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Abstract
The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) is the most prominent multi-objective
evolutionary algorithm for real-world applications.
While it performs evidently well on bi-objective
optimization problems, empirical studies suggest
that it is less effective when applied to problems
with more than two objectives. A recent math-
ematical runtime analysis confirmed this obser-
vation by proving the NGSA-II for an exponen-
tial number of iterations misses a constant fac-
tor of the Pareto front of the simple 3-objective
ONEMINMAX problem.
In this work, we provide the first mathematical run-
time analysis of the NSGA-III, a refinement of the
NSGA-II aimed at better handling more than two
objectives. We prove that the NSGA-III with suf-
ficiently many reference points – a small constant
factor more than the size of the Pareto front, as
suggested for this algorithm – computes the com-
plete Pareto front of the 3-objective ONEMINMAX
benchmark in an expected number of O(n log n) it-
erations. This result holds for all population sizes
(that are at least the size of the Pareto front). It
shows a drastic advantage of the NSGA-III over the
NSGA-II on this benchmark. The mathematical ar-
guments used here and in the previous work on the
NSGA-II suggest that similar findings are likely for
other benchmarks with three or more objectives.

1 Introduction
Many practical applications require to optimize for multi-
ple, conflicting objectives. Such tasks can be tackled by
population-based algorithms, whose population eventually
represents a set of Pareto solutions, which cannot strictly
be dominated by any other solution. Thereby, they represent
multiple useful trade-offs between the objectives and allow
the user to choose among these according to their personal
preferences. Indeed, evolutionary algorithms (EAs), or, more
precisely, multi-objective evolutionary algorithms (MOEAs),

∗Full version at https://arxiv.org/abs/2211.08202.
‡Work done while visiting École Poytechnique, France.

have been successfully applied to many real-world problems
[Zhou et al., 2011]. Among these, Zhou et al. [Zhou et al.,
2011] identify the non-dominated sorting genetic algorithm
(NSGA-II) [Deb et al., 2002] as the most prominent one.

Both empirical evaluations [Khare et al., 2003; Purshouse
and Fleming, 2007] and recent mathematical runtime analy-
ses (see the previous works section) confirm the strong re-
sults of the NSGA-II on bi-objective benchmarks. The per-
formance on problems with 3 or more objectives, however, is
not as well understood. Empirical studies, for example [Khare
et al., 2003], suggest that the NSGA-II struggles with such
problems. A recent mathematical runtime analysis [Zheng
and Doerr, 2022b] shows that the NSGA-II regularly loses
desirable solutions when optimizing the 3-objective 3-OMM
problem, and consequently, cannot find its Pareto front (the
set of Pareto optimal solution values) in sub-exponential time.
As a remedy, Deb and Jain [Deb and Jain, 2014] proposed
a modified version of the NSGA-II, called NSGA-III. It re-
places the crowding distance, a measure which the NSGA-II
uses in addition to the dominance relation to determine which
individuals are taken in the next generation, by a procedure
involving reference points in the solution space. Their evalu-
ations on benchmarks with 3 to 15 objectives show that the
NSGA-III is suitable for more than 2 objectives.

These empirical insights are, however, not yet backed with
a theoretical understanding. In order to fill this gap, we math-
ematically analyze the runtime of the NSGA-III on the 3-
OMM problem. We show that by employing sufficiently
many reference points (a small constant factor more than
the size of the Pareto front, as suggested for this algorithm)
and a population at least of the size of the Pareto front,
N ≥ (n2 + 1)2, once a solution for a point on the Pareto
front is found, the population will always contain such a so-
lution. This is a notable difference to the NSGA-II [Zheng
and Doerr, 2022b] and enables us to prove that after an ex-
pected number of O(n log n) iterations the NSGA-III (for
all future iterations) has a population that covers the Pareto
front. Overall, this result indicates, in a rigorous manner, that
the selection mechanism of the NSGA-III has significant ad-
vantages over the one of the NSGA-II. Possibly, our result
also indicates that more algorithm users should switch from
the NSGA-II, still the dominant algorithm in practice, to the
NSGA-III. We note that the latter has as additional parameter
the number of reference points, but the general recommenda-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5657

https://arxiv.org/abs/2211.08202


tion to use by a small factor more reference points than the
size of the Pareto front (or, in the case of approximate solu-
tions, the size of the desired solution set) renders it easy to
choose this parameter. We note that our results support this
parameter choice, our proven guarantees also hold from the
point on when the number of reference points is a small con-
stant factor larger than the Pareto front. We note that using
more reference points does not significantly increase the run-
time (not at all when counting fitness evaluations and only
moderately when counting wall-clock time), so in any case
the choice of this parameter appears not too critical.

2 Previous Work

For the sake of brevity, we do not further discuss empirical
and practical works here. Since the beginning of the cen-
tury, mathematical runtime analyses [Auger and Doerr, 2011;
Neumann and Witt, 2010; Jansen, 2013; Zhou et al., 2019;
Doerr and Neumann, 2020] have been employed also to
multi-objective randomized search heuristics [Laumanns et
al., 2002; Giel, 2003; Thierens, 2003]. At first, research
focused on analyzing simple, synthetic algorithms like the
SEMO and the global SEMO (GSEMO). Though in practi-
cal applications, usually more sophisticated algorithms are
used, these analyses still led to useful insights. Later, the run-
times of more realistic algorithms have been studied math-
ematically [Brockhoff et al., 2008; Nguyen et al., 2015;
Doerr et al., 2016; Li et al., 2016; Huang et al., 2019;
Huang and Zhou, 2020; Bian et al., 2023]. Only recently,
first mathematical runtime analyses of the NSGA-II on bi-
objective benchmarks have appeared. The first one of these
proves a running time of O(Nn log n) function evalua-
tions on the ONEMINMAX benchmark and of O(Nn2) on
the LOTZ (LEADINGONESTRAILINGZEROES) benchmark,
when employing a population of N ≥ 4(n + 1) individu-
als [Zheng et al., 2022]. A central observation in their proof
is that this population size suffices to ensure that, once a so-
lution for a point on the Pareto front is sampled, the pop-
ulation will always contain a solution with this objective
value. Employing a population size that exactly matches the
size of the Pareto front does not suffice, as then, for an ex-
ponential time, the NSGA-II will miss a constant fraction
of the Pareto front. Nevertheless, a smaller population is
still able to find good approximations of the Pareto front
[Zheng and Doerr, 2022a]. Further, by assuming the objec-
tives to be sorted identically, the required size of the popu-
lation was reduced to 2(n + 1) [Bian and Qian, 2022]. The
same work studies the NSGA-II when employing crossover,
but does not improve the running time bounds of [Zheng
et al., 2022]. Also, it introduces a novel selection mecha-
nism, improving the running time on the LOTZ benchmark to
O(n2). Recently, the NSGA-II was studied on a multimodal
benchmark [Doerr and Qu, 2023a]. Very recently, also lower
bounds were proven [Doerr and Qu, 2023b], examples for the
usefulness of crossover were found [Doerr and Qu, 2023c;
Dang et al., 2023], and a runtime analysis on a combinatorial
optimization problem appeared [Cerf et al., 2023]. All these
results only cover bi-objective benchmarks.

The only mathematical runtime analysis of the NSGA-II
on a benchmark consisting of more than two objectives gave
a disillusioning result [Zheng and Doerr, 2022b]. When run
on the simple ONEMINMAX benchmark, a multi-objective
version of the classic ONEMAX benchmark, and the number
of objectives is some constant m ≥ 3, the combined par-
ent and offspring population can contain only O(n) solutions
with positive crowding distance. All other solutions have a
crowding distance of zero, hence the selection between them
is fully at random. Since this benchmark has a Pareto front
size of order n⌈m/2⌉, at least such a population size is neces-
sary when trying to compute the Pareto front. With these (nec-
essary) parameters, almost all selection decisions are random,
which easily implies that regularly Pareto optimal solution
values are lost from the population. This easy argument sug-
gests that the difficulties proven in that work are not restricted
to the ONEMINMAX benchmark, but are likely to appear for
many problems having at least three objectives.

For the simple SEMO, more results exist on benchmarks
with more than two objectives. We describe them briefly to
ease the comparison, but note that the very different main
working principle – keeping all non-dominated solutions –
makes the SEMO somewhat special and not always very
practical. The first bounds on the expected number of func-
tion evaluations when optimizing the m-objective variants of
COUNTINGONESCOUNTINGZEROES and LEADINGONES-
TRAILINGZEROES, mCOCZ and mLOTZ, are in O(nm+1),
for bit strings of length n [Laumanns et al., 2004b]. For
mCOCZ, the bound was later improved to O(nm), if m >
4, and O(n3 log n), if m = 4 [Bian et al., 2018]. Fur-
ther, the MOEA/D, an algorithm that decomposes a multi-
objective problem into multiple single-objective problems
and solves them in a co-evolutionary manner, has been stud-
ied on mCOCZ and mLOTZ [Huang et al., 2021]. As this
approach drastically differs from the NSGA-II and NSGA-III,
we do not discuss these results in detail.

We note that all these result consider synthetic prob-
lems composed of unimodal objectives. This is not surpris-
ing given that a multi-objective analogue of the multimodal
JUMP benchmark was proposed only recently [Doerr and
Zheng, 2021] and given that there are only very sporadic
runtime analyses for bi-objective combinatorial optimiza-
tion problems (not counting those from multi-objectivizing
single-objective problems), e.g., [Laumanns et al., 2004a;
Kumar and Banerjee, 2006; Neumann, 2007; Horoba, 2009;
Neumann and Witt, 2022; Cerf et al., 2023]

3 Preliminaries
We now define the required notation for multi-objective op-
timization as well as the considered objective functions and
give an introduction to the NSGA-III.

3.1 Multi-objective Optimization
For m ∈ N, an m-objective function f is a tuple (f1, . . . , fm),
where fi : Ω → R for some search space Ω. For all x ∈ Ω,
we define f(x) = (f1(x), . . . , fm(x)). Other than in single-
objective optimization, there is usually no solution that min-
imizes all m objective functions simultaneously. For two so-
lutions x, y, we say that x dominates y and write x ⪯ y if and
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only if fj(x) ≤ fj(y) for all 1 ≤ j ≤ m. If additionally there
is a j0 such that fj0(x) < fj0(y), we say that x strictly dom-
inates y, denoted by x ≺ y. A solution is Pareto-optimal if
it is not strictly dominated by any other solution. We refer to
the set of objective values of Pareto-optimal solutions as the
Pareto front. In our analyses, we analyze the number of func-
tion evaluations until the population covers the Pareto front,
i.e., until for each value p on the Pareto front the population
contains a solution x with f(x) = p. For a vector v =

(v1
v2
v3

)
,

we denote its length by

|v| =
√
v21 + v22 + v23 .

3.2 3-OMM Benchmark
We are interested in studying the NSGA-III on a 3-objective
function. The ONEMINMAX function, first proposed by [Giel
and Lehre, 2010], translates the well-established ONEMAX
benchmark into a bi-objective setting. It is defined as
ONEMINMAX : {0, 1}n → N× N by

ONEMINMAX(x) = (ZEROMAX(x), ONEMAX(x))

=

(
n−

n∑
i=1

xi,

n∑
i=1

xi

)
for all x = (x1, . . . , xn) ∈ {0, 1}n.

The following 3-objective version 3-OMM (for 3-
ONEMINMAX) was proposed in [Zheng and Doerr, 2022b].
For even n, define 3-OMM : {0, 1}n → N3 by

3-OMM(x) =

n−
n∑

i=1

xi,

n/2∑
i=1

xi,
n∑

i=n/2+1

xi


for all x = (x1, . . . , xn) ∈ {0, 1}n.

3.3 NSGA-III
The main structure of the NSGA-III [Deb and Jain, 2014]
is identical to the one of the NSGA-II [Deb et al., 2002]. It
is initialized with a random population of size N . In each
iteration, the user applies mutation and/or crossover operators
to generate an offspring population of size N . As the NSGA
framework is an MOEA with a fixed population size, out of
this total of 2N individuals, N have to be selected for the next
iteration.

Because non-dominated solutions are to be preferred, the
following ranking scheme is used to set the dominance re-
lation as the predominant criterion for the survival of indi-
viduals. Individuals that are not strictly dominated by any
other individual in the population obtain rank 1. Recursively,
the other ranks are defined. Each individual that has not yet
been ranked and is only strictly dominated by individuals of
rank 1, . . . , k − 1 is assigned rank k. Clearly, an individual
is more interesting the lower its rank is. Let Fi denote the
set of individuals with rank i and let i∗ be minimal such that∑i∗

i=1 |Fi| ≥ N . All individuals with rank at most i∗ − 1 sur-
vive into the next generation. Further, 0 < k ≤ N individuals
of rank i∗ have to be selected for the next generation such that
the new population is again of size N , and the next iteration
can begin. The only difference between the NSGA-II and the

Algorithm 1: NSGA-II and NSGA-III
1 Let the initial population P0 be composed of N

individuals chosen independently and uniformly at
random from {0, 1}n.

2 for t = 0, 1, 2, . . . do
3 Generate offspring population Qt with size N
4 Use fast-non-dominated-sort() from Deb et al.

[Deb et al., 2002]) to divide Rt = Pt ∪Qt into
F1, F2, . . .

5 Find i∗ ≥ 1 such that
∑i∗−1

i=1 |Fi| < N and∑i∗

i=1 |Fi| ≥ N

6 Zt =
⋃i∗−1

i=1 Fi

7 Select F̃i∗ ⊆ Fi∗ such that |Zt ∪ F̃i∗ | = N (use
crowding-distance for NSGA-II and Algorithm 3
for NSGA-III)

8 Pt+1 = Zt ∪ F̃i∗

NSGA-III is the procedure of selecting the k individuals of
rank i∗. While the NSGA-II employs crowding-distance, the
NSGA-III uses reference points, typically distributed in some
structured manner on the normalized hyperplane, in order to
select a diverse population. For the whole framework, see Al-
gorithm 1. Note that whenever we refer to sets of individuals,
we actually refer to multi-sets as each solution might be rep-
resented multiple times in the population.

In order to select individuals from the critical rank i∗, the
NSGA-III normalizes the objective functions and associates
each individual with a reference point.

Regarding the normalization step, we do not consider the
procedure as given in [Deb and Jain, 2014] but the improved
and more detailed normalization given in [Blank et al., 2019]
by one of the two original authors among others. Consider
any iteration. Let ẑ∗j be the minimum observed value in the
jth objective over all generations including the current off-
spring. We use ẑ∗j to estimate the ideal point. Further, for
each objective j we compute an extreme point in that objec-
tive by using a achievement scalarization function. Consider
the hyperplane spanned by these points. The intercepts of this
hyper plane with the coordinate axes give the Nadir point es-
timate ẑnad. In case that H is not well-defined by the extreme
points or if an intercept is either smaller than a given posi-
tive threshold ϵnad or larger than the highest observed value
over all generations in that objective, ẑnad is instead defined
by the maximum value in each objective of individuals in the
first non-dominated front. Last, for each objective in which
the Nadir point estimate is smaller than the ideal point esti-
mate plus the threshold ϵnad, the maximum value in that ob-
jective over all current non-dominated fronts is used for the
Nadir point estimate in that objective instead. The normalized
objective functions fn are now defined as

fn
j (x) =

fj(x)− ẑ∗j
ẑnadj − ẑ∗j

(1)

for j ∈ {1, . . . ,M}. Algorithm 2 formalizes the normaliza-
tion procedure, for a more detailed description see [Blank et
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al., 2019]. We note that Blank et al. span the hyperplane H
by the extreme points after subtracting the ideal point esti-
mate ẑ∗, while in the interest of a clear notation we span H
by the original extreme points. This leads some individual
lines slightly differing from [Blank et al., 2019], though the
described algorithm is identical.

Algorithm 2: Normalization as given by [Blank et al.,
2019]

Input : f = (f1, . . . , fM ): objective function
z∗ ∈ RM : observed min. in each objective
zw ∈ RM : observed max. in each
objective
E ⊆ RM : extreme points of previous
iteration, initially {∞}M

1 for j = 1 to M do
2 ẑ∗j = min{z∗j ,minz∈Z fj(z)}
3 Determine an extreme point e(j) in the jth

objective from Z ∪ E using an achievement
scalarization function

4 valid = False

5 if e(1), . . . , e(M) are linearly independent then
6 valid = True
7 Let H be the hyperplane spanned by

e(1), . . . , e(M)

8 for j = 1 to M do
9 Ij = the intercept of H with the jth objective

axis
10 if Ij < ϵnad or Ij > zwj then
11 ẑnadj = Ij

12 else
13 valid = False
14 break

15 if valid = False then
16 for j′ = 1 to M do ẑnadj = maxx∈F1

fj(x);

17 for j = 1 to M do
18 if ẑnadj < ẑ∗j + ϵnad then

ẑnadj = maxx∈F1∪...∪Fk
fj(x);

19 Define fn
j (x) = (fj(x)− ẑ∗j )/(ẑ

nad
j − ẑ∗j ) ∀x ∈

{0, 1}n, j ∈ {1, . . . ,M}

After the normalization, each individual of rank at most i∗
is associated with its closest reference point with respect to
the normalized objectives. More precisely, an individual x is
associated to the reference point rp(x) that minimizes the an-
gle between the point vectors of x and rp(x). That is, rp(x) is
the reference point such that the distance between x and the
line passing through the origin and rp(x) is minimal. Then,
one iterates through the reference points, always selecting the
one with the fewest associated individuals that are already se-
lected for the next generation. Ties are resolved randomly. If
the reference point only has associated individuals that are al-
ready selected, it is skipped. Otherwise, among the not yet se-
lected individuals the one closest to the reference point (with

respect to the normalized objective function) is selected for
the next generation. Once more, ties are resolved randomly.
If the next generation already contains an individual that is
associated with the reference point, other measures than the
distance to the reference point can be considered. The selec-
tion terminates as soon as the required number of individuals
is reached. This procedure is formalized in Algorithm 3.

Algorithm 3: Selection based on a set R of reference
points when maximizing the function f

Input : Zt: the multi-set of already selected
individuals
Fi∗ : the multi-set of individuals to choose
from

1 fn = NORMALIZE(f, Z = Zt ∪ Fi∗) using
Algorithm 2

2 Associate each individual x ∈ Zt ∪ Fi∗ to the
reference point rp(x)

3 For each reference point r ∈ R, let ρr denote the
number of (already selected) individuals in Zt

associated with r
4 R′ = R, F̃i∗ = ∅
5 while True do
6 Let rmin ∈ R′ be such that ρrmin is minimal (break

ties randomly)
7 Let xrmin ∈ Fi∗ \ F̃i∗ be the individual that is

associated with rmin and minimizes the distance
between fn(xrmin) and rmin (break ties
randomly)1

8 if xrmin
exists then

9 F̃i∗ = F̃i∗ ∪ {xrmin
}

10 ρrmin
= ρrmin

+ 1

11 if |St|+ |F̃i∗ | = N then
12 break all and return F̃i∗

13 else
14 R′ = R′ \ {r}

For our analyses, we assume that the NSGA-III employs
a set of structured reference points in the normalized hyper-
plane as proposed by Deb and Jain [Deb and Jain, 2014]. In
the case of 3 objectives, this corresponds to a set of points
in the triangle spanned by

(
1
0
0

)
,
(
0
1
0

)
, and

(
0
0
0

)
. Divide the lines

between two pairs of these points into p divisions of equal
length. Consider the lines that pass through the start and end
points of all divisions and are orthogonal to the respective
side. Every intersection of these lines marks a reference point,
see Figure 1. By [Deb and Jain, 2014, Equation 3], this creates(
3+p−1

p

)
=
(
p+2
2

)
reference points. Observe that these refer-

ence points partition the non-negative domain of the spanned
triangle in regular hexagonal Voronoi cells.

1If ρrmin > 0, xrmin can be selected in any other diversity-
preserving manner from the associated individuals.
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Figure 1: Structured set of reference points for 3 objectives with
p = 4 divisions based on [Deb and Jain, 2014, Figure 1]).

4 How the Reference Point Mechanism Avoids
Losing Solution Values

Before analyzing the optimization time of the NSGA-III on
3-OMM, we show that, by employing sufficiently many ref-
erence points, once the population covers a point on the
Pareto front, it is covered for all future iterations. To this end,
we first analyze how the normalization shifts the points on
the Pareto front to then conclude that every reference point
is associated with at most one point of the Pareto front. With
this, we argue that already sampled points on the Pareto front
are never lost again. Our analysis assumes that the population
is non-degenerated, i.e., that for each objective the maximum
value over all generations is larger than the minimum value
over all generations. However, w.h.p. this holds starting in the
first iteration. We note that for 3-OMM no individual strictly
dominates another. Thus, all individuals are in the first rank
and we analyze on the way ties inside that rank are broken,
focusing on the only difference between the NSGA-II and the
NSGA-III.
Lemma 1. Assume that for each objective value observed in
a previous iteration, the current population contains at least
one individual with that objective value. Let for each objec-
tive i, zmin

i and zmax
i be the minimum and maximum value in

the current population. Then, each objective i is normalized
as fn

i (x) =
fi(x)−zmin

i

zmax
i −zmin

i
.

Proof. Note that due to the assumption in the statement the
zmin
i and zmax

i are the extreme values not only for the current
population but also among all previous generations. Thus,(
zmin
1
zmin
2
zmin
3

)
is exactly the ideal point estimate ẑ∗. Further,

(
zmax
1
zmax
2
zmax
3

)
is

the Nadir-point estimate ẑnad. This estimate is defined by the
intercepts of the hyperplane spanned by the extreme points
with the objective axes though its objective values might be
set to the maximum of the respective objective among all indi-
viduals or all non-dominated individuals in the current gener-
ation. As for 3-OMM, all individuals are non-dominated, in
the latter case the Nadir point estimate in each objective j is
exactly zmax

j . The first case only occurs if the extreme points
describe a well-defined hyperplane and the intercepts of that

hyperplane are at most the maximum observed value in the
respective objective over all generations. Note that all possi-
ble objective values for 3-OMM lay in the same plane E :
v1+v2+v3 = n. The intercept of this plane with each objec-
tive is n. As for 3-OMM, the second and third objective never
take any value larger than n/2, this case never occurs. Thus,
by Equation 1, fn

i (x) = (fi(x)− zmin
i )/(zmax

i − zmin
i ).

Lemma 2. By employing p ≥ 21n divisions along each ob-
jective, all individuals that are associated with the same ref-
erence point have the same objective value.

Proof. Due to space constraints, we only give the proof idea
and the less technical arguments. The complete proof is to be
found in the full version.

Each individual x is associated to the reference point r that
minimizes the distance between fn(x) and the line between
the origin and r. Equivalently, x is associated to the reference
point r that minimizes the angle between the point vectors
r and fn(x). To show the statement, we first upper bound
the angle between normalized objective values and their near-
est reference point and then lower bound the angle between
two different normalized objective values to show that for
p ≥ 21n the latter is more than twice as large as the for-
mer. Thereby, individuals with different objective values are
never associated with the same reference point because if they
were then the angle between their normalized objective val-
ues would be at most the sum of their angles to that reference
point.

To upper bound the angle between fn(x) and r, first note
that when scaling fn(x) to t = a ·fn(x) such that t lies in the
non-negative domain of the reference point plane (

∑3
i=1 ti =

1), the angle between t and r is the same as between fn(x)
and r. When employing p divisions, the reference points par-
tition the non-negative domain of the reference point plane
into equilateral triangles with side length

√
2 /p. As t lies in

any of these triangles, there is a reference point r such that
|t− r| ≤

√
2 /p.

Consider the point z = (t + r)/2 exactly in between t
and r and ∆ = t − z. Then, t = z + ∆ and r = z − ∆.
Thus, the angle between the point vectors t and r is at most
cos−1( (z+∆)◦(z−∆)

|(z+∆)|·|(z−∆)| ). As |z|2 ≥ 1/9 because
∑3

i=1 zi = 1

and |∆| ≤
√
2 /p, we have

(z +∆) ◦ (z −∆)

|(z +∆)| · |(z −∆)|

=

∑3
i=1(zi +∆i)(zi −∆i)√∑3

i=1(zi +∆i)2
√∑3

i=1(zi −∆i)2

≥
∑3

i=1 z
2
i −∆2

i∑3
i=1 z

2
i

=
|z|2 − |∆|2

|z|2
= 1− |∆|2

|z|2
≥ 1− 18

p2
.

Since the function cos−1 is decreasing, this yields that the
angle between the vectors is at most cos−1(1− 18/p2).

By similar arguments, we bound the angle between the nor-
malized objective value vectors between any pair of individu-
als in the supplementary material and show that by employing
p ≥ 21n divisions for the reference points, the angle between
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the normalized objective values of any pair of individuals is
more than twice as large as the angle between any individual
and its closest reference point, when considering their respec-
tive vectors from the origin. Thus, no two individuals with
different objective values are associated with the same refer-
ence point.

We note that 21n divisions correspond to
(
21n+2

2

)
∈ O(n2)

divisions, so the number of reference points differs by the size
of the Pareto front by a constant factor.

Our bound of p ≥ 21n is likely not tight in order to guar-
antee unique associations, as suggested by our experiments in
Section 6. Nevertheless, it is only off by a constant factor to
the actual bound. This holds as we require more than n/

√
2

divisions to create (n/2 + 1)2 reference points, one for each
possible objective value. If we do not have that many refer-
ence points, there are at least two different objective values
associated with the same reference point and when selecting
individuals from that reference point by chance no individu-
als of one of the objective values might survive.

Using Lemma 2, we now show that the population does not
lose once sampled objective values.
Lemma 3. Consider the NSGA-III optimizing a multi-
objective function f with a population of size N . Let F ∗ be
the Pareto front of f . Assume that in each iteration the num-
ber of objective values of non-strictly dominated individuals
is at most N and that all individuals associated with the same
reference point have the same objective value. Then, once the
population contains a solution x with f(x) ∈ F ∗, the popu-
lation will contain a solution for x′ such that f(x′) = f(x)
in all future iterations.

Proof. Consider any iteration with a population that contains
such an x′. After the recombination and mutation step, the
complete population of old solutions and offspring contains
2N solutions. Let F1 denote the subset of solutions that are
not strictly dominated. Then, x′ ∈ F1. If |F1| ≤ N , all indi-
viduals in F1 including x′ survive into the next generation.
Otherwise, the objective functions are normalized with re-
spect to F1 and the individuals in F1 are associated with a
reference point each. By our assumptions, there are now at
most N reference points with at least one associated individ-
ual. Thus, at least one individual is selected from each refer-
ence point with non-empty association set. In particular, one
of the individuals associated with the same reference point
as x′ survives. By our assumption, it has the same objective
value as x′.

5 Runtime of the NSGA-III on 3-OMM
We are now able to give a first upper bound on the expected
optimization time of the NSGA-III on 3-OMM.
Theorem 4. Consider the NSGA-III with population size
N ≥ (n2 + 1)2 and p ≥ 21n divisions along each objec-
tive optimizing 3-OMM. Assume the reproduction step to
be such that each individual in the population has at least
a chance c−1 to create an offspring via standard mutation.
Then, w.h.p., the population covers the Pareto front after
4ecn ln(n) iterations, which corresponds to O(cn3 log(n))
evaluations of the fitness function.

Proof. We upper bound the probability that after 4cen ln(n)
iterations not all objective values on the Pareto front have
been sampled. To this end, we first give an upper bound on
the probability that any specific objective value (a, b) has not
been sampled after 4cen ln(n) iterations. In each iteration i,
let di = mins∈Population |f1(s)−a|+|f2(s)−b| be the distance
of (a, b) to the closest individual in the population, i.e., the
minimum number of bit flips required to turn this individual
into one with objective value (a, b). By Lemma 3 the popu-
lation will never lose a sampled objective value, so di never
decreases. Further, for all 1 ≤ ℓ ≤ n, define the geometrically
distributed random variable Xℓ as the number of iterations i
with di = ℓ. Then, the number of iterations until (a, b) is cov-
ered is X =

∑n
ℓ=1 Xℓ. Observe that Xℓ has a success proba-

bility of at least pi = i
ecn by choosing the closest individual

for mutation (1c ), flipping any of the at least i bits that take it
closer ( i

n ), and not flipping any other bit (1e ). By [Doerr, 2020,
Theorem 1.10.35], Pr[X ≥ (1 + 3)ecn ln(n)] ≤ n−3, i.e.,
the probability that the population does not cover (a, b) af-
ter 4ecn ln(n) iterations is at most n−3. Hence, by the union
bound, the probability that all (n2 + 1)2 objective values are
sampled after 4ecn ln(n) iterations is at least

1−
(n
2
+ 1
)2

· n−3 ≥ 1− 1

n
.

Thus, w.h.p. 4ec ln(n) iterations suffice to cover the complete
Pareto front. Each of these iterations employs (n2 +1)2 fitness
evaluations, so w.h.p. a total of O(cn3 ln(n)) fitness evalua-
tions are required.

6 Experimental Evaluation
We support our theoretical findings with empirical evalua-
tions of the NSGA-III on the 3-OMM benchmark. To this
end, we employ the DEAP library [Fortin et al., 2012], which
provides a framework for benchmarking evolutionary algo-
rithms and holds an implementation of the NSGA-III and
NSGA-II.2 All experiments on the NSGA-III are conducted
with a population size of N = (n/2 + 1)2 (the size of the
complete Pareto front) and p = 4.65n divisions on the ref-
erence point plane. While Theorem 4 requires p ≥ 21n, the
theoretical proven bound is most likely not tight. In all our
experiments we included a control routine to check whether
any points on the Pareto front were lost during the process.
For p = 4.65n, no point was ever lost, suggesting a much
smaller bound than p ≥ 21n. In the reproduction step, we
apply standard bit mutation (flipping each bit independently
with probability 1/n) on each individual.

Figure 2 shows the coverage of the Pareto front of 3-OMM
in runs of the NSGA-III and the NSGA-II. While all 3 runs

2See https://github.com/SimonWiet/experiments nsga3 for code
and results of the experiments. We slightly modified DEAP’s imple-
mentation of the NSGA-II to avoid some unwanted bias on the or-
der of individuals with same objective values or crowding distance,
which lead to significantly different performances on the 3-OMM
benchmark. We aimed at staying as close to the intuitive interpre-
tation of the original algorithm as possible. Details are discussed in
the repository.
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Figure 2: The number of covered points on the Pareto front per iter-
ation of the NSGA-III and the NSGA-II, not using crossover, with
population size 1, 2, 4, and 8 times the size of the Pareto front (441)
when optimizing the 3-OMM benchmark. Three independent runs
are depicted for each algorithm/population size. The lines for the
NSGA-III (blue) stop when it has covered the complete Pareto front.

of the NSGA-III (with a population size equal to the size of
the Pareto front) find the complete Pareto front in less than
300 iterations, the NSGA-II shows a real progress only in
the first few iterations and then stagnates at some fraction
of the Pareto front covered (with some variance). Increasing
the population size mildly increases this stagnation level, but
even with a population of 8 times the size of the Pareto front,
the NSGA-III never has even 300 out of the 441 elements in
the Pareto front. The figure shows that the effect of doubling
the population size of the NSGA-II reduces with increasing
population size, which suggests that a truly large population
size would be needed in order to find the complete Pareto
front in polynomial time.

The figure illustrates well that the advantage of the
NSGA-III over the NSGA-II lies in its property of never los-
ing Pareto dominant solutions, which is reflected in the non-
decreasing curve of the NSGA-III in the figure as opposed to
the oscillating curves of the NSGA-II.

Further, we run the NSGA-III on 3-OMM using standard
bit mutation and uniform crossover (for a pair of parent bit
strings, at each bit position there is a chance of 1/2 of swap-
ping the respective bits between the parents). We randomly
partitioned the population in pairs of 2 bit strings and for each
pair tested a chance of 1/2 or 9/10 to perform a crossover on
this pair before applying standard mutation.

Figure 3 shows the number of iterations it took the
NSGA-III to find the complete Pareto front of the 3-OMM
benchmark for the different crossover rates and over different
values of the problem size n. The data shows quite clearly
that a crossover rate of 1/2 moderately increases the runtime
and that a crossover rate of 0.9 significantly increases the run-
time. This suggests that the main progress is due to the muta-
tion operator, justifying our focus on standard bit mutation in
our analysis.
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Figure 3: The number of iterations required to cover the complete
Pareto front for multiple runs of the NSGA-III. Shown are 8 runs for
each of the different values of problem size n ∈ {10, 20, . . . , 50}
and the different crossover variants (mutation only, and crossover
rates of 1/2 and 9/10).

7 Conclusion
This first mathematical runtime analysis of the NSGA-III,
we proved that this algorithm with suitable parameters never
loses a Pareto optimal solution value when optimizing the 3-
OMM problem. This is in drastic contrast to the NSGA-II,
which provably also with large populations regularly suffers
from such losses and consequently cannot find (or approx-
imate beyond a certain constant factor) the Pareto front of
3-OMM in sub-exponential time [Zheng and Doerr, 2022b].
From this positive property of the NSGA-III, we derive that it
finds the full Pareto front of 3-OMM in an expected number
of O(n log n) iterations. Our experimental results confirm the
drastically different behavior of the algorithms.

From the mathematical proofs we are optimistic that the
key property of not losing desired solution values extends
to broader classes of problems. In fact, our main argument
was that the angle (with the origin) between any two different
normalized solutions is large enough to prevent that both are
associated with the same reference point. We have not used
any properties of the optimization process there, but only the
structure of the set of objective values of the problem. We
are thus optimistic that similar properties hold for other opti-
mization problems, say with integral objectives of a bounded
range.

This first rigorous result on the NSGA-III clearly is not
enough to derive reliable advice on which MOEAs to pre-
fer, but we believe that it should motivate more users of the
NSGA-II to also try the NSGA-III. If only part of the dras-
tic differences proven here extend to broader classes of prob-
lems, this switch is definitely justified.
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