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Abstract
Accurate completion of archaeological artifacts is
a critical aspect in several archaeological studies,
including documentation of variations in style, in-
ference of chronological and ethnic groups, and
trading routes trends, among many others. How-
ever, most available pottery is fragmented, lead-
ing to missing textural and morphological cues.
Currently, the reassembly and completion of frag-
mented ceramics is a daunting and time-consuming
task, done almost exclusively by hand, which re-
quires the physical manipulation of the fragments.
To overcome the challenges of manual reconstruc-
tion, reduce the materials’ exposure and deteriora-
tion, and improve the quality of reconstructed sam-
ples, we present IberianVoxel, a novel 3D Autoen-
coder Generative Adversarial Network (3D AE-
GAN) framework tested on an extensive database
with complete and fragmented references. We gen-
erated a collection of 1001 3D voxelized sam-
ples and their fragmented references from Iberian
wheel-made pottery profiles. The fragments gen-
erated are stratified into different size groups and
across multiple pottery classes. Lastly, we provide
quantitative and qualitative assessments to measure
the quality of the reconstructed voxelized samples
by our proposed method and archaeologists’ evalu-
ation.

1 Introduction
During archaeological excavations, it is common to find frac-
tured or damaged artifacts. Among the many factors, ce-
ramic potteries are one of the most frequently discovered ar-
chaeological artifacts. Since they are usually short-lived, re-
searchers find these artifacts useful to analyze chronological
and geographical features, given that shape and decoration
are subject to significant changes over time and space [Es-
lami et al., 2020]. This analysis gives a basis for dating the

archaeological strata, and provides evidence from a large set
of valuable data, such as local production, trade relations, and
consumer behavior of the local population [Kampel and Sab-
latnig, 2003; Kashihara, 2017].

Several prior studies analyze various aspects of ceram-
ics using 2D complete pottery profiles. Automatic pro-
file classification [Lucena et al., 2017; Cintas et al., 2020;
Llamas et al., 2016; Di Angelo et al., 2017] and fea-
ture extraction [Shennan and Wilcock, 1975; Rice, 1987;
Nautiyal et al., 2006; Mom, 2007; Saragusti et al., 2005;
Karasik and Smilansky, 2011; Smith et al., 2014] have been
widely studied, ranging from traditional image processing
techniques to deep learning approaches. Unfortunately, ce-
ramics are fragile, and therefore most of the actual ceramics
recovered from archaeological sites are fractured, so the vast
majority of the available material appears in fragments. The
reassembly of the fragments is a daunting, delicate, and time-
consuming task, done almost exclusively by hand, which re-
quires the physical manipulation of the fragments, which ide-
ally should be as short as possible for conservation purposes.
Due to these factors and the rise of easy-to-use and afford-
able 3D scanners1, there is an increasing interest in automatic
pottery reassembly and reconstruction [Rasheed and Nordin,
2014; Fragkos, Stergios et al., 2018; Kalasarinis and Kout-
soudis, 2019] and fragment analysis [Wilczek et al., 2021].
Nonetheless, existing work resolves the fragments problem
using comparisons between known pieces and mainly works
on 2D representations [Navarro et al., 2022].

In this work, we propose a 3D Autoencoder Generative Ad-
versarial Network (3D AE-GAN) framework to augment and
reconstruct ceramics, in which the “best-matching pottery” is
artificially generated based on a set of known 3D fragments in
the model, thus providing reconstructed virtual pottery with
the same geometric features as the real ones. The resulting
augmented dataset will be very helpful for exploring and de-
signing automatic procedures to aid experts with the pottery
completion task.

13D scanners. (Last Accessed in January 2023)
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Figure 1: Overview of the proposed approach. A IberianVoxel architecture. The G(z) generator is based on a 3D encoder-decoder archi-
tecture. Upon receiving a set of voxels corresponding to the pottery fragment, the encoder transforms it into a vector, and then the decoder
generates the missing or unknown 3D fragment. The discriminator D(x) receives the complete set of voxels to determine if it is real or
generated. B Criteria for material fractures. C Examples of IberianVoxel generated samples from fragments across different fragment sizes.

The main contributions of this paper are the following:

• A 3D Autoencoder Generative Adversarial Network (3D
AE-GAN), that aims to complete pottery automatically.
Our method generates new ceramics from 156546 frag-
ments (see Fig. 1A).

• A procedure for generating artificial 3D fragment sam-
ples from voxelized pottery models by adapting the Dis-
crete Voronoi Chain algorithm (see Fig. 1B).

• We release a new database of 3D ceramics fragments
generated from 1001 voxelized pottery models frag-
mented 16 times (in total 16016 models) with matching
correspondence of fragments and full pottery.

• We evaluate the proposed approach with standard met-
rics (MSE, DSC, and Jaccard) under different fragment
sizes (see Fig. 1C for results). Additionally, we validated
our framework with a binary shape classifier. Lastly, we
conduct a validation study with a group of archaeologist
evaluators to qualitatively assess the quality of the com-
pleted samples with respect to domain experts.

2 Related Work
Artifact completion, reassembly, and restoration are key re-
search topics in Computational Archaeology. There are sev-
eral recent examples of GANs applied to cultural heritage do-
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mains in the literature [Nguyen et al., 2019; Hermoza and
Sipiran, 2018]. For instance, techniques such as automated
image style transfer [Chen et al., 2020] were used to develop
a model aimed at generating Cantonese porcelain-styled im-
ages departing from user-defined masks. Similar techniques
were also applied to material degradation [Papadopoulos et
al., 2021; Liu et al., 2017a; Isola et al., 2017; Zhu et al., 2017;
Wang et al., 2017; Zachariou et al., 2020].

In a similar approach to our proposal, in [Hermoza and
Sipiran, 2018] a 3D reconstruction GAN for archaeologi-
cal restoration is proposed, based on an encoder-decoder 3D
CNN on top of a GAN based on cGANs [Mirza and Osin-
dero, 2014]. In [Kniaz et al., 2019], a translation network
is presented. Both these studies work on the problem of
prediction of missing geometry on damaged voxelized ob-
jects. Another example of cultural heritage preservation can
be found in [Jboor et al., 2019], where an image comple-
tion approach is adapted [Liu et al., 2017b; Yeh et al., 2017;
de Lima-Hernandez and Vergauwen, 2021] for the curation
of damaged artwork by predicting the continuing decoration
traces of broken heritage fragments in 2D. Finally, [Navarro
et al., 2022] presents a method based on a GAN for creat-
ing 2D complete profile potteries from binary images of frag-
ments. Even though these works show promising results in
generating Iberian potteries, the previous proposed processes
for managing fragments and fragmentation are unrealistic.

3 Proposed Approach
A typical GAN [Goodfellow et al., 2014] framework con-
tains a generative (G) and a discriminative (D) neural net-
work such that G(z) aims (in our context) to generate realis-
tic artifacts, while D(x) learns to discriminate if a sample is
from the real data distribution (pd(x)) or not. D(x) should
be high when x comes from training data and low when x
comes from the generator. In a classic GAN, z is a latent
space vector sampled from a statistical distribution (usually
normal distribution).

In our case, as opposed from [Wu et al., 2016], z is a vox-
elized input fragment (matrix of 32 × 32 × 32), and G(z)
represents the generator function which maps the fragment z
to the data space of a complete Iberian voxelized pottery. This
type of network is named Autoencoding GAN (AE-GAN), in
which G added a network of encoders that are trained to learn
an E : Z → W function, mapping each fragment sample to
a point (w) in latent space [Lazarou, 2020] and the decoder
learn to map each point (w) to a complete pottery.

Multiple iterations will inform G on how to adjust the gen-
eration process to generate a misclassification in D. In our
particular case, the data element x, corresponds to a three-
dimensional binary array containing the voxelized pottery ge-
ometry. D(G(z)) is the probability that the output of the gen-
erator G is a real artifact from the Iberian pottery 3D dataset.
D tries to maximize (log(D(x))), which is the probability of
having a correct classification of actual voxelized real ceram-
ics, while G tries to minimize (log(1−D(G(z)))), which is
the probability of D recognizing any of the generated outputs
by G (see Eq. 1).

IberianVoxel is based on the AE-3DGAN, where the gen-

Fragments (%)
15-20 20-30 30-100

Class 1 246 (2.76%) 194 (2.54%) 86 (2.31%)
Class 2 368 (4.12%) 313 (4.11%) 144 (3.86%)
Class 3 571 (6.4%) 511 (6.7%) 235 (6.31%)
Class 4 91 (1.02%) 68 (0.89%) 42 (1.13%)
Class 5 516 (5.78%) 430 (5.64%) 186 (4.99%)
Class 6 441 (4.94%) 404 (5.3%) 160 (4.29%)
Class 7 397 (4.45%) 389 (5.1%) 170 (4.56%)
Class 8 2419 (27.11%) 2063 (27.06%) 900 (24.15%)
Class 9 161 (1.8%) 156 (2.05%) 73 (1.96%)
Class 10 2865 (32.11%) 2352 (30.85%) 1317 (35.34%)
Class 11 848 (9.5%) 744 (9.76%) 414 (11.11%)

Total 8923 7624 3727

Table 1: Number of fragments generated by our proposed DVC
adaptation per each ceramic type and size.

erator is an Autoencoding network Encode(z) → w ∈
Rm, Decode(w) → x′, where x ∈ [0, 1]32x32x32 is the in-
put fragment, a three-dimensional binary array containing the
fragment shape information by means of voxels, and x′ is a
missing generated part. To train the discriminator network,
we use D(y) where y = z + x′ for the generated exam-
ples. The complete codebase for the definition, implemen-
tation, training, and evaluation of IberianVoxel can be found
here2.

4 Experimental Setup
In this section, we describe the process taken for the genera-
tion of the new 3D fracture dataset and pre-processing steps
for the voxelization (see Fig. 2). Further, we define hyper-
parameters, architecture, and training steps implemented for
IberianVoxel. We detailed the different assessments done to
evaluate the performance of our proposed model using mul-
tiple initial fragment sizes. We evaluated the samples gen-
erated with standard completion and segmentation metrics.
Additionally, we validated the output of IberianVoxel with a
pottery shape classifier. Lastly, we show the protocol done to
conduct a validation study with domain experts.

4.1 Iberian Pottery Data
The raw data belong to binary profile images, corresponding
to Iberian wheel-made pottery from various archaeological
sites of the upper valley of the Guadalquivir River (Spain).
The ceramics are classified into eleven different classes based
on their shape. These classes consider the forms of the lip,
neck, body, base, and handles and the relative ratios between
their sizes. Nine of these classes correspond to closed pottery
shapes, and two others belong to open ones [Lucena et al.,
2017]. The available images consist of a profile view of the
pottery, where image resolutions (in pixels), corresponding to
size scale, may vary according to the acquisition settings (see
Fig. 2).

2https://github.com/celiacintas/vasijas/tree/iberianVox
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Figure 2: Data pipeline for voxelized samples and fragment references generation. We show an example for each type of open and closed
shape. To the left, we show the original 2D profile [Lucena et al., 2017]. Second, we show the spin calculated over the y-axis. Third, we
show the voxelized mesh and the fragments generated by the adapted Discrete Voronoi Chain algorithm.

Classes Fragments (%)
15-20 20-30 30-100

MSE(↓) DSC(↑) Jacc.(↓) MSE(↓) DSC(↑) Jacc.(↓) MSE(↓) DSC(↑) Jacc.(↓)

Class 1 0.04± 0.01 0.73± 0.08 0.41± 0.09 0.04± 0.01 0.74± 0.09 0.40± 0.11 0.03± 0.01 0.78± 0.06 0.34± 0.08
Class 2 0.06± 0.02 0.72± 0.09 0.42± 0.11 0.06± 0.02 0.74± 0.09 0.40± 0.12 0.04± 0.01 0.80± 0.05 0.33± 0.07
Class 3 0.05± 0.02 0.60± 0.12 0.55± 0.12 0.05± 0.02 0.62± 0.13 0.53± 0.13 0.04± 0.01 0.65± 0.11 0.49± 0.11
Class 4 0.07± 0.03 0.47± 0.13 0.68± 0.11 0.06± 0.01 0.55± 0.13 0.61± 0.12 0.05± 0.01 0.58± 0.07 0.59± 0.07
Class 5 0.09± 0.02 0.62± 0.11 0.54± 0.12 0.08± 0.02 0.67± 0.10 0.48± 0.12 0.07± 0.02 0.70± 0.11 0.45± 0.13
Class 6 0.09± 0.02 0.62± 0.11 0.53± 0.12 0.05± 0.02 0.71± 0.10 0.44± 0.11 0.04± 0.02 0.75± 0.08 0.39± 0.10
Class 7 0.13± 0.11 0.55± 0.24 0.58± 0.21 0.11± 0.01 0.59± 0.24 0.54± 0.21 0.10± 0.01 0.61± 0.24 0.52± 0.22
Class 8 0.05± 0.02 0.75± 0.09 0.39± 0.11 0.04± 0.01 0.77± 0.09 0.36± 0.11 0.04± 0.01 0.80± 0.06 0.32± 0.09
Class 9 0.05± 0.02 0.75± 0.11 0.38± 0.13 0.04± 0.01 0.78± 0.10 0.35± 0.11 0.03± 0.00 0.80± 0.07 0.32± 0.09
Class 10 0.01± 0.01 0.82± 0.06 0.28± 0.09 0.01± 0.00 0.84± 0.06 0.26± 0.08 0.01± 0.00 0.84± 0.06 0.27± 0.08
Class 11 0.02± 0.00 0.75± 0.08 0.39± 0.10 0.02± 0.00 0.75± 0.09 0.39± 0.11 0.01± 0.00 0.76± 0.08 0.38± 0.10

Average 0.06± 0.03 0.70± 0.07 0.44± 0.08 0.06± 0.03 0.70± 0.07 0.44± 0.08 0.06± 0.03 0.70± 0.07 0.45± 0.08

Table 2: Performance metrics across different fragment sizes and ceramic types. The percentage is relative to each pottery’s size and shape.

min
G

max
D

V (D,G) = E
x∼ pd(x)

[
log(D( x ))

]
+

Ez∼pz(z)

[
log(1−D(z + G ( z )))

] (1)

Completed Pottery
Completed Voxelized Space

Input Fragment
Generative Autoencoder

2D to 3D pottery Given that the existing dataset is based on
wheel-made pottery techniques, we can assume small asym-
metric perturbations in the ceramic. Thus, we can generate
each 3D model as a solid of revolution (see Fig. 2 for an
overview of the steps implemented in this work). First, we
extract the shape information from the profile by means of
200 semilandmarks equally spaced in the contours. For the
spin, we use 100 steps per revolution. This task converts the
semilandmarks capturing the 2D pottery shape information
into a mesh. Lastly, we converted the resulting mesh into a set
of voxels following [Ogayar-Anguita et al., 2020] with sizes
32 × 32 × 32. The resulting dataset is composed of 1001
voxelized potteries, randomly divided into a training subset
containing 704 ceramics (70%) and a test set of 297 artifacts
(30% of the total dataset).

Fracture ceramic simulations The voxelized pottery mod-
els were fragmented, simulating real fractured ceramics.We
implemented a geometric fragmentation method based on the
Discrete Voronoi Chain (DVC) algorithm [Velić et al., 2009].
The DVC algorithm is composed of several steps. First,
it generates a random list of Voronoi region centers in the
model, each corresponding to a fragment. Second, it assigns
the voxel to a section by following a region-growing approach
taking each center as a seed until all the voxels have been
traversed. However, this procedure can assign voxels in the
border between two regions to an incorrect one. Therefore,
an additional distance check to the centers of each region is
required to guarantee the correct assignment. The resulting
number of fragments depends on the type of vessel (closed or
open, see Fig. 1-B).

Our approach, like most geometric methods based on
Voronoi [Raghavachary, 2002; Domaradzki and Martyn,
2016], generates convex fragments. Thus, in order to gener-
ate more complex fragments, including concavities, we need
to disable at runtime the distance check from the DVC algo-
rithm (10% of the runs).

Lastly, in order to evaluate the performance under different
relative sizes of fragments, we stratified our fragment gener-
ation into three main groups: 15-20%, 20-30%, and 30-100%
of the initial ceramic model.
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Figure 3: Qualitative examples for visual comparison of completed samples by our proposed method and the ground truth (real voxelized
models). Each batch of examples shows the completion model started from different sizes of initial fragments (dark pink) , and the completed

ceramics (light pink) in different views.
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4.2 Implementation Details
The first module of the Generator consists of an Encoder of 5
convolutional layers of kernel sizes 4 × 4 × 4, stride 2, and
padding 1×1×1 (with 0×0×0 for last one), with 3D batch
normalization and LeakyReLU layers added in between the
convolutional layers (except the last one). The intermediate
result is a 128 − dimensional vector. The last part of the
Generator is a Decoder of 5 layers, all of them with a 3D
transposed convolution with kernel sizes 4 × 4 × 4, stride 2,
and padding 1 × 1 × 1. Unlike the encoder, the decoder has
ReLU layers instead of LeakyRelu. The output is a binary
array of 32× 32× 32. The architecture of the D is basically
the same as that of the G encoder except that it uses a sigmoid
layer, previously reshaped the result of the last layer, for the
binary classification (real/generated).

3D AE-GAN training IberianVoxel was trained for 100
epochs using Binary Cross Entropy as a loss function, at a
learning rate 2×10−3 for the generative 3D encoder-decoder
network (G) and 2× 10−4 for the discriminator (D). To opti-
mize the training process of all models, we scaled the artifacts
to a uniform resolution space of 32×32×32 voxels. We used
ADAM optimization [Kingma and Ba, 2015] for both G and
D with β1 = 0.9 and β2 = 0.999. Particularly, for the train-
ing of D, we used Label Smoothing [Salimans et al., 2016],
the real set was represented with a random number between
0.7 and 1.1 and the generated set with 0.0 and 0.30.

4.3 Evaluation Metrics
The evaluation of the generated artifacts’ quality was done
using standard completion and segmentation metrics such as
the Dice similarity coefficient (DSC) [Sorensen, 1948], Jac-
card distance, and Mean squared error (MSE). The DSC co-
efficient is used to calculate the similarity between the two
examples [Feng et al., 2016; Navarro et al., 2022]. Given A
the generated set of voxels and B the real ceramic, DSC is
formulated:

DSC =
2|A ∪B|
|A|+ |B|

, (2)

where |A| and |B| is the size in voxels of the pottery. The
values of the formula are between 0 and 1, where 1 represents
the maximum similarity, and 0 is the minimum.

Jaccard distance, like DSC, is a statistic used to estimate
the dissimilarity of a dataset, but unlike DSC, Jaccard dis-
tance satisfies the triangle inequality. Jaccard distance is de-
fined as:

JD(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
, (3)

where A is a three-dimensional binary array containing the
generated pottery voxelized geometry, and B is the real ce-
ramic. The values of the formula are between 0 and 1 too,
but unlike DSC, 1 represents the minimum similarity and 0
the maximum. Lastly, we evaluated our generated samples
using MSE, which is a common quality estimator in 2D and
3D classification and reconstruction problems.

MSE =
1

n
Σn

i=1

(
di − fi

)2

, (4)

where d is a real voxelized pottery and f a generated one.
In our case, di and fi represent one voxel in the three-
dimensional array of the pottery d and f , respectively.

4.4 Domain Expert Study
To evaluate the quality of the completed pottery, we con-
ducted a study with a group of archaeologist evaluators, who
assessed the samples individually and in isolation, following
similar protocols from [Navarro et al., 2022]. The evalua-
tors’ feedback is then collected and aggregated to establish
an overall rating. In our preliminary study, eleven voluntary
archaeologists specializing in Iberian ceramics completed a
questionnaire evaluating ten examples with six views. An ex-
ample of the questionnaire can be found in the Supplemen-
tary material. Each graphical example is followed by two
questions. These rating questions assess the quality of the
resulting pottery and the initial fragment. First, a question
regarding the generated sample (Very Bad, Poor, Good, and
Very Good). Second, the level of similarity with an Iberian
style (rate between 0 and 5, where 0 means unrelated to the
Iberian Style, and 5 means entirely within the Iberian Style).

5 Results
In Table 2 we present the obtained results across the different
size groups of fragments and several pottery types. We can
observe that the averaged MSE = 0.06 and DSC = 0.70
across all classes for the completion of the ceramic is consis-
tent across fragment sizes. This means that IberianVoxel is
able to complete ceramics from smaller to larger initial frag-
ments.

Interestingly, in Table 2 we can observe that specific
classes of pottery are easier to reconstruct across all sizes,
such as Class 10 and Class 11. We can hypothesize that the
improvement, over the averaged performance of the method
over these classes, is due to the fact that we have more ex-
amples of these classes in our dataset. Furthermore, these
classes correspond to a homogeneous type of open shapes
(e.g., plates). In Table 1 we present a detailed stratification
across different pottery classes and fragment sizes generated
by our fracture simulator.

In Figure 3 we show a random set of qualitative examples.
In the first column, we can observe the initial fragment (dark
pink), seven different angles of the generated pottery (light
pink), the fragment (dark pink), and the original ceramic. Ad-
ditionally, we validated our completed ceramics with a binary
shape classifier. This model classifies the voxelized pottery
into open or closed shape vessels. In Table 3, we can observe
that the classifier yields the same performance in test datasets
when evaluating real voxelized potteries and completed pot-
teries from three different groups sizes of fragments by our
proposed method.

The domain experts’ case study yielded that the recon-
structed ceramics’ quality perceived by the archaeologists
had a mean score of 2.09 with a standard deviation of 0.61
(with range values between [0, 3]). Additionally, we were in-
terested in evaluating if the Iberian style holds in the com-
pleted samples. The archaeologists considered the ceramics
to have an Iberian style in mean score 3.93 (±1.16), with 5
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Dataset Precision (↑) Recall (↑) F1-Score (↑) Accuracy (↑)
Original 0.980 0.984 0.982 0.983
IberianVoxel (30%-100%) 0.984 0.987 0.986 0.986
IberianVoxel (20%-30%) 0.988 0.990 0.989 0.989
IberianVoxel (15%-20%) 0.984 0.987 0.986 0.986

Table 3: Performance metrics for open-close shapes classifier from test 3D data. All metrics were estimated with a test set of 121 open and
176 closed ceramics. We show results with original samples and ceramics reconstructed from initial fragments of different sizes (in %).

fully Iberian Style. From this preliminary study, we can con-
clude that archaeologists judge that IberianVoxel generated a
correct Iberian style from an initial fragment, and also con-
sider that the reconstructed pottery is between Good and Very
Good. At the end of the questionnaire, we included a com-
ment section to enable unstructured feedback. The comments
across evaluators agree on the need for better visualization
tools, such as including a scale factor and improving the edge
inspection of the models, as these are key factors while eval-
uating the Iberian Style.

5.1 Limitations

Figure 4: Qualitative examples of current limitations. A Samples
generated with clear asymmetric patterns. B Samples generated with
irregularities and missing areas. Initial fragments (dark pink) , and

the completed ceramics (light pink) .

Asymmetry in generated potteries Some completed sam-
ples do not have an adequate symmetry. The pottery used for
this work corresponds to lathe potteries, and those are sym-
metrical by design. In Fig. 4-A, we show two examples in
which the generated models are not symmetric. This type of
problem is caused by the lack of examples in some classes.
One potential solution could be a post-processing task to cor-
rect these artifacts or implement a penalization factor in the

loss function during the training process.

Irregularity in generated potteries In Fig. 4-B and Fig. 4-
C we show two examples with irregular results in the com-
pletion. For example, incomplete reconstructions (see Fig. 4-
B,) or the mismatching alignment of the fragment with the
proposed completion model (see Fig. 4-C). These problems
could be reduced using post-processing methods, such as
classic morphological operations.

6 Conclusion
Ceramics are one of the most common archaeological arti-
facts, usually used to investigate variations in style, materials
employed, social activities, and manufacturing techniques.
Nonetheless, most available pottery is fragmented. The com-
pletion and assembly of fragments is a time-consuming task,
which requires the physical manipulation of the ceramic frag-
ments, which exposes them to material decay. We present a
3D generative approach to process fragments automatically,
and reconstruction analysis that can assist archaeologists in
a more realistic 3D reassembly process. The IberianVoxel
framework is generalizable to work with ceramic materials or
other brittle objects (e.g., projectile points, ancient buildings,
or anthropological remains).

We have evaluated the performance of IberianVoxel based
on two complementary assessments. First, we used classical
metrics to evaluate the generative process of voxelized sam-
ples across different fragment sizes (See Table 2 and Fig 3).
Second, the results were validated via independent examina-
tion of archaeologists specialized in Iberian heritage. Results
suggest that our approach can generate potteries that conform
to the structure of Iberian ceramics and fulfill experts’ vali-
dation criteria for the three different sizes of initial fragments
tested. Although the described approach has an encourag-
ing performance, shown in this work for the completing frag-
ments of Iberian wheel-made pottery, some limitations were
found and discussed in the paper. Nonetheless, our proposed
framework and the available voxelized dataset are the first
steps toward the broader use of 3D generative networks for
the completion of fragments.
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