1, to decide if an active ac-
tion at t (making the assignment) is beneficial. If the baseline
value of u at t+1 is larger, we do not assign u and discard v;
Otherwise, if the activation value is larger at t, we assign u to
v with l (Line 6). When u accepts this assignment, it becomes
occupied for a random time dl (Line 8). When u rejects this
assignment, a rejection penalty θl is taken from u’s rejection
budget δ (Line 9).

Calculation of Activation Values and Baseline Values
Because we focus on the KAD model, we can calculate each
activation value and baseline value in advance (before we ex-
ecute Algorithm 1). The calculation is presented in Algorithm
2. When u has a positive remaining budget (δ > 0), the acti-
vation value Qδ

e,l,t consists of two parts: 1⃝With probability

Algorithm 1 OMLA Algorithm
Input: U , V , E, {Qδ

e,l,t}, {Rδ
u,t}, x∗

1: for all t← 1 to T do
2: if no task arrives then skip
3: else (v arrives)
4: choose pair (u, l) with probability x∗

e,l,t/pv,t
5: if u is not occupied, u has a positive remaining

budget δu > 0 and Qδ
e,l,t ≥ Rδ

u,t+1 then
6: we assign (u, l) to v
7: if u accepts then
8: draw dl from Dl, u gets occupied for dl
9: else δu ← δu − θl

Algorithm 2 Calculation of Activation and Baseline Values
Input: U , V , E, L, T , {θl}, {qe}, {ru,v,l}, {Dl}, {∆u}

1: Solve LP(Off) to obtain x∗

2: ∆← max∆u

3: for all (δ, u, v, l) that (u, v) ∈ E, δ > 0 and l ∈ L do
4: Qδ

e,l,T ← qeru,v,l

5: for all (δ, u) that δ > 0 and u ∈ U do
6: a← 0
7: for all v that (u, v) ∈ Eu do
8: b← 0
9: for all l ∈ L do b← b+ x∗

e,l,T qeru,v,l

10: a← a+ b
11: Rδ

u,T ← a

12: for t← T − 1 to 1 do
13: for (δ, u) that δ > 0 and u ∈ U do
14: for (v, l) that (u, v) ∈ Eu and l ∈ L do
15: a← 0
16: if δ ≥ θl then b← Rδ−θl

u,t+1
17: else b← 0
18: for d← 1 to T − t+ 1 do
19: a← a+Rδ

u,t+dPr{dl = d}
20: Qδ

e,l,t ← qe(ru,v,l + a) + (1− qe)b

21: Calculate Rδ
u,t by (7)

Output: {Qδ
e,l,t}, {Rδ

u,t}, x∗

qe (e = (u, v)), u accepts the assignment and immediately
gets a reward ru,v,l (6). After a random occupation time dl,
u finishes this task, and its baseline value becomes Rδ

u,t+dl

at t+ dl (Lines 18–19); 2⃝With probability 1− qe, u rejects
the assignment and takes a rejection penalty θl on its remain-
ing budget δ, and its baseline value becomes Rδ−θl

u,t+1 at t + 1
(Lines 16–17). By the above two parts, we can calculate the
activation value Qδ

e,l,t:

Qδ
e,l,t =qe(ru,v,l +

∑
d′∈[T−t]

Pr{dl = d′}Rδ
u,t+d′)

+ (1− qe)R
δ−θl
u,t+1, (δ > 0, t ∈ [T ]). (6)

Formula (6) is calculated in Line 20. When u has run out of
the rejection budget (δ ≤ 0), it is removed from the market.
We set Qδ

e,l,t = 0 if δ ≤ 0 or t > T as boundary values. We
choose the higher one between the activation value at t and
the baseline value at t + 1, so we have the expected reward
of the chosen u as max{Qδ

e,l,t, R
δ
u,t+1}. Since the probability

that v arrives at t and (u, l) is chosen is x∗
e,l,t, we can calculate

each baseline value Rδ
u,t (Line 21) by

Rδ
u,t =

∑
e∈Eu

∑
l∈L

x∗
e,l,t max{Qδ

e,l,t, R
δ
u,t+1}

+ (1−
∑
e∈Eu

∑
l∈L

x∗
e,l,t)R

δ
u,t+1, (δ > 0, t ∈ [T ]). (7)

We set Rδ
u,t = 0 if δ ≤ 0 or t > T as boundary values.

In order to execute our online algorithm, we need to calcu-
late each Qδ

e,l,t and Rδ
u,t in advance. This can be done with
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the initial condition at T (Lines 3–11)
Qδ

e,l,T = qeru,v,l, ∀e ∈ E, l ∈ L, δ > 0,

Rδ
u,T =

∑
e∈Eu

∑
l∈L

x∗
e,l,T qeru,v,l, ∀u ∈ U, δ > 0. (8)

4 Competitive Ratio Analysis
In this section, we analyze the competitive ratio of our on-
line algorithm. We have already derived Lemma 1, where we
find an upper bound LP(Off) of the offline optimal value.
Then we first introduce our reference system, which provides
a lower bound of the original system (Lemma 2). In this ref-
erence system, each task with L levels are reconstructed as
L tasks with a single level. After Lemma 2, we analyze the
competitive ratio in two branches separately: 1⃝ each ma-
chine u has an infinite initial rejection budget ∆u = ∞ (the
unlimited rejection case); 2⃝ each machine u has a finite re-
jection budget ∆u < ∞. For the unlimited rejection case,
we first find a lower bound for the reference system (Lemma
3). Then we construct the auxiliary inequality for the un-
limited rejection case (Lemma 4) by Lemmas 1–3. Then by
Lemma 4, we prove that OMLA is 1/2-competitive for the
unlimited rejection case (Theorem 1). For the limited rejec-
tion case, we first find the performance induction inequality
of the reference system (Lemma 5). With this inequality, we
find a lower bound of the reference system (Lemma 6). Then
we construct the auxiliary inequality for the limited rejection
case (Lemma 7) by Lemmas 1, 2, and 6. By Lemma 7, we
prove that OMLA is ∆/(3∆− 1)-competitive for the limited
rejection case, where ∆ = maxu∈U ∆u (Theorem 2).

4.1 Reference System
It is not straightforward to directly analyze the performance
of the original system, so that we need to find an interme-
diate value to bound it. One key challenge of the original
problem is introduced by different processing levels. With
controllable processing time, L processing levels form one
additional dimension. The reference system is to construct
another bipartite matching system without this additional di-
mension, to provide a lower bound of the original tripartite
matching system. We will also need to show: 1) the reference
system is a valid system; and 2) the expected reward of this
reference system is a valid lower bound for R∆u

u,1 .
For each machine u, we construct a reference system for

u as follows. The reference system has a bipartite graph
G′

u = (U ′
u, V

′
u;E

′
u, ), where U ′

u contains only one machine
u, V ′

u is a set of non-repeatable tasks. At each t, one of L
tasks may come, denoted by v′u,l,t, with a probability p′u,l,t.
Each of L× T tasks in V ′

u is different from each other. v′u,l,t
can only be processed with processing level l. Each v′u,l,t
has an edge to u. If task v′u,l,t arrives at t and u is available,
we must choose u and we must decide whether to assign u
to v′u,l,t. Suppose u’s remaining budget is δ at t. Similar
to the baseline value and activation value (Section 3.4), we
define the reference baseline value (resp. the reference acti-
vation value) as R̃δ

u,t (resp., Q̃δ
u,l,t). The calculation of ref-

erence baseline values and reference activation values is sim-
ilar to that of baseline values and activation values, and will

be given shortly. We compare the reference activation value
of u at t and the reference baseline value of u at t + 1. The
higher one indicates our choice: If the former one is larger,
we assign u to v′u,l,t; Otherwise, we discard v′u,l,t. The prob-
ability that u accepts this assignment is q′u,l,t. The reward of
processing v′u,l,t is r′u,l,t. The processing time d′l is drawn
from the known distribution Dl. The rejection penalty is θl,
same as in the original system. The initial budget of u is
∆u, same as in the original system. We set the parameters
p′u,l,t, q′u,l,t, and r′u,l,t in the reference system as follows:
The probability that v′u,l,t arrives at t: p′u,l,t =

∑
e∈Eu

x∗
e,l,t;

The probability that u accepts the assignment of task v′u,l,t:
q′u,l,t = (

∑
e∈Eu

qex
∗
e,l,t)/p

′
u,l,t if p′u,l,t > 0; otherwise

q′u,l,t = 0; The reward of processing v′u,l,t (with level l):
r′u,l,t = (

∑
e∈Eu

qeru,v,lx
∗
e,l,t)/(p

′
u,l,tq

′
u,l,t) if p′u,l,tq

′
u,l,t >

0, otherwise r′u,l,t = 0. The distribution of occupation time
of processing level l is Pr{d′l = d} = Pr{dl = d}.

With the above parameters, we can calculate Q̃δ
u,l,t and

R̃δ
u,t by

R̃δ
u,t =

∑
l∈L

p′u,l,t max{Q̃δ
u,l,t, R̃

δ
u,t+1}

+
(
1−

∑
l∈L

p′u,l,t

)
R̃δ

u,t+1, (δ > 0, t ∈ [T ]), (9)

Q̃δ
u,l,t =q′u,l,t

(
r′u,l,t +

∑
d′∈[T−t]

Pr{dl = d′}R̃δ
u,t+d′

)
+ (1− q′u,l,t)R̃

δ−θl
u,t+1, (δ > 0, t ∈ [T ]). (10)

We set R̃δ
u,t = 0 and Q̃δ

u,l,t = 0 if δ ≤ 0 or t > T . We
do not need to calculate the specific value of Q̃δ

u,l,t and R̃δ
u,t

(no computational complexity is introduced), as we only need
these values in the analysis. The reference system for each u
is a valid system, because each p′u,l,t and q′u,l,t is a valid prob-
ability value. From (5), we have p′u,l,t ≤ 1 and

∑
l p

′
u,l,t ≤ 1.

From (1), we have q′u,l,t ≤ 1. Therefore, p′u,l,t and q′u,l,t are
valid probability values and the reference system for each ma-
chine u is a valid system.

In Lemma 2, we show that for each u, t, and δ, the perfor-
mance of the reference system R̃δ

u,t is a lower bound of the
performance of u in the original system Rδ

u,t.

Lemma 2. (Reference System Bounds Original System)
Rδ

u,t ≥ R̃δ
u,t, ∀δ and t.

By Lemma 2, we can use the lower bound of R̃δ
u,t as a

valid lower bound for Rδ
u,t. With this reference system, we

first analyze the competitive ratio when each machine has an
infinite initial rejection budget, then analyze the competitive
ratio when each machine has an initial rejection budget no
more than ∆, where ∆ = maxu∈U ∆u.

4.2 Unlimited Rejection Case
In this section, we analyze the competitive ratio for the unlim-
ited rejection case. In the unlimited rejection case, each u has
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an infinite initial rejection budget ∆u = ∞. One straight-
forward way is to let ∆u to be sufficiently large when we
run Algorithms 1 and 2. A more efficient way is to replace
Rδ

u,t, Q
δ
e,l,t, R̃

δ
u,t, and Q̃δ

u,l,t (∀δ) by Ru,t, Qe,l,t, R̃u,t, and
Q̃u,l,t respectively as they are indifferent under different δ.
The slightly modified Algorithms 1 and 2 are shown in the
full version [Wu et al., 2023].

The main result of this section is that Algorithm 1 is 1/2-
competitive for the unlimited rejection case (Theorem 1). To
get this result, we first get a lower bound of the performance
of the reference system (Lemma 3), then construct an aux-
iliary inequality (Lemma 4) to show that a lower bound of
the competitive ratio can be obtained by the ratio between
the lower bound of

∑
u R̃u,1 and the offline optimal value

LP(Off). By Lemma 4, we get the result in Theorem 1.
We first show that we have a lower bound for R̃u,1 in

Lemma 3. R̃u,1 is u’s expected sum reward at and after t = 1
(overall expected sum reward of u) in the reference system.
Lemma 3. (Reference System Lower Bound) For each u, we
have

R̃u,1 ≥
1

2

∑
t∈[T ]

∑
l∈L

∑
e∈Eu

qeru,v,lx
∗
e,l,t. (11)

To prove Lemma 3, the key step is to establish a dual LP to
derive the bound. We also utilize the property that “the sum
of maximum is no less than the maximum of sum”. Next,
we show the auxiliary inequality for the unlimited case by
Lemmas 1–3.
Lemma 4. (Auxiliary Inequality) For the original system, in
the unlimited rejection case, we have

EI∼I [ALG(I)]

EI∼I [OPT(I)]
≥

1
2

∑
u∈U

∑
t∈[T ]

∑
l∈L

∑
e∈Eu

qeru,v,lx
∗
e,l,t

LP(Off)
. (12)

Then we introduce Theorem 1. We prove that Algorithm 1
is 1/2-competitive for the unlimited rejection case.
Theorem 1. (Competitive Ratio of Unlimited Rejection)
OMLA is 1/2-competitive for the problem with unlimited re-
jection budget.

4.3 Limited Rejection Case
In this section, we analyze the competitive ratio for the lim-
ited rejection case. Each u has a finite initial rejection budget
∆u <∞. The main result of this subsection is that Algorithm
1 is ∆/(3∆ − 1)-competitive for the limited rejection case,
where ∆ = maxu∈U ∆u (Theorem 2). To get this result,
we first present performance induction inequality (Lemma 5),
which is used to get a lower bound of the performance of the
reference system (Lemma 6). Then we construct an auxiliary
inequality (Lemma 7) to show that a lower bound of the com-
petitive ratio can be obtained by the ratio between the lower
bound of

∑
u R̃

∆u
u,1 and the offline optimal value LP(Off).

Finally, by Lemma 7, we conclude the result in Theorem 2.
We first show an inequality on R̃δ−θl

u,t and R̃δ
u,t, which is

used to get a lower bound of the performance of the reference
system. Please note that this inequality is new for the limited
rejection as we need to consider the remaining budget δ now.

Lemma 5. (Performance Induction Inequality) For all δ, t
and l, we have

R̃δ−θl
u,t ≥

δ − θl
δ

R̃δ
u,t. (13)

Then we show that we have a lower bound for R̃∆u
u,1 .

Lemma 6. (Reference System Lower Bound) For each u, we
have

R̃∆u
u,1 ≥

∆u

3∆u − 1

∑
t∈[T ]

∑
l∈L

∑
e∈Eu

qeru,v,lx
∗
e,l,t. (14)

The key step is to establish a dual LP to derive the bound.
By Lemma 6, we can eliminate the influence of different re-
jection penalty values (non-homogeneous θl) of different lev-
els from (6). In the proof, it is sufficient to derive a bound
utilizing the dual LP, and the dual LP can eliminate the im-
pact of non-homogeneous θl in (2).

Next, we show the auxiliary inequality for the limited re-
jection case by Lemmas 1, 2, and 6.
Lemma 7. (Auxiliary Inequality) For the original system, un-
der the limited rejection case, we have

EI∼I [ALG(I)]

EI∼I [OPT(I)]
≥

∑
u∈U

∆u

3∆u − 1

∑
t∈[T ]

∑
l∈L

∑
e∈Eu

qeru,v,lx
∗
e,l,t

LP(Off)
.

(15)
Then we introduce Theorem 2. We prove that OMLA is

∆/(3∆−1)-competitive for the limited rejection case, where
∆ = maxu∈U ∆u.
Theorem 2. OMLA is a ∆/(3∆− 1)-competitive algorithm
for the limited rejection case, where ∆ = maxu∈U ∆u.

5 Evaluation
5.1 Benchmarks and Synthetic Dataset
In this section, we evaluate OMLA against five benchmarks:
1) Random (R): the system randomly chooses a machine-
level pair when an online task arrives. If the chosen machine
is available, we assign this machine-level pair. Otherwise,
we discard the task. 2) Utility Greedy (UG): when task v ar-
rives, the system ranks all the machine-level pairs by ru,v,l
and chooses the highest one available. 3) Efficiency Greedy
(EG): with the expectation E[dl] of the occupation time of
processing level l calculated in advance, when task v arrives,
the system ranks all the machine-level pair by ru,v,l/E[dl]
and chooses the highest one available. 4) Utility Greedy +
(UG+): when a task v arrives, we choose a machine u by
[Sumita et al., 2022], then choose the level l with the highest
ru,v,l. 5) Efficiency Greedy + (EG+): when a task v arrives,
we choose a machine u by [Sumita et al., 2022], then choose
the level l with the highest ru,v,l/E[dl]. Please note that that
[Sumita et al., 2022] did not consider processing level. We
use the approach in [Sumita et al., 2022] to choose machine
and then use greedy method to choose level in UG+ and EG+.

We generate the synthetic data set in the experiment. (The
approach was also adopted in [Sumita et al., 2022].) We set
|U | = 10, |V | = 25, and T = 100. For each u and v, an
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(a) L=12 (b) ∆=20 (c) ∆=∞

Figure 1: Online Reward / LP(Off) of different L and ∆.

(a) L=12 (b) ∆=20 (c) ∆=∞

Figure 2: Online Reward / LP(Off) of different benchmarks with different L and ∆.

edge (u, v) exists in E with probability 0.1. For each e ∈ E,
we set qe ∼ U(0.5, 1) and ru,v,l ∼ U(a · l0.2, a · l0.4), where
a ∼ U(0.5, 1). For each l ∈ L we set the distribution Dl as
a binomial distribution B(T, l1.2/20). For settings (a), (b) in
Figure 2 and (a) (b) in Figure 3, ∆u is drawn uniformly from
[∆]. We set the rejection penalty for level l as θl = l + 2.

5.2 Results
In Figure 1, we investigate the ratio between the online per-
formance of OMLA and LP(Off). We randomly generate a
set of {pv,t}, E and {qe} for each sub-figure. For each pair
of ∆ and L, we generate a set of {∆u} and {ru,v,l}, then we
run 50 rounds of experiment. In each round of experiment, we
randomly generate 50 task sequences from {pv,t}, and calcu-
late the ratio between the averaged total reward of OMLA and
LP(Off). The orange bars in Figure 1 represent the compet-
itive ratio of OMLA for each pair of ∆ and L. The red dots
in Figure 1 show the ratio between the averaged online total
reward and LP(Off). Figure 1 shows that the ratio between
the averaged performance of OMLA is indeed higher than the
theoretical lower bound of the competitive ratio. The results
in Figure 1 verifies our conclusion on the competitive ratios.

In Figure 2, we compare the performance of OMLA with
benchmarks. We randomly generate a set of {pv,t}, E and
{qe} for each sub-figure. For each pair of ∆ and L, we gen-
erate a set of {∆u} and {ru,v,l}. Then for each algorithm,

we randomly generate 250 task sequences from {pv,t}, and
calculate the ratio between the averaged total reward with
LP(Off). OMLA outperforms all of the benchmarks with
each pair of ∆ and L. In Figures 2(b) and 2(c), the per-
formance of OMLA is slightly higher than the performance
of UG+ and EG+ when the number of processing level is 2,
but the performance gain becomes larger when there there
are more processing levels. This demonstrates that OMLA
is more advantageous for more processing levels as it is de-
signed for joint assignment of machine and level. The results
demonstrate that OMLA has the best performance with con-
trollable processing time. OMLA provides both theoretical
performance guarantees (competitive ratio) and the best aver-
age performance on the synthetic dataset.

6 Conclusion
In this paper, we investigate the online bipartite match-
ing problem with controllable processing time. We design
OMLA, an online algorithm to simultaneously assign an of-
fline machine and a processing level to each online task.
We prove that OMLA achieves 1/2-competitive ratio if each
machine has unlimited rejection budget and ∆/(3∆ − 1)-
competitive ratio if each machine has an initial budget up to
∆. Furthermore, we conduct experiments on synthetic data
sets, where the results demonstrate that OMLA outperforms
benchmarks under a variety of environments.
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