
DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with
Diffusion Models

Sicheng Yang1 , Zhiyong Wu1,4∗ , Minglei Li2 , Zhensong Zhang3 ,
Lei Hao3 , Weihong Bao1 , Ming Cheng1 , Long Xiao1

1Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2Huawei Cloud Computing Technologies Co., Ltd, Shenzhen, China

3Huawei Noah’s Ark Lab, Shenzhen, China
4The Chinese University of Hong Kong, Hong Kong SAR, China

yangsc21@mails.tsinghua.edu.cn, zywu@sz.tsinghua.edu.cn,
{liminglei29, zhangzhensong}@huawei.com

Abstract
The art of communication beyond speech there are
gestures. The automatic co-speech gesture gen-
eration draws much attention in computer anima-
tion. It is a challenging task due to the diver-
sity of gestures and the difficulty of matching the
rhythm and semantics of the gesture to the corre-
sponding speech. To address these problems, we
present DiffuseStyleGesture, a diffusion model-
based speech-driven gesture generation approach.
It generates high-quality, speech-matched, stylized,
and diverse co-speech gestures based on given
speeches of arbitrary length. Specifically, we in-
troduce cross-local attention and self-attention to
the gesture diffusion pipeline to generate better
speech-matched and realistic gestures. We then
train our model with classifier-free guidance to con-
trol the gesture style by interpolation or extrapo-
lation. Additionally, we improve the diversity of
generated gestures with different initial gestures
and noise. Extensive experiments show that our
method outperforms recent approaches on speech-
driven gesture generation. Our code, pre-trained
models, and demos are available at https://github.
com/YoungSeng/DiffuseStyleGesture.

1 Introduction
Body gestures and facial expressions are important tools
for conveying information in human communication
[Kucherenko et al., 2021]. Automated generation of co-
speech gestures is a crucial technology for developing lifelike
avatars in movies, gaming, virtual social environments, and
interactions with social robots [Nyatsanga et al., 2023].
The most important issues of co-speech gesture generation
are 1) how to generate gestures matching the rhythm of
audio and semantics of text; and 2) how to generate diverse
and stylized gestures. Recent gesture generation meth-
ods can directly generate human gestures conditioned on
neutral speech [Nyatsanga et al., 2023; Yoon et al., 2022;
Kucherenko et al., 2021]. However, all these approaches

Happy: gesticulating for joy Sad: hanging head in despair

Old: hunchback Relaxed: easy and comfortable

Figure 1: Gesture examples generated by our proposed method
on various types of speech and styles. All characters used in the
paper are publicly available.

still limit the learned distribution since they mainly employ
GAN-based [Yoon et al., 2020], VAEs [Li et al., 2021a] or
Flows [Alexanderson et al., 2020a]. GAN-based synthesis
methods suffer from mode collapse, which leads to low-
quality synthesis, especially with data unseen in the training
data. Methods using VAEs and Flows require a trade-off
between generation quality and diversity [Tevet et al., 2022;
Dabral et al., 2022].

Recently, diffusion models [Ho et al., 2020] which are gen-
erative approaches have achieved impressive results in other
domains due to their high quality and diversity of generation,
such as image generation [Ramesh et al., 2022], video gener-
ation [Mei and Patel, 2022], and text generation [Lin et al.,
2022]. These works demonstrate the ability of denoising-
diffusion-based models to learn real data distributions while
also providing diverse sampling and manipulation, such as
editing and interpolation. However, these works do not model
timing-dependent sequences to solve temporal aligned prob-
lems like speech-driven gestures, and they are computation-
ally resource-intensive.

To generate high-quality, speech-matched, stylized, and di-
verse co-speech gestures, inspired by the recent progress of
the denoising-diffusion-based generation, we introduce Dif-
fuseStyleGesture, a versatile, controllable, and time-aware
denoising-diffusion-based model for audio-driven co-speech
gesture generation. Examples of the generated gesture are
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Figure 2: (Top) Denoising module of DiffuseStyleGesture. A noising step t and a noisy gesture sequence xt at this noising step conditioning
on c (including seed gesture d, style s, and audio a) are fed into the model. Cross-local attention and self-attention can better capture the
correlations between speech and gesture based on WavLM features. Random masks in the seed gesture and style feature processing pipeline
help classifier-free guidance training of the model and perform interpolation or extrapolation to achieve a high degree of control over the
generated gestures. (Bottom) Sample module of DiffuseStyleGesture. At each step t, we predict the x̂0 with the denoising process based
on the corresponding conditions, then add the noise to the noising step xt−1 with the diffuse process. This process is repeated from t = T
until t = 0.

shown in Figure 1. And the overview of our method is shown
in Figure 2. We use an attention-based architecture to cap-
ture the temporal information between speech and gestures.
And we find that it is better to train the model to predict the
signal itself [Ramesh et al., 2022; Tevet et al., 2022] than
to predict the noise. To align the generated gestures better
with the speech, we also propose an approach that uses cross-
local attention to capture local information of gestures and
speech, and then uses self-attention to capture global infor-
mation for better co-speech gesture generation of arbitrary
length depending on the speech duration. Furthermore, we
exploit WavLM features [Chen et al., 2022] to consider se-
mantic, emotional, and other information in audio to improve
the generalization and robustness of our model. Finally, we
use random masks to perform classifier-free guidance [Ho
and Salimans, 2022] at training time and thus achieve the in-
terpolation and editing of the control conditions. The main
contributions of our work are:

• We extend the diffusion model with temporal informa-
tion for audio-driven co-speech gesture generation. By
virtue of the diffusion model, we can have a high de-
gree of control over the generated gestures, e.g., editing
the style of the gestures, setting the initial gestures, and
generating diverse gestures.

• We use cross-local attention and global self-attention to
capture feature information and make generated gestures
that are more appropriate for speech.

• Extensive experiments show that our model can gener-
ate human-like, speech-matched, style-matched gestures
that significantly outperform existing gesture generation
methods.

2 Related Work
2.1 Co-speech Gesture Generation
Gesture generation is a complex task that requires under-
standing speech, gestures, and their relationships. Data-
driven approaches attempt to learn gesticulation skills from
human demonstrations. Present studies mainly consider
four modalities: text [Alexanderson et al., 2021; Yoon et
al., 2019], audio [Habibie et al., 2021; Li et al., 2021b;
Ginosar et al., 2019], gesture motion, and speaker identity
[Yoon et al., 2020; Liu et al., 2022; Alexanderson et al.,
2020a]. [Habibie et al., 2021] propose the first approach
to jointly synthesize both the synchronous 3D conversational
body and hand gestures, as well as 3D face and head anima-
tions. [Yi et al., 2022] employ an autoencoder for face mo-
tions, and a compositional vector-quantized variational au-
toencoder (VQ-VAE) to generate more diverse gestures. [Xie
et al., 2022] introduce a VQ-VAE model to represent a pose
sequence as a sequence of latent codes and develop a dif-
fusion architecture for Text-to-Sign pose sequences gener-
ation. As for learning individual styles [Li et al., 2021a;
Liang et al., 2022], [Yoon et al., 2020] propose the first end-
to-end method for generating co-speech gestures using the
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tri-modality of text, audio and speaker identity. [Ahuja et al.,
2020] train a single model for multiple speakers while learn-
ing the style embeddings for the gestures of each speaker.
[Liang et al., 2022] propose a semantic energized generation
method for semantic-aware gesture generation. [Ao et al.,
2022] disentangle both low-level and high-level embeddings
of speech and motion based on linguistic theory.

Some works use motion matching methods to generate co-
speech gestures [Habibie et al., 2022; Zhou et al., 2022]. The
approach requires careful design of the database, which is di-
rectly related to the performance of the generated gestures.
The length of matching needs to be balanced between qual-
ity and diversity. Furthermore, the approach also requires
complex and time-consuming manual design of the matching
rules.

Recently, a high-quality 3D gestures dataset ZeroEGGS
[Ghorbani et al., 2022] is built from multi-camera videos with
style labels. This dataset is used in our work.

2.2 Diffusion Models for Motion Generation
Diffusion models excel at modeling complicated data distri-
bution and generating vivid motion sequences. Many works
integrate diffusion-based generative models into the motion
domain and carefully adapt the network structure of classifier-
free diffusion generative models for the human motion do-
main, such as based on Transformer [Kim et al., 2022;
Tevet et al., 2022; Ren et al., 2022; Zhou and Wang, 2022].
[Chang et al., 2022b] design a multi-task architecture of dif-
fusion model and use adversarial and physical regulations for
human motion synthesis. [Dabral et al., 2022] introduce Mo-
Fusion to generate long, temporally plausible, and semanti-
cally accurate motions. A physics-guided motion diffusion
model [Yuan et al., 2022] incorporates physical constraints
into the diffusion process.

[Ginosar et al., 2019] propose a cross-modal translation
method based on the speech-driven gestures of a single
speaker. [Li et al., 2022] propose a cross-conditional causal
attention layer to keep the coherence of the generated body.
[Chang et al., 2022a] use locality-constraint attention mech-
anism and achieve the best gesture-speech appropriateness in
the full-body level of the GENEA 2022 gesture generation
challenge [Yoon et al., 2022]. MotionDiffuse [Zhang et al.,
2022] using cross attention enables probabilistic mapping, re-
alistic synthesis, and multi-level manipulation. In our work,
we use cross-local attention to capture local information of
gestures and speech; and then use self-attention to capture
global information to make the generated gestures match bet-
ter with the speech.

3 Our Approach
3.1 Diffusion Model for Gesture Generation
Our idea is to generate gestures with a diffusion model [Ho
et al., 2020] by learning to gradually denoising starting from
pure noise. As shown in Figure 2, the diffusion model con-
sists of two parts: the forward process (diffusion process) q
and the reverse process (denoising process) pθ.

Diffusion Process. The diffusion process q is modeled as
a Markov noising process. We denote the generated ges-

ture as x, which has the same dimension as an observa-
tion data x0 ∼ q (x0), q (x0) denotes the distribution of the
real data. According to a variance schedule β1, β2, . . . , βT

(0 < β1 < β2 < · · · < βT < 1, T is the total time step), we
add Gaussian noise

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

to the gesture at each time t gradually, and if the schedule is
properly designed and T is large, pure noise

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) (2)

will be obtained at the end.
Denoising Process. The denoising process pθ is a process

of learning parameter θ via a neural network. Assuming that
the denoising process also conforms to a Gaussian distribu-
tion, i.e., the noise xt at time t is used to learn µθ, Σθ, then

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (3)

For calculation convenience, we assume that αt = 1−βt and
ᾱt =

∏T
i=1 αi. Then the noisy gesture xt at time t can be

written as

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(4)

The network is optimized by minimizing the difference be-
tween the real noise ϵ and the predicted noise ϵθ (xt, t)
[Ho et al., 2020]. When sampling, we can learn the mean
µθ (xt, t) =

1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
by fix the variance.

Framework. Our goal is to synthesize a human gesture
x1:N of length N given conditions c. In our work, we follow
[Ramesh et al., 2022; Tevet et al., 2022] to predict the signal
itself instead of predicting ϵθ (xt, t) [Ho et al., 2020]. The
Denoising module reconstructs the original signal x0 based
on the input noise xt, noising step t and conditions c

x̂0 = Denoise (xt, t, c) (5)

Then the Denoising module can be trained by optimizing
the Huber loss [Huber, 1992] between the generated poses
x̂0 and the ground truth human gestures x0 on the training
examples:

L = Ex0∼q(x0|c),t∼[1,T ] [HuberLoss(x0 − x̂0)] (6)

3.2 Attention-based Speech-driven Gesture
Generation Model

Feature Processing in Denoising module. As shown in Fig-
ure 2, gestures are generated based on noising step t, noisy
gesture xt and conditions c (including audio a, style s, and
seed gesture d). For each feature, the processing pipeline is
as follows:

• Noising step: During training, noising step t is sampled
from a uniform distribution of {1, 2, . . . , T}, with the
same position encoding as [Vaswani et al., 2017], and
then mapped to a space T of dimension 256 by a multi-
layer perceptron (MLP).
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• Noisy gesture: During training, xt is the noisy ges-
ture with the same dimension as the real gesture x0 ob-
tained by sampling from the standard normal distribu-
tion N (0, I). When sampling, the initial noisy gesture
xT is sampled from the standard normal distribution and
the other xt, t < T is the result of the previous noising
step. Then the dimension is adjusted to 256 as G by a
linear layer.

• Audio: All audio recordings are downsampled to 16kHz,
and features are generated from the pre-trained models
of WavLM Large [Chen et al., 2022]. We use linear in-
terpolation to align WavLM features and gesture x0 in
the time dimension to 20fps, and then use a linear layer
to reduce the dimension of features to 64 forming the
final audio feature sequence A.

• Style: The styles of gestures are represented as one-hot
vectors where only one element of a selected style is
nonzero, mapping to the 64-dimensional space S via a
linear layer.

• Seed gesture: Seed gesture helps to make smooth
transitions between consecutive syntheses [Yoon et al.,
2020]. Please see our supplementary material for more
detail regarding the ground truth gestures clip g ∈
R(8+N)×1141. The first 8 frames of the gestures clip
g are used as the seed gesture d and the remaining N
frames are used as the real gesture x0 to calculate loss
L. Then we map the feature dimensions of seed gesture
d to the space D of 192 dimensions using a linear layer.
The length of our generated gesture is 4 seconds and we
resample the gesture animation to 20 fps, then N = 80.

Model in Denoising module. We implement denoising
with the attention-base architecture. Before utilizing long-
range correlations, it is advisable to build up representations
with local context [Rae and Razavi, 2020].

We concatenate the seed gesture D and style S together to
form a 256-dimensional vector, and then add the information
of the noising step T to form Z. Our network takes the vec-
tor Z and stacks its replicates into a sequence feature to align
with the timeline of audio and gesture features, which are then
concatenated with the audio A and gesture G as the input to
the cross-local attention network. Our proposed cross-local
attention for co-speech gesture generation is based on Rout-
ing Transformer [Roy et al., 2021], which shows that local at-
tention is important in building intermediate representations,
as shown in Figure 3(c).

After that, we concatenate the output of cross-local atten-
tion with Z and feed it into the self-attention network, as
shown in Figure 3(a). The self-attention mechanism is similar
to Transformer [Vaswani et al., 2017] encoder, which deter-
mines the computational dependencies between the sequen-
tial elements of the data, and is implemented as

Attention(Q,K,V,M) = softmax

(
QKT +M√

C

)
V

(7)
where Q, K, V denote the query, key and value from input,
and M is the mask, which determines the type of attention
patterns. We use the same relative position encoding (RPE)

(a) full self-
attention

(b) sliding win-
dow attention

(c) cross-local
attention

Figure 3: Different patterns of attention used in our experiments,
where (a) and (c) are attention mechanisms used in our model and
(b) is a pattern compared in Section 4.3. The rows represent the
outputs and the columns represent the inputs. The colored squares
highlight the relevant elements for each row of output.

mechanism as [Kitaev et al., 2020] so that the temporal effect
on gesture translation is invariant. Finally, the output of self-
attention is mapped back to the same dimension as x0 after a
linear layer.

From Figure 3, we can find these different attention mecha-
nisms can be achieved by simply adjusting the corresponding
mask M, we also experimented with sliding window attention
in Longformer [Beltagy et al., 2020], the results are analyzed
in Section 4.3.

Sample Module. The final co-speech gesture is given
by splicing a number of clips of length N . The seed ges-
ture for the first clip can be generated by randomly sam-
pling a gesture from the dataset or by setting it to the aver-
age gesture. Then the seed gesture for other clips is the last 8
frames of the gesture generated in the previous clip. For every
clip, in every noising step t, we predict the clean gesture x̂0

=Denoise(xt, t, c), and add the noise to the noising step xt−1

using Equation (1) with the diffuse process. This process is
repeated from t = T until x0 is reached (Figure 2 bottom).

3.3 Style-controllable Gesture Generation
Since the algorithm generates gestures based on control con-
ditions, the control conditions can be not only audio a but
also style s, or seed gesture d, etc. As shown in Fig-
ure 2, we refer to [Ho and Salimans, 2022; Tevet et al.,
2022] and add random masks to the pipeline of seed ges-
ture d and style s feature processing for classifier-free learn-
ing, which enables accurate control of different conditions.
Then, the classifier-free guidance of gestures generation can
be achieved by combining the predictions of the conditional
model Denoise (xt, t, c1) , c1 = [d, s, a] and the uncondi-
tional model Denoise (xt, t, c2) , c2 = [∅,∅, a] during the
training process, as Equation (8).

x̂0γ,c1,c2 = γDenoise (xt, t, c1) + (1− γ)Denoise (xt, t, c2)
(8)

In practice, the Denoising module learns both the con-
ditioned and the unconditioned distributions by randomly
masking 10% of the samples using Bernoulli masks. Then, as
for style s in condition, we can generate style-controlled ges-
tures when sampling by interpolating or even extrapolating
the two variants using γ, as c1 = [d, s1, a], c2 = [d, s2, a] in
Equation (8). Please refer to our supplementary material for
training details such as dataset and implementation details.
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(a) Box plot of ratings in human-likeness. (b) Box plot of ratings in gesture-speech ap-
propriateness.

(c) Box plot of ratings in gesture-style ap-
propriateness.

Figure 4: Box plot visualizing comparison results of MOS for different models in different dimensions. The box extends from the first
lower quartile (Q1) to the third greater quartile (Q3) of the data. The red line denotes the median. The notches represent the 95% confidence
interval (CI) around the median. When the CI is less than Q1 or greater than Q3, the notch extends beyond the box, giving it a unique “flipped”
appearance. We have also marked the mean and its 95% CI in the figure with a green dashed line and a blue vertical line, respectively.

4 Experiments
4.1 Comparison to Existing Methods
We compare our proposed model with StyleGestures
[Alexanderson et al., 2020b], Audio2Gestures [Li et al.,
2021b], ExampleGestures [Ghorbani et al., 2022]. Currently,
speech-driven gestures lack objective metrics that are con-
sistent with human subjective perception [Yoon et al., 2022;
Kucherenko et al., 2021; Alexanderson et al., 2022], even
for Fréchet gesture distance (FGD) [Yoon et al., 2020;
Dabral et al., 2022], so all our experimental scoring are done
by human subjective evaluation. We conduct the evaluation
on three dimensions. The first two follow the evaluation in
GENEA [Yoon et al., 2022], which evaluates human-likeness
and gesture-speech appropriateness. The third dimension is
gesture-style appropriateness.

User Study. To understand the real visual performance of
our method, we conduct a user study among the gesture se-
quences generated by each compared method and the ground
truth motion capture data. The length of the evaluated clips
ranged from 11 to 51 seconds, with an average length of 31.6
seconds. Note that the clip gestures used for the subjective
evaluation here are longer compared to the GENEA [Yoon et
al., 2022] evaluation (8-10 seconds), as a longer period time
could produce more pronounced and convincing appropriate-
ness results [Yang et al., 2022]. Participants rated at a 1-point
interval from 5 to 1, with labels (from best to worst) of “excel-
lent”, “good”, “fair”, “poor”, and “bad”. More details about
the user study are shown in the supplementary material.

The mean opinion scores (MOS) on human-likeness,
speech appropriateness, and style appropriateness are re-
ported in Figure 4. If the notches of the two boxes do not
overlap, we can consider this as strong evidence that the dis-
tributions are significantly different [McGill et al., 1978].
Our method significantly surpasses the compared state-of-
the-art methods with human-likeness, gesture-speech, and
gesture-style appropriateness, and even produces competi-
tive results with ground truth in all three dimensions. Ac-

cording to the feedback from participants, our generated ges-
tures are “more semantically relevant”, “more natural”, and
“match the style”, while our approach has “foot-sliding” com-
pared to Ground Truth. However, this is a common prob-
lem for non-physical-based motion generation systems and
could be solved by post-processing [Ghorbani et al., 2022;
Luvizon et al., 2023].

4.2 Gesture Controllability
Style Control. Assuming that the neutral audio does not af-
fect the gesture style, then we can generate stylized gestures
with a neutral speech by setting γ = 1 and s in equation (8).
We choose two speech segments in the test set with neutral
audio to generate six stylized gestures respectively. Figure 5
illustrates generated gesture x̂t of different input style s with
the same neutral audio visualized by the tSNE method.

We also plotted the body skeleton generated by the corre-
sponding style in the figure, and it can be noticed that for the
‘old’ style, its waist and knees are more bent, and its hands
are basically on the knees or waist; for the ‘sad’ style, its head
is hanging and its hands are in a lower position; for the ‘re-
laxed’ style, its hips are forward and its standing posture is
relaxed; for the ‘angry’ style, its hands move up and down
quickly. Note that although the differences between the ‘neu-
tral’ and ‘happy’ style gestures are still relatively obvious in
the stylistic visualization of the skeleton, i.e., for the ‘happy’
style, its hand position is higher and its amplitude is larger,
their tSNE is almost coupled together. In our analysis, this
happens because the so-called neutral speech still contains
information such as emotions and semantics that is contained
in the WavLM features. The balance of the style from audio
a and from style s can be further controlled by the editing the
style intensity γ.

Style Edit. To further analyze the relationship between
style intensity and the style implied by the speech, we choose
the ‘happy’ style and the ‘old’ style and set γ = 1 and 3 in
equation 8. Also, to compare the results, we set γ = 0.5 in
equation 8, in order to interpolate the different styles. The
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Figure 5: The tSNE visualization of gestures with different styles
and the shadow maps of the skeletal gesture with the corresponding
style. For example, for the ‘old’ gesture, its waist and knees are
more bent, and its hands are basically on the knees or waist.

other parameters remain unchanged, and we plot a 12-second,
FPS = 1 gesture generation result as shown in Figure 6.

As shown in Figure 6, we can see that when we use the
‘happy’ style with γ = 3, both its body rotation and hand
movements are the largest, and its hand positions are the high-
est; in contrast, when we use the ‘old’ style with γ = 3, its
waist is the most bent, the hands are barely lifted, and there
is no much change in the whole movement sequence; As for
the other three results, the intensities of their styles are in the
middle of the above two, and the style gradually changes from
happy to old from top to bottom. Due to our model architec-
ture, the generated gestures and speech are more appropriate,
even though these styles are not the same. Notice that when
we use ‘happy’ and ‘old’ styles with γ = 0.5, the result is
closer to using the ‘happy’ style with γ = 1, while the ‘old’
style is almost imperceptible. This observation further vali-
dates the previous finding that the ‘happy’ style is embedded
in the ‘neutral’ speech used for testing. This finding is useful,
for example, we found in our experiments that if we want to
control the ‘happy’ speech to generate the ‘sad’ gesture, γ = 1
is basically ineffective because the model can learn the happy
style from the speech. Since there is such a coupling between
the style of speech and the style of gestures, then setting a
larger γ can edit the style better. Thus we are able to generate
gestures that do not exist in the original dataset (e.g., gestures
for ‘happy’ speech in the ‘sad’ style) by style intensity.

User Study. Further, we would like to explore the relation-
ship between style intensity and human-likeness and speech
appropriateness, so we conducted a user study. To avoid
styles in speech from influencing participants’ scoring, as be-
fore, we only control the intensity of the styles for a neutral
speech and then asked participants to score the three previ-
ous dimensions. ExampleGesture [Ghorbani et al., 2022] can
also control the generation of different styles of gestures from
the same speech. Hence we choose it as the baseline model.
Since the gestures generated here do not exist in the dataset,
the source neutral speech with neutral style is used as a refer-
ence. The results are shown in Figure 7.

The results show that our model is similar to ExampleGes-
ture in terms of gesture-style appropriateness of the results
at γ = 1, and our human-likeness and speech appropriateness

Happy-3

Happy-1

Happy/Old-0.5/0.5

Old-1

Old-3

Figure 6: Style editing and interpolation results. From top to bot-
tom, the body twists and hand movements gradually decrease and
the hand position becomes lower. Despite the change in style, the
generated gestures still match well with speech in different styles.

Figure 7: Average results of MOS with 95% confidence intervals
for three dimensions. ’Ours-γ’ denotes the style control intensity γ
of our model. Our model significantly outperform ExampleGesture
overall and could editing the intensity of the styles. The parameter
γ increases and the other two scores will reasonably decrease.

significantly exceed ExampleGesture. Meanwhile, the style
is significantly more appropriate when γ increases, but the
scores of the other two dimensions decrease. This is also in-
tuitive, i.e., if the intensity of the ‘old’ style is too high, the
hands are barely lifted and the entire motion sequence are
small in amplitude, so it looks less human-like and less ap-
propriate to the speech. We also find that the results of gener-
ating style control (Figure 7) were degraded compared to the
results of directly generating the style corresponding to the
speech (Figure 4). We believe that controlling one style of
speech to generate another style of gesture is in itself a “diffi-
cult and conflicting” task because the style of speech and the
style of gesture are still related and coupled together.

Generate diverse gestures. Due to our model architecture,
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Seed pose: random pose  Random noise seed: 123456 Seed pose: random pose Random noise seed: 654321

Seed pose: average pose Random noise seed: 123456 Seed pose: average pose Random noise seed: 654321

Figure 8: Visualization of the diversity of generated gestures. People
make different co-speech gestures at different moments in different
states. Just like real people, for the same speech, our method is
able to generate different gestures with different seed gesture or with
different noisy gesture.

Name Human
likeness↑

Gesture-speech
appropriateness↑

Ground Truth 4.15 ± 0.11 4.25 ± 0.09
Ours 4.11 ± 0.08 4.11 ± 0.10

− WavLM 4.05 ± 0.10 3.91 ± 0.11
− cross-local attention 3.76 ± 0.09 3.51 ± 0.15
− self-attention 3.55 ± 0.13 3.08 ± 0.10
− attention + GRU 3.10 ± 0.11 2.98 ± 0.14
+ forward attention 3.75 ± 0.15 3.23 ± 0.24

Table 1: Ablation studies results. ’−’ indicates modules that are not
used and ’+’ indicates additional modules. Bold indicates the best
metric.

even for the same speech and style, different noisy gesture
and different seed gesture could generate different results, as
shown in Figure 8. This is the same as real human speech,
which creates diverse co-speech gestures related to the initial
position. Our analysis before was performed on the style di-
mension. Note that the model also adds a random mask to the
processing of the seed gesture, so it can also interpolate and
extrapolate different seed gestures to control the generation
of different and diverse initial position gesture.

4.3 Ablation Studies
Moreover, we conduct ablation studies to address the perfor-
mance effects of different components in our model. Since
gesture-style appropriateness can be controlled by parameter
and affect the other two dimensions, we set γ to 1 and score
only human-likeness and speech appropriateness for ease of
comparison. The results of our ablations studies are summa-
rized in Table 1. The visual comparisons of this study can
be also referred to the supplementary video. We explore the
effectiveness of the following components: (1) WavLM fea-
tures (2) local attention (3) local attention pattern (4) self-
attention (5) attention. We conduct the experiments on each
of the five components, respectively.

User Study. Supported by the results in Table 1, when
we do not use the WavLM feature but use the first 13 co-
efficients of the Mel-frequency cepstral coefficients (MFCC)
instead, the scores of both dimensions decreased, especially
the speech appropriateness. This is because the features ex-
tracted by the pre-trained WavLM model contain more in-

formation such as semantics and emotions, which is help-
ful to generate the corresponding gestures. When there is
no cross-local attention, the scores of both dimensions drop
a lot. Because many gesture generation steps only involve
short-range correlations, local attention can capture local in-
formation better, which is consistent with the observation
of [Rae and Razavi, 2020]. Only self-attention relying on
global information of long sequences becomes less effec-
tive. Both human-likeness and gesture-speech appropriate-
ness drop more when self-attention is removed, suggesting
that self-attention is more important than local attention be-
cause there is inherent asynchrony in speech and gesture, and
it is difficult to learn enough gestural information from only
a local window (nearly half a second) of speech. When at-
tention is not used, we replace it with a GRU-based model,
which has the worst results among all models, further illus-
trating the effectiveness of the attention mechanism. In ad-
dition, we experiment using the attention structure in Figure
3(b) and find that the effect gets worse. The only difference
between adding forward attention and the cross-local atten-
tion used in our model is that the gesture is generated with
an extra look at the speech information in a future window.
This is an exciting finding, although there is an inherent asyn-
chrony between speech and gesture, in some ways it could in-
dicate that gestures are more related to a small period of time
in the present and the past and not to a short period of time
in the future. In other words, people are more likely to say
“hello” before waving than to wave before saying “hello”. It
is also possible that different people have different styles and
this dataset has only one actor that needs to be studied further.

5 Discussion and Conclusion
In this paper, we propose DiffuseStyleGesture, a diffusion
model based method for audio-driven co-gesture generation.
DiffuseStyleGesture demonstrates three major strengths: 1)
Based on a diffusion model, probabilistic mapping en-
hances diversity while enabling the generation of high-
quality, human-like gestures. 2) Our model synthesis gestures
match the audio rhythm and text semantics based on cross-
local and self-attention mechanisms. 3) Using the classifier-
free guidance training approach, we can manipulate specific
conditions, i.e., style and initial gesture, and perform inter-
polation or extrapolation to achieve a high degree of control
over the generated gestures. The subjective evaluation shows
that our model outperforms existing arts on the temporal task
of audio-driven co-gesture generation and demonstrates su-
perior style manipulation. There is room for improvement in
this research, for example, solving the problem of many sam-
pling steps and long-time consumption of diffusion methods
for use in real-time systems is our future research direction.
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