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Abstract

In the process of graphic layout generation, user
specifications including element attributes and their
relationships are commonly used to constrain the
layouts (e.g., “put the image above the button”). It
is natural to encode spatial constraints between el-
ements using a graph. This paper presents a two-
stage generation framework: a spatial graph gen-
erator and a subsequent layout decoder which is
conditioned on the previous output graph. Training
the two highly dependent networks separately as in
previous work, we observe that the graph genera-
tor generates out-of-distribution graphs with a high
frequency, which are unseen to the layout decoder
during training and thus leads to huge performance
drop in inference. To coordinate the two networks
more effectively, we propose a novel collaborative
generation strategy to perform round-way knowl-
edge transfer between the networks in both training
and inference. Experiment results on three public
datasets show that our model greatly benefits from
the collaborative generation and has achieved the
state-of-the-art performance. Furthermore, we con-
duct an in-depth analysis to better understand the
effectiveness of graph condition modeling.

1 Introduction

Graphic layout generation is the process of determining the
position and size of each object on a page, which plays a cru-
cial role in creating a successful design (e.g., user interface,
articles, presentation slides). It establishes the relationships
between elements as well as the overall coherent appearance
for better content display. Layout generation is a challenging
research topic that dates back to the 1980s when dominant
approaches were constraint-optimization-based with heuris-
tic rules or templates [Hurst et al., 2009; Kumar et al., 2011;
O’Donovan et al., 2014]. 1In recent years, an increasing
number of works try to tackle this problem with powerful
generative models such as Variational AutoEncoders (VAE)
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Figure 1: Graphic layout generation with constraints. Given the user
specification of element categories and their spatial relationships,
our model can generate satisfying layouts.

[Jyothi er al., 2019; Lee et al., 2020], Generative Adver-
sarial Networks (GAN) [Li et al., 2019; Kikuchi et al.,
2021] and AutoRegressive models (AR) [Gupta et al., 2021;
Arroyo ef al., 2021], which have achieved promising results.

Considering downstream applications (e.g., novel layout
suggestion and layout retrieval), user specifications includ-
ing element attributes and their relationships are useful pre-
conditions to constrain the generated layouts. For example in
Figure 1, given the user specification “put the image above
the button”, the generated layouts need to satisfy such spa-
tial constraint. Nevertheless, most of the current systems fail
to handle the relationship constraints. A natural way to en-
code the relationships is by using a graph, where the nodes
represent element categories and the edges represent spatial
relationships. The graph condition for layout generation can
not only provide users the flexibility to specify requirements,
but also serve as an interpretable intermediate representation
for better model control.

Recently, Neural Design Network (NDN) [Lee et al., 2020]
is an initial attempt to incorporate graphs into layout genera-
tion with multiple components in series, including graph gen-
eration, layout synthesis and refinement. Each component
is dependent on the output of the previous one. NDN uses
a training pipeline in which components are separately opti-
mized. In our initial experiment, we observe that the system
has a high frequency of generating out-of-distribution graphs
which are unseen for the succeeding layout generation com-
ponent during training. Errors in each component could be
propagated and thus decreasing the overall performance (e.g.,
itis less likely to generate promising layouts if conditioned on
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an unreasonable graph). We will give a more detailed analysis
of this issue in the later section.

In this paper, we aim to better utilize graph conditioning
in layout generation. We simplify the components in NDN
and present a two-stage framework consisting of a VAE-
based graph generator followed by an autoregressive layout
decoder. To prevent error propagation in the pipeline, we
propose a novel collaborative generation strategy to jointly
optimize these two generative networks. During training, one
network is fed with the output from the other and conducts
a round-way knowledge transfer. Similarly in inference, we
apply cyclic sampling to refine the layout for several itera-
tions. Additionally, we conduct a comprehensive study of
graph conditioning such as graph sparsity, the ratio of user
constraints in the graph, and its consistency to generated lay-
outs.

We evaluate our model on three public datasets re-
lated to graphic design: RICO [Deka er al., 2017], Pub-
LayNet [Zhong et al., 2019] and InfoPPT [Shi er al., 2022].
Experiment results show that our model outperforms current
baselines by a large margin in terms of both quantitative and
qualitative evaluations.

In summary, the main contributions of this paper include:

* We in-depth analyze the issue of the separate training
pipeline in graph-conditioned layout generation.

* To better utilize the two highly correlated generative
networks, we propose a novel collaborative generation
strategy that boosts the model performance to the state-
of-the-art.

* We conduct extensive studies to verify the effectiveness
of graph conditioning. Our model is robust against the
input constraint ratio in the graph as well as the sequence
order in the autoregressive layout generation.

2 Related Work

2.1 Layout Generation

Early works [Hurst et al, 2009; Kumar et al., 2011;
O’Donovan et al., 2014; Tabata et al., 2019] are mostly based
on heuristic rules or predefined templates with constraint op-
timization. These methods usually ensure high-quality out-
puts but with very limited variations, thus restricting the ap-
plications of layout generation in complicated scenarios.

Unconstrained Layout Generation. In recent years, deep
generative models have shown great power in learning the
complex distribution from given data and generating samples
with high fidelity and diversity, such as GAN [Goodfellow et
al., 2014] and VAE [Kingma and Welling, 2013]. They have
been also adapted to layout generation and achieved promis-
ing results. LayoutGAN [Li er al., 2019] applies GAN to
synthesize the layout bounding box and proposes a differ-
ential wireframe rendering module to enable the training of
discriminator, and LayoutGAN++ [Kikuchi ef al., 2021] ex-
tends LayoutGAN with Transformer backbone. LayoutVAE
Uyothi et al., 2019] trains two VAEs separately, one to pre-
dict the element categories and the other to generate the lay-
outs given the category condition. Several methods also fol-
low the VAE-based generative framework [Patil er al., 2020;
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Lee et al., 2020; Jiang et al., 2022]. Recent works [Gupta
et al., 2021; Kong et al., 2021; Arroyo et al., 2021; Jiang
et al., 2022] build the generative backbone based on Trans-
former [Vaswani er al., 2017] to model the long-distance
dependency and yield better performance. There are also
some content-aware generation methods [Zheng et al., 2019;
Wang et al., 2022; Cao et al., 2022; Zhou et al., 2022;
Li et al., 2022; Vaddamanu et al., 2022] that further consid-
ers the element content into modeling, which we will leave
for future exploration.

Layout Generation with Constraints. Spatial constraints
are shown to be crucial in this task which allows users to spec-
ify the desired spatial relations between elements. Previous
works mainly encode the constraints as auxiliary losses or op-
timization functions. Attribute-conditioned LayoutGAN [Li
et al., 2020b] considers element attributes (e.g., area, aspect
ratio) and incorporates them by forcing the model to meet
attribute conditions with extra training objectives. Layout-
GAN++ [Kikuchi et al., 2021] views it as a constrained op-
timization problem in post-processing. Neural Design Net-
work (NDN) [Lee er al., 2020] is an initial attempt to rep-
resent constraints as graph condition and incorporate it into
model learning. It is a graph-based system with a separate
training pipeline that optimizes different components sepa-
rately, which raises error propagation in a series of compo-
nents. In the next sections, we will analyze this issue in more
detail and improve the graph condition modeling with a col-
laborative generation strategy.

As a similar task, related works in floorplan generation
commonly use graph to model floorplan [Wang er al., 2019;
Hu et al., 2020; Nauata et al., 2020; Nauata et al., 2021;
Para et al., 2021; He et al., 2022], exhibiting great capabil-
ity of graph representation in layout modeling.

2.2 Graph Generative Networks

Graph generative models [Kipf and Welling, 2016; Li et al.,
2020a; Hasanzadeh er al., 2019; Zhang et al., 2019] mainly
adopt graph convolutional networks to learn the distribu-
tion of graphs. One of the most representative models is
Variational Graph AutoEncoder (VGAE) [Kipf and Welling,
2016], which embeds each node to a random variable in the
latent space and uses an inner-product decoder to generate
the adjacency matrix. In this work, we extend the framework
of VGAE to multi-class edge matrix prediction and propose
a variational graph autoencoder for generating spatial graphs
with user constraints.

3 Approach

In this section, we first present our two-stage framework for
graph-conditioned layout generation, including a graph gen-
erator and a layout decoder. Next, we analyze the issue of the
separate pipeline for training the two networks, and further
propose our collaborative generation framework.

3.1 Graph-Conditioned Layout Generation

Layout generation can be viewed as a sequence generation of
s [Gupta et al., 2021]:

s = ([bOS], V1,%1,Y1, h17w1; vy Uny Ty Yns hmwm [608])
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Figure 2: The overview of our approach. (a) Graph generator extends from the variational graph autoencoder; (b) Attention mechanism with
graph in the layout decoder; (c) Collaborative generation framework. These two generative nets are trained collaboratively. The output of the
graph generator is fed to the layout decoder. Layout decoder extract graphs from its generated layouts to guide the graph generator for better
generation. In cyclic sampling, our model extracts the graph from the decoded layout and feeds it back to generate new layouts for iterative

refinement.

where v; is the category label of the ¢-th element in the lay-
out (e.g., title, text, figure), z;,y;, h;, w; represent
the position and size which are converted to discrete tokens.
[bos], [eos] are special tokens for beginning and end.

To consider adding user specifications of element cate-
gories and their spatial relationships, it is natural to intro-
duce a graph as a condition to constrain the generated lay-
outs. Moreover, a graph serves as an intermediate represen-
tation in the generation process to improve the model’s inter-
pretability. We define a graph G = (V, &) where the node
v; € V is the element category and the edge e; € £ encodes
the spatial relationship between two nodes. The edge can be
one of the nine types: overlap, above-left, above, above-right,
right, below-right, below, below-left, left. The spatial graph
so far is a complete directed graph, which is dense and con-
tains many spatially-true but redundant edges. For example,
given above(A, B) and above(B, C), the edge above(A, C)
may be not necessary to be stored. This edge redundancy
problem will be likely to introduce noise in (1) predicting
self-consistent edges during graph generation; (2) capturing
the key structural information in graph conditioning. There-
fore, we apply a heuristic pruning strategy to obtain a sparse
graph: delete the edges which the distance of the two con-
nected nodes is longer than a pre-defined threshold. We show
later in the experiment that such a simple pruning strategy
works surprisingly well.

Our generation process consists of two networks: (1) graph
generator, producing a graph given partial user constraints;
(2) layout decoder, synthesizing layouts conditioned on the
graph. We briefly describe them in the following.

Network 1: Graph Generator. We extend Variational
Graph Autoencoder (VGAE) [Kipf and Welling, 2016] for
multi-classes edges generation. In VGAE, a graph is encoded
to the latent code z by a GCN, and the edges are generated
by the dot product of z. In our model, the latent code z; for
each node is encoded as the concatenation of the input graph
embedding by GCN and the node embedding with a learn-
able embedding matrix. The probability of an edge e;; € £
belonging to a relation type k& between nodes v;,v; € V can
be given by an inner product between the latent of two nodes
Ziy %4t

pEWV) =[] ] pleislzin %)
i=1j=1 (1

plei; = klzi, 2j) = softmax(p* (z;) " ¢"(2)))
where p* and ¢" is the non-linear transformation correspond-

ing to k. During training, the ground truth of spatial graphs
can be extracted from real layouts in the dataset.

Network 2: Layout Decoder. Conditioned on a generated
graph from the previous step or an extracted graph from a
real layout, our layout decoder autoregressively generates the
layout sequence s:

5n+2

I psils1:i-1,9)
i=1

hi = hz + GraphAttn(hlﬂ;, g)
where h; is the hidden representation of the ¢-th token. In

each decoder layer, tokens will attend to the graph using a
cross-attention.

p(s) )
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Figure 3: T-SNE visualization of generated and extracted graph em-
beddings. In separate training, there is a distribution shift between
these two types of graphs, resulting in performance reduction using
generated graphs. The issue is alleviated in collaborative training.

In our observation, one major limitation of the previ-
ous autoregressive models is that the generated results are
very sensitive to the input element order [Lee er al., 2020;
Gupta et al., 2021]. For example, LayoutTransformer sorts
the elements from top left to bottom right as the input order
in both training and inference. The performance drops signif-
icantly when the order is set randomly. In our experiments,
we show that our model is robust against different input order
variations, in which the graph condition plays a crucial role.

3.2 Issue of Separate Training Pipeline

Similar to NDN, it is natural to connect the two networks
using a separate training/inference pipeline. During train-
ing, the graph generator and layout decoder are separately
trained with ground-truth extracted graphs from real layouts.
Instead in inference, the layout decoder receives generated
graphs from the graph generator as input. There exists a gap
in the layout decoder’s conditioned graphs between training
and inference time. In our initial experiment, we observed
huge performance reduction when the layout decoder input
is changed from the extracted graph to the generated graph.
Similar results can also be found in Lee [2020].

To better understand this issue, we visualize the latent
space of extracted/generated graphs in Figure 3. As we
can see on the left (separate training), the generated graphs
have a distribution shift from the extracted graphs. With
limited-scale and highly-imbalanced training data, it is dif-
ficult to train a fully generalized graph generator and can eas-
ily yield out-of-distribution graphs that are likely to be self-
inconsistent among edges with increasing node size. More-
over, the layout decoder, only trained with ground-truth ex-
tracted graph inputs, is not robust to the unseen generated
graphs. Being compared, our proposed learning strategy in
the next subsection alleviates the distribution shift of gener-
ated graphs as shown in Figure 3 (right), and therefore re-
duces the error propagation from the graph generator to the
layout decoder.

3.3 Collaborative Generation

To resolve the issue mentioned above, we propose a strategy
including collaborative training and cyclic sampling for better
unifying the graph generator and layout decoder. The overall
pipeline is shown in Figure 2.
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Collaborative Training. As shown in Algorithm 1, two
networks teach each other alternatively during training iter-
ations. On one hand, besides ground-truth extracted graphs,
the layout decoder accepts generated graph input from the
graph generator to update its parameters. On the other hand,
a graph can be derived from the layout decoder output and is
used as the training data for the graph generator. This training
framework has two major benefits. First, it can be viewed as
an approach of curriculum data augmentation, which enforces
model robustness to more unseen data. Second, it provides in-
stant communication to perform round-way knowledge trans-
fer between the two networks, and adjusts their learning pace
when training together.

Cyclic Sampling. We apply several rounds of decoding in
the inference. After the first round of the generation process
from graph generation to layout generation, the layout de-
coder will input the graph derived from its sampling layout in
the previous round for iterative refinement. Empirically, we
apply the cyclic sampling only on the layout decoder side as
it improves sampling time efficiency while performing con-
siderably well.

Algorithm 1 Collaborative Generation.

Require: Target layouts L, extracted graphs G from L,
1: Initialize Graph generator ¢, layout decoder 6,
2: for training iteration: = 1,--- , T} do
3:  Update 0, with G, generate graphs G|,
4 Update ¢; with L; conditioned on either G or G,
5:  Sample layouts L, conditioned on G, with §;
6:  Update 0, with graphs derived from L,

7

8

: end for

: for sampling iteration: = 1,--- ;T do
9: ifi==1 then
10: Generate graphs G* with 0,
11:  endif

12:  Sample layouts L' conditioned on G
13:  Derive G**! from L*
14: end for

4 Experiments

In this section we show our experiment details, system com-
parison results and the in-depth analysis of graph modeling.

4.1 Experiment Setup

Datasets. We conduct our experiments with three public
datasets for graphic design, RICO [Deka et al., 2017] and
PubLayNet [Zhong et al., 2019] and InfoPPT [Shi er al.,
2022]. RICO consists of over 66k unique Ul layouts from
Android mobile apps. Following previous works, we exclude
elements whose labels are not in the 13 most frequent sets
and exclude layouts with more than 9 elements. After filtering
there are 20,507 layouts in total. PubLayNet is a large collec-
tion of over 360k scientific documents crawled from PubMed
Central. Similarly, layouts with more than 9 elements are
excluded, totaling 173,225 layouts in the final set. InfoPPT
contains 23k information presentations collected from the In-
ternet. We exclude several unnecessary categories such as



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Special Track on Al, the Arts and Creativity

Dataset Rico PubLayNet InfoPPT
Model Max. IoU Alignment Overlap FID| Max.IoU Alignment Overlap FID| Max.IoU Alignment Overlap FID |
LayoutVAE 0.24 0.98 66.20 95.81 0.28 0.63 8.09 58.99 0.15 0.99 61.95 22.03
LayoutGAN++ 0.36 0.60 61.19 26.13 0.36 0.24 21.52  25.67 0.09 032 127.02 19.01
NDN-none 0.34 0.51 58.06 16.86 0.30 0.30 19.38  38.37 0.15 0.74 96.61 36.81
LayoutTransformer 0.21 0.10 7112 7373 0.35 0.43 12.05  66.37 0.21 0.36 5335 1299
Ours-none 0.44 0.18 67.95 6.36 0.42 0.07 515  6.30 0.30 0.30 48.66 1534
Real data 0.68 0.27 51.31 1.93 0.53 0.04 0.22 1.78 0.75 0.14 1720  0.40

Table 1: Overall results of unconstrained layout generation on three datasets. For the metrics Max. IoU, Alignment and Overlap, closer value
to the real data indicates better system performance. “none” means no user constraint input and the layout decoder is conditioned fully on

model-generated graphs.

footnote and decorator, and select layouts with element num-
bers ranging from 4 to 20, which are in total 46,654 layouts.

Baselines. We consider the following recent works as base-
lines. LayoutVAE [Jyothi et al., 2019] takes the latent code
and category labels (optional) as input and generates the el-
ement bounding boxes in an autoregressive manner. Lay-
outGAN++ [Kikuchi et al., 2021] improves LayoutGAN
with Transformer backbone and applies several beautification
post-process for alignment and non-overlap. NDN [Lee ef
al., 2020] is a pipeline system with graph generation, layout
synthesis and refinement. LayoutTransformer [Gupta et al.,
2021] autoregressively generates a sequence of element to-
kens.

Evaluation Metrics. There are 4 metrics commonly used
to measure the generated layout quality:

L]

Maximum IoU. Given the generated layouts and the ref-
erences, this metric computes the intersection over the
union of the two sets with a permutation to maximize
the IoU as a similarity measurement.

Alignment. Layout elements are usually aligned with
each other to create an organized composition. Align-
ment calculates on average the minimum distance in the
X- or y-axis between any element pairs in a layout.

Overlap. It is assumed that elements should not overlap
excessively. Overlap computes the average IoU of any
two elements in a layout. Layouts with small overlap
values are often considered to be high quality.

FID. Compared to the above heuristic metrics, FID is a
sample-based metric for image generation [Heusel et al.,
2017] and has been adopted in layout generation. It pre-
trains a feature network to classify real or fake layouts
which is then used to extract features of two data sets
and calculate the Fréchet distance.

For all the evaluation metrics, we use the implementation
from LayoutGAN++'.

Implementation Details. For model architecture, the graph
generator stacks 3 GCN layers with hidden dimension 128
and each node with hidden size 32. The layout decoder con-
tains 6 attention layers each with 8 heads. The attention
dropout rate is set to 0.5. The token embedding size is 512.
The cyclic step for sampling is set to 2. We train the model

"https://github.com/ktrk115/const_layout
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for 100 epochs with a learning rate 3 x 10~* and batch size
64. We use early stopping based on validation error. Adam
[Kingma and Ba, 2014] is used as optimizer with 3; = 0.9
and By = 0.99.

4.2 Unconstrained Generation Results

Quantitative Comparisons. For the three heuristic met-
rics, the closer value to real data, the better performance.
For FID score, we pursue the lowest absolute value. Table
1 shows the overall results of unconstrained layout genera-
tion. In this setting, our pipeline generates graphs without
any constraints to initialize the graph as the same in NDN
(labeled as none”). Our model performs significantly bet-
ter than the baselines with a large margin on most metrics,
especially on the FID. Except that it does not perform well
in terms of Overlap on RICO. We argue that elements in UI
layouts are more frequently to be overlapped which might en-
courage the model to learn strong overlap behavior. To high-
light, NDN is the most similar approach to ours which also
synthesizes layouts conditioned on the generated graph but
mainly differs in training strategy. Our model beats NDN
across most metrics, indicating the effectiveness of our col-
laborative generation framework to improve the final perfor-
mance of generated layouts.

Qualitative Comparisons. As the case study shown in Fig-
ure 4, our model generates layouts with better alignment and
less overlap. With the aid of spatial graphs, we find that our
model can learn to better capture the element relationships.
For example, it frequently places icons inside the toolbar as
navigation widget in Ul layouts (RICO), and text captions on
the top of tables while in the bottom of figures in scientific
document layouts (PubLayNet).

Ablation of Different Components. We show the results
by removing different components of our model in Table 2.
All experiments in the following are conducted on Pub-
LayNet. As we can see, coupled with all three components it
achieves the best result. Especially with collaborative train-
ing, the performance is significantly improved, with FID op-
timized from 52.70 to 6.64. Graph pruning is also useful,
meaning that sparse graphs can help the model better capture
the key structural information by removing redundant edges.

Robustness to Input Sequence Order. The order of the in-
put elements is also an important factor in previous autore-
gressive generation methods. Table 3 shows the result of dif-
ferent element orders on RICO. Without graph condition, the
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Graph Collaborative Cyclic | \p 111 Alignment  Overlap FID | Graph  Order Max. IoU Alignment Overlap FID]
Pruning Training Sampling
sor .21 .1 7112 73.7
X X X 0-28 018 46.36  38.25 X andiom g 20 g 1(6) 81.07 73 sg
4 X X 0.28 021  41.84 5270 : : : :
X X v 0.35 0.10 1841 18.85 sort 0.30 0.16 66.99 23.73
v v X 0.43 0.07 8.55  6.64 random 0.44 0.18 6795  6.36
v v v 0.42 0.07 515 6.30

Table 2: Ablation of different components on PubLayNet.

result is sensitive to the input element order (the random order
performs much worse than the sorted order). After adding the
graph, our model is robust against the order, with even FID
score improved under the random setting. It may probably be
the reason that random order serves as an approach to data
augmentation with graph conditioning.

4.3 Conditioned Graph Analysis

Here we investigate the impact of different graph settings on
the overall performance.

Effect of Input Constraints Ratio in Graph. With a
smaller input constraint ratio to initialize a graph, the graph
generator has to complete more missing edges, which in-
creases the task difficulty. As shown in Figure 5, when train-
ing the graph generator and layout decoder separately (i.e.,

Table 3: Effect of different element input order. With graph condi-
tions, the model is more robust to random order.

NDN and Separate), we observe great performance reduc-
tion with less constraint input. With our collaborative gen-
eration (purple line), the performance becomes stable across
different constraint ratios. This indicates that collaborative
generation improves the generated graph quality as well as
the robustness of the layout decoder, minimizing the perfor-
mance gap among graphs with different input edge ratios. We
also show the performance of LayoutGAN++ with a post-
processing optimization of user constraints (red line). Inter-
estingly, it shows a different trend of performance decreas-
ing with a higher constraint ratio, which is expected since
more constraints might increase the optimization problem dif-
ficulty.

Graph Consistency with Layouts. To evaluate how well
the generated layouts conform to the conditioned graphs, we

5856



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on Al, the Arts and Creativity

LayoutGAN++ —=— Seperate (ours)
NDN Collaborative (ours)
0.55
0.4
0.50
30.45 . 803 —
= / g
% 0.40 / o
= o <02
0.35 / .
o /. \l\.
0.1 ~.

0.30 -

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Constraints Used Constraints Used

00.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Constraints Used Constraints Used

Figure 5: Compared to the unstable separate training, NDN and
optimization-based LayoutGAN++, our collaborative generation
maintains high performance across different input constraint ratios
on all metrics.

Matching Degree (k) RICO PubLayNet InfoPPT
0 55.80 60.61 4147
1 68.17 79.24 63.38
2 78.17 87.90 80.57

Table 4: Graph consistency with the generated layout.

measure the graph consistency in Table 4. Specifically, given
a graph g and the corresponding generated layout I where a
graph g’ which can be derived from, the consistency value A
can be calculated by matching the edges between g and g’:

1
Ak = fZHeg*eﬂ < K]
| ‘eEE

where the matching degree k indicates the direction close-
ness between two edges. For example, the degree of <above,
above-left> is 1 and <above, left> is 2. From the table, we
can see that the exact match of the conditioned graphs and
generated layouts (k = 0) is challenging, with only 40%-60%
of samples satisfying this hard matching. While setting loose
the degree to k = 1, 2, the consistency values can be reached
up to around 80%, which indicates that most generated lay-
outs can reasonably conform to the conditioned graph.

Effect of Graph Sparsity. As we mentioned in Section 3.1,
complete graphs usually contain redundant edges and are
likely to increase the learning difficulty for both the graph
generator and layout decoder. Here we investigate the ef-
fect of graph sparsity on the overall performance. As shown
in Figure 6, pruning the redundant edges to a reasonable
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Q
o
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Figure 6: Pruning redundant edges with a reasonable percentage (up
to 40%) can improve the quality of generated layouts.

Toolbar

above
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Figure 7: Given the same specification, our model can generate dif-
ferent graphs following the same constraint, accompanied by diverse
layouts per graph.

percentage (up to 40%) can improve the quality of gener-
ated layouts. As the number of pruning edges continues
to get increased, the performance deteriorates, which is ex-
pected since there will be more information lost in the pruned
graph. This conclusion consistently holds when given differ-
ent amounts of input constraints (0/25%/50%).

Generation Diversity. Given the user specification, a well-
performed system should generate diverse layouts satisfying
the same input constraints. As shown in Figure 7, in terms of
graph diversity, our model outputs different reasonable spatial
graphs. Furthermore, for each conditioning graph, our model
generates diverse layouts with varying sizes and positions.

5 Conclusion

User specifications are commonly used to constrain graphic
layout generation. In this work, we introduce a graph-
conditioned layout generation system that accepts flexible
user constraints. Our system consists of a graph generator
and a layout decoder. Instead of the separate training pipeline,
we propose a novel collaborative generation strategy to better
utilize the two networks. Experiment results show the effec-
tiveness of our approach. In the future, we aim for better
solutions for generation control. Also, content-aware layout
generation would be another promising direction.
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