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Abstract
Recent years have seen a rise in smartphone appli-
cations promoting health and well being. We argue
that there is a large and unexplored ground within
the field of recommender systems (RS) for appli-
cations that promote good personal health. During
the COVID-19 pandemic, with gyms being closed,
the demand for at-home fitness apps increased as
users wished to maintain their physical and mental
health. However, maintaining long-term user en-
gagement with fitness applications has proved a dif-
ficult task. Personalisation of the app recommenda-
tions that change over time can be a key factor for
maintaining high user engagement. In this work
we propose a reinforcement learning (RL) based
framework for recommending sequences of body-
weight exercises to home users over a mobile ap-
plication interface. The framework employs a user
simulator, tuned to feedback a weighted sum of re-
alistic workout rewards, and trains a neural network
model to maximise the expected reward over gen-
erated exercise sequences. We evaluate our frame-
work within the context of a large 15 week live user
trial, showing that an RL based approach leads to a
significant increase in user engagement compared
to a baseline recommendation algorithm.

1 Introduction
The United Nations (UN) agenda for sustainable develop-
ment includes 17 actions and 169 goals towards shared global
peace and prosperity. Sustainable development goal 3 aims
to “Ensure healthy lives and promote well-being for all at all
ages”, while target 3.4 [Cf, 2015] aims to reduce the burden
of non-communicable diseases upon the global population,
in the hope of reducing world wide morbidity and promoting
mental health and well-being. The key indicators for this tar-
get include the mortality rate attributed to cardiovascular dis-
ease, cancer, diabetes or chronic respiratory disease, and the
mortality rate from suicide. Within economically developed
societies, non-communicable diseases such as diabetes and
cardio-vascular diseases are strongly related to poor physi-

cal fitness [Bassuk and Manson, 2005; WHO, 2022]. Ad-
ditionally, many studies have identified a strong connection
between heightened physical activity and good mental health
[Mikkelsen et al., 2017]. In 2013, the Council of the Eu-
ropean Union published recommendations promoting health-
enhancing physical activity (HEPA), highlighting the benefits
for physical and mental health and recommending at least 75
minutes of intense activity per week [CoEU, 2013]. Many
EU countries have adopted WHO’s recommendations es-
tablishing national strategies promoting HEPA [DoH, 2016;
FORM, 2008; Barthélémy et al., 2016].

Despite the strong link between fitness and morbidity, the
prevalence of exercise in affluent societies remains low. As
argued by Smyth [Smyth, 2019], this phenomena constitutes
an evolutionary paradox, whereby the behaviour for which
individuals have an adaptive preference (increased relaxation
and leisure time), is easily supported by their affluent cir-
cumstances, but detrimental to their long-term health. While
economic growth leads to material comfort, individuals re-
ceive less motivation to engage in exercise benefiting their
health. This was only exacerbated by the COVID-19 pan-
demic. With gyms and public recreation spaces closed due
to health restrictions, physical and mental health was seen to
suffer widely [Levy et al., 2021; Maugeri et al., 2020].

In recent years, various mobile apps promoting a healthier
lifestyle have been released [Venkatachalam and Ray, 2022],
with some also exploiting wearable technologies (smart-
watches) for monitoring users’ heart rate [Fitness, 2023]. The
element of gamification inherent in many smartphone plat-
forms often helps to encourage participation [Lister et al.,
2014], with users competing as an incentive for exercising
more. Though the frequent closure of gyms throughout the
COVID-19 pandemic curtailed people’s regular patterns of
exercise, this also spurned a growing interest in exercise at
home [Nyenhuis et al., 2020]. However, within the domain
of exercise recommendation, most existing solutions confine
themselves to recommending predefined workout plans, po-
tentially foregoing the benefits of a more granular degree of
personalisation [Fitness, 2023; Ifivolve, 2023].

This work, inspired by the home fitness revolution during
the COVID-19 pandemic, is aligned with the EU’s recom-
mendations and the national HEPA strategies and aims at pro-
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moting physical activities that can help people of all ages to
maintain a good level of physical and mental health through
personalised home workouts. Contrary to existing applica-
tions, which exploit machine learning only to select from pre-
defined workout plans, this framework creates workout ses-
sions from scratch, selecting exercises from a pool of body-
weight exercises and constructing a full workout session that
maps to user’s goals and preferences. Given the sequential
dependency of the exercises in a workout session, reinforce-
ment learning (RL) was identified as a suitable approach for
providing personalised workout recommendations. However,
a major constraint on this work was the unavailability of a
large amount of training data to ground a RL based system.
To address this data scarcity issue, a User Simulator was de-
veloped, which generated synthetic data and simulated users
with “realistic behaviours” and “realistic feedback”, so that
an RL model could be effectively trained to address the exer-
cise recommendation problem. We comprehensively test our
solution both within the simulation framework and through a
large randomized crossover trial.

Overall, the contributions of this work are:
• An RL-based fitness framework for providing person-

alised exercise recommendations to home users;
• A User Simulator for generating synthetic users with re-

alistic behaviour and feedback, enabling training an RL
model with limited real data;

• A set of metrics (as rewards) to evaluate the quality of
workout sessions using sports science knowledge;

• A simulation based comparison of the RL framework
against a particle swarm optimization (PSO) baseline;

• A real-world trial evaluation consisting of 69 users and
559 workout sessions, comparing the performance of the
RL framework against the PSO baseline.

2 Related Work
RS for health and exercise is a rapidly growing field of re-
search. There are several works investigating the efficacy
of intelligent recommendations applied to marathon running
[Berndsen et al., 2019; Berndsen et al., 2020], which, how-
ever, remain targeted at niche markets. There are several fit-
ness mobile applications on the market today that try to rec-
ommend a healthier lifestyle to their users, and although sev-
eral of them claim to use machine learning to provide more
personalised recommendations, they generally provide pre-
defined workout programs that have been created by fitness
coaches. Their “personalisation” is related to mapping user
preferences (based on questionnaires) to the most suitable
pre-existing program, without the user being able to mod-
ify the program or adapt it to their needs [Ifivolve, 2023;
Freelitics, 2023]. Other applications recommend times when
users should workout, or the type of activity that a user should
engage in, selecting from a pool of activities such as running,
cycling, swimming, walking, etc . [Mahyari and Pirolli, 2021;
Dharia et al., 2018; Sami et al., 2008; Abdulaziz et al., 2021;
Guo et al., 2017; Tran et al., 2018; Gymfitty, 2023].

Recently, RL has grown in popularity in recommendations,
especially within the field of session-based recommendation

[Afsar et al., 2022]. Within this paradigm, the recommenda-
tion problem is formulated as that of maximizing cumulative
reward over a sequence of recommendations, rather than the
myopic approaches popular in rating based or top-N recom-
mendation. Jain et al [Ie et al., 2019b] applied the approach
to slate recommendation. Shi et al developed the concept of
a gym for training recommender models on traditional RS
datasets [Shi et al., 2019]. In the absence of enough data
to learn either a strong value function, or to enable learning
from logged feedback, it is common to employ the use of a
simulator [Ie et al., 2019a]. Though many algorithms exist
for learning RL policies, proximal policy optimization (PPO)
[Schulman et al., 2017] is often favored in practical settings,
due to its parallelism and non-reliance on a replay memory.

The problem of selecting the exercises to include in each
session can be seen as analogous to that found in several tra-
ditional areas of RS research, such as session-based or se-
quential recommendations [Afsar et al., 2022], playlist or
shopping list recommendations [Liebman et al., 2014], and
slate recommendations [Mehrotra et al., 2019]. However, the
workout recommendation problem has some distinct features
which differentiate it from traditional areas of RS. Unlike se-
quential recommendation, the user is presented with a com-
plete workout session, consisting of ns exercises, while user
feedback for the previous items in the session is unknown
at the time of generating the recommended list. Compared
to slate recommendation, the user doesn’t select only a few
items from the recommended slate, but is expected to com-
plete all of the exercises in the specified order. The workout
session can include the same item multiple times, as it is com-
mon for users to repeat exercises within a workout. As shown
in the sports science literature [Hoffman and others, 2011],
the sequential dependency of the exercises in the session is
of high importance, both to users’ ability to complete a ses-
sion, and their satisfaction with it. This is a marked difference
with the domains of shopping list or playlist recommendation,
since a user might require a steady progression of difficulty to
the exercises or they might find that certain sets of exercises
naturally flow from one to the other.

3 An RL-based Health and Fitness
Recommendation Framework

3.1 Problem Definition
Given the positive link between regular exercise and physical
and mental health, our aim is to develop a platform that both
enables and encourages users to engage in workouts at home,
without the need for complicated equipment. User satisfac-
tion after a workout is assumed to be strongly correlated with
their long term continued engagement [Fernández-Martı́nez
et al., 2020]. As such, the personalisation of workout pro-
grams towards the needs of individual users should play a
key role in encouraging consistent use of the platform. Given
the sequentially dependent nature of exercise programs, rein-
forcement learning appears to be a strong candidate for deliv-
ering this degree of personalisation.

The funders of this work provided a home-fitness mo-
bile application, which delivers body-weight exercise work-
out programs via a series of short videos. The app allows
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users to create ”Workout” programs, stating their overall fit-
ness goals, such as whether they wish to focus on improving
cardio or strength, which muscles they wish to train, and how
frequently and for how long they wish to exercise. During
each exercise period, they are presented with a list of pre-
selected body-weight exercises and instruction videos. Dur-
ing and after a session, users are encouraged to deliver feed-
back, either by skipping or changing the exercises that they
find unsuited to them, or by answering a questionnaire at the
end of the session. One limitation of this mobile application
is that there is no option for the users to give any “direct”
feedback per exercise to indicate if they liked or disliked spe-
cific exercises in the session. This complicates the problem of
inferring user preference per exercise, as there is no explicit
way to identify which exercises the user likes or dislikes, and
this must be inferred from the user’s satisfaction score and the
user’s actions as to skipping or changing exercises.

Given these dependencies, we formulate our problem set
up as that of finding a policy that recommends sessions that
maximise user satisfaction. We wish to choose a recom-
mendation policy π that maximises the expected value of
user satisfaction, F , with the recommended session aπ =
(a1, . . . , ans), where each ai is a recommended exercise and
the workout consists of ns exercises. The expectation is taken
over the arrival process of users to the system. Writing the
optimal policy as π∗, and assuming that the policy is param-
eterised by parameters θ, we write the general problem as:

θ∗ = argmax
θ

Eu [F (u, aπθ
)] ;π∗ = πθ∗ (1)

Here, we adopt the standard RL formalisation of agent, en-
vironment, action, state, observation and reward. An agent is
a mobile application, which learns the model that optimises
the satisfaction of the users served by the application. The en-
vironment consists of the users served by the application and
the feedback that they give to the application. Rewards are a
function of user feedback and session quality metrics, which
have been tailored in consultation with sports scientists.

Rather than considering an action to correspond to the rec-
ommendation of a full workout session, instead an action is
the recommendation of the next exercise in the workout se-
quence to the current active user. This is therefore an episodic
RL formulation, in which each episode is terminated when a
complete workout of ns exercises has been recommended,
where ns is a fixed session size selected by the active user.
Each time there is a need to make a recommendation for a
user u, the initial state su is computed including a description
of the user and their history and preferences. The agent then
interacts with the environment for ns steps, giving an action
ak and receiving an observation ok and a reward rk for each
step k, in order to produce the sequence of actions/exercises
(a0, a1...ans ) in the session until the end of the episode.

3.2 Modelling the Fitness RL Framework
The overall fitness RL framework is depicted in Figure 1.
A user interacts with the framework through a mobile app,
receiving exercise recommendations (actions) and providing
their feedback and their exercise history. The RL framework

consists of an RL gym and an RL agent. The agent is param-
eterised by a neural network, as described in the next sub-
section. The gym represents the user and the overall environ-
ment. The gym includes a User Simulator that functions to
create synthetic interactions, allowing the agent to be trained
with only limited real world data. The gym interacts with the
agent, sending the current “state” of the environment, receiv-
ing recommended actions, and then providing a reward and a
new state/observation. As seen in the figure, we also employ
“action masking”, both for speeding up the training process
of the agent and imposing some hard constraints. In this re-
spect, the gym also sends an action mask vector to the agent,
which zeros out constrained actions. These constraints might
involve exercises that the user has disliked in the past or that
the user has specified that they are unable to perform.

Below we provide further details of the RL setting:

Actions
The actions in the fitness recommendation problem represent
the 161 exercises that are available within the mobile app.
The exercises are standard body-weight exercises that can be
easily completed at home. Exercises are grouped into 10 cat-
egories of similar exercises (i.e. Walking Burpee and Squat
Burpee are examples of Burpees). The exercises have various
attributes, such as their level of difficulty, the list of muscles
that they train, whether they target cardio or strength, and any
equipment required for their execution (i.e. chair).

State
Within the formal RL paradigm, the state includes all of the
information necessary to determine both the reward and the
subsequent state transition at a given point in time. Within
the exercise recommendation scenario, this includes:

• User information: this includes various user characteris-
tics such as their initial fitness level and summary statis-
tics for their prior workout history within the app. The
initial fitness level is expressed in terms of difficulty
preference for each of the exercise categories, assessed
by a questionnaire when a user registers with the app.

• Workout goals: this includes information for the user’s
particular exercise targets, i.e. if the focus is on cardio or
strength training, which muscles they wish to train and
what equipment they have available to exercise with.

• Session status: this comprises parameters describing the
status of the session at any given point in time, includ-
ing the exercises already recommended and their corre-
sponding difficulties, the exercises recommended in the
previous L sessions, and information regarding the tar-
get muscles trained and muscle fatigue, etc.

• User feedback: this includes information indirectly dis-
closing the user exercise preference i.e. which exercises
they liked or disliked in the previous N sessions, whether
they completed or skipped exercises, etc.

In the general modelling of the workout recommenda-
tion problem, the state has both “observable” and “non-
observable” or “partially-observable” parts, which could lead
to modelling the problem as a partially observed Markov
decision process. In the current implementation of the RL
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Figure 1: The overall structure of the RL framework

framework though, we assume that all gym state is observable
to the RL model. Though real world users would undoubt-
edly have some unobservable state, such as their preference
for certain exercises, within the context of a small trial there is
insufficient data for this to be reliably inferred, and so we take
the users’ logged feedback to suffice for these preferences.

Reward
With a large enough amount of data, and using modern tech-
niques such as RL for human feedback [Ziegler et al., 2019],
it should be possible to empirically learn a reward function
matching the preferences of individual users. With limited
data however, to create a personalised reward we must take
account of multiple relevant signals, such as user fitness level,
workout goals, and previous feedback given to the applica-
tion. Thus, exploiting sports science knowledge [Hoffman
and others, 2011], we assume that the objective of maximiz-
ing user satisfaction can be split into multiple sub-objectives,
each one characterised by an individual reward. These sub-
objectives are related with the quality of the recommended
session and how well the session fits users preferences and
goals. In contrast with works where the RL mode receives
reward after each step of the training process, in this work we
try to emulate the “real world” session data and only return a
non-zero reward at the end of an episode, thus mimicking the
real life situation in which explicit feedback is only available
at the end of the session. The individual reward components
generalise a number of metrics tracking which aspects of a
session matter to a user. Specifically, the components are:

1. Intra-session Diversity, which measures the diversity
of the exercises recommended within a session. The
similarity of two exercises is computed via comparing
the muscles trained by each movement. The assumption
is to have enough diversity in the session so that users
train several muscles and aren’t bored from repetition.

Rintra = 1−
∑

i̸=j w
|i−j|−1sim(ai, aj)∑
i̸=j w

|i−j|−1
+ p ,

where sim(ai, aj) is the similarity of two movements
computed as the mean similarity of the muscles they
train and p is a penalisation factor which is -1 if the same
exercise is repeated consecutively.

2. Inter-session Diversity, which measures the extent to
which the exercises recommended in the current session
differ from those recommended in the previous L ses-
sions. As above, the assumption is that users should
complete a variety of different exercises over sequences
of workout sessions, so that their muscles get enough
rest between workouts.

Rinter =
1

L

L∑
j

wj

(
1− corr(si, si−j)

)
,

where si is a vector containing the counts of each move-
ment in session i, corr is the Pearson correlation and wj

is a weight that decreases with the age of session j

3. Session matching Fitness level (FL), which measures
the extent to which a given set of exercises matches the
fitness level of the user. This is measured using the as-
sessed difficulty of the exercises (mdiff) and the diffi-
culty preference of the user (pfdiff) per exercise cate-
gory, assuming that these should be relatively close, so
that the user isn’t recommended very easy or very dif-
ficult exercises, allowing though room for attempting
more difficult exercises in the case that the user’s fitness
level has progressed.

RFL = rescale
( ns∑

i

1− | mdiff(ai)− pfdiff(ai) |
max(mdiff(ai), pfdiff(ai))

)
where rescale is a Gaussian Kernel function (scaled be-
tween [0,1]) that rescales the score using the normal dis-
tribution across a mean (0.9 here) and a standard devia-
tion (0.15 here), to ensure that the exercises are close to
the user’s FL, but with some room for variation.

4. Session matching user workout Goal, which measures
the extent to which the exercises in a session match the
user’s workout goal (cardio or strength).

Rgoal = wperc + (1− w)consec
where,

perc = rescale(
1

ns

ns∑
i=1

1(style(ai) = target), 0.625)
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is a score which shows how close the percentage of car-
dio/strength exercises in the session is to a target value
(i.e. 62.5% for the user set goal) and

consec = rescale(max
i,j

(δ(i, j)), 2.1, 2) ,

is a score based on the number of consecutive exercises
of one style/goal using the normal distribution, assuming
that exercise styles should alternate after 2 consecutive
movements from the same style. δ = j − i + 1 if the
sequence of actions ai...aj are of the same style, else 0.

5. Session matching Focus Muscles (FM), Consider that
we have a finite set of muscles, M, and that the user
selects from this set a subset of primary muscles, MP ,
and secondary muscles, MS , to train within the session.
This reward measures the extent to which the exercises
in a session correspond to these selected muscles. For
any exercise a, write Ma for its set of associated mus-
cles i.e. the muscles which are exerted by that exercise.
Then, for real-valued weights w0 and w1,

Rmusc =
w0

N

ns∑
i=1

1(Mai
⊆ MP ∪MS)

+ w1

∑ns

i=1 1(Mai
⊆ MP )1(i ̸≡ 0 mod 4)∑ns

i=1 1(Mai
⊆ MP )

where 1(.), is the indicator function that evaluates to 1
when its argument is true and 0 otherwise. The use of
mod4 allows for a rest between sets.

6. Muscle fatigue, which measures the extent to which
muscles become tired through the course of a session,
for example by the same group of exercises being per-
formed in close succession. For some weight w,

Rfatigue = max
m∈M

∑
i,j

w|i−j|−11(m ∈ Mai
∩Maj

) .

The reward score is then rescaled using the Gaussian
Kernel with mean 1.6 and deviation 2 to provide a lower
score when sessions have more than 2 consecutive exer-
cises training the same muscle.

7. Wrists: This reward penalizes the recommendation of
too many wrist dependent exercises (which was ex-
tracted as a requirement by users in an older trial). For
example, mountain climbers, push-ups and burpees all
use wrists, and although they are exercises of different
categories training different muscles, they all put pres-
sure on the wrists which can cause injury to users.

Rwrists = rescale(max
i,j

[δ(i, j)] , 1.6, 2), (2)

where δ(i, j) = j − i + 1 if the sequence of actions
ai, ai+1...aj exercise the wrists, else 0.

Though a reward that discourages the model from rec-
ommending previously disliked movements was found to be
broadly effective, not knowing the empirical distribution of
real user preferences created a danger that the model would
learn to extrapolate preferences during simulated training in a
manner that wouldn’t generalise to the preferences of users in
production. As such, it was found to be safer to temporarily
mask out negative feedback items during production.

Figure 2: Progress of the individual rewards during training.

Reward design: The overall principle of the reward design
is to apply boosting and penalisation mechanisms to each in-
dividual reward to help the RL agent to learn to distinguish
good session from bad ones. All the individual rewards have
been constructed so as to provide a real-valued number in
[0, 1]. For each individual reward, a threshold thrp has been
defined, so that sessions with rewards below that threshold
are considered “bad” and are penalised, while sessions with
rewards above a threshold thrb are boosted. Additionally, if
at least one of the rewards is penalised, the overall reward
returned for the episode becomes negative. If no individual
reward is penalised, then the overall reward is the weighted
average of the individual rewards R =

∑
n wiRi where Ri

and wi are the individual rewards and their corresponding
weights, with

∑
n(wi) = 1. The weights are determined

by domain knowledge and represent the importance that each
reward has on the overall quality of a session, i.e. the intra-
session diversity and the fitness level rewards have a higher
weight compared to the inter-session diversity or session style
rewards. The progress of the individual rewards during train-
ing can be seen in Figure 2, which shows that despite the
fact that the agent only sees the weighted sum of the rewards,
with the exception of inter-session diversity, all rewards in-
crease towards a plateau. The slight decrease in the inter-
session diversity is due to the high diversity of the largely
random sessions generated at the beginning of training, but it
also plateaus in the end.

User Simulator
Due to a limited amount of real world data, we developed
a simple but efficient User Simulator as part of the fitness
RL framework. Briefly, the goal of the User Simulator is to
generate synthetic data in the form of users that can provide
feedback that “emulates” the actions of real users. The User
Simulator samples users from probability distributions, giv-
ing them random descriptions (i.e. age, gender, initial fitness
level), workout goals (cardio/strength, workout duration, tar-
get muscles, available equipment), and preferences per exer-
cise. To generate “realistic” user feedback and behaviour, we
conducted an analysis of the data gathered during an initial
exploratory user trial executed in 2021. This analysis helped
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to understand when users skip exercises during a workout and
when users change exercises to easier or more difficult ones.
This analysis resulted in probability equations to estimate at
each specific state if a simulated user will skip or change an
exercise, providing such feedback to the environment and the
agent. The analysis showed a higher probability of skipping
an exercise if: (i) it was encountered in the later stages of the
session, (ii) the user was likely to have an intrinsic dislike for
the exercise, and (iii) multiple movements within the same
exercise category had already been recommended in the ses-
sion. The analysis also showed that the probability that a user
changed an exercise to easier/more difficult was directly re-
lated with the difference between the exercise difficulty and
the user’s difficulty preference for the movement’s exercise
category. However, these probabilities were rescaled accord-
ingly, considering that the overall percentage of users skip-
ping or changing exercises was low.

3.3 Reinforcement Learning Model
Given that the user simulator and gym encapsulate our as-
sumptions about the real world environment, it is possible to
approach the problem of choosing a sequence of actions with
an off the shelf RL algorithm. In this instance, we select the
Policy Proximal Optimization (PPO) [Azizzadenesheli et al.,
2018] algorithm due to it’s high parallelism, and it’s known
efficacy on practical problems. The input of the policy net-
work is an observation of size 1287, and the output of the
network is a probability distribution over the 161 candidate
movements. The middle of the network is composed of a cou-
ple of densely connected layers. The value network, which
is used to calculate the advantage in PPO, shares all layers
with the policy network, except that the output layer is a sin-
gle node. We use the PPO implementation in RLlib [Liang et
al., 2017], adding an action mask that blocks candidate move-
ments in certain situations, for instance when movements re-
quire special equipment that a user does not possess. We train
the model for a total of 97000 episodes.

4 Evaluation
4.1 Baseline
The baseline model that was built into the mobile phone ap-
plication by the funders of this work utilises Particle Swarm
Optimization (PSO) [Poli et al., 2007] to generate sessions.
The PSO algorithm optimizes for a number of session at-
tributes such as diversity and fitness level, although it doesn’t
personalise the sessions in accordance with user feedback.

4.2 Simulation Comparison Against the Baseline
on Simulated Users

The first step of the evaluation was to compare the RL model
with PSO on a number of simulated users, modelled within
the gym environment. For this evaluation, we employed ses-
sion quality metrics, which are modified versions of the re-
wards upon which the RL rewards were based without boost-
ing or penalisation (“avg” is the weighted average of the re-
wards). Figure 3 shows a comparison of the rewards averaged
across 100 simulated users completing 10 sessions each, with
workout recommendations provided either via the baseline or

Figure 3: Comparing the session quality metrics for the RL model
and the PSO on 100 simulated users for 10 sessions per user

RL model. The figure demonstrates that the RL model recom-
mendations are superior in terms of these metrics. It is inter-
esting to see that PSO performs well on the fitness level met-
ric, which means that it provides sessions with exercises that
are closer to the user’s fitness level compared to RL. However,
as optimizing this metric limits the number of exercises avail-
able, it directly conflicts with diversity (both intra-session and
inter-session). As such PSO provides users with recommen-
dations that are largely similar between sessions, with multi-
ple similar exercises within the same session. This effect can
also be seen in the very low score PSO achieves for the wrists
reward - using many exercises that put strain on the wrists.
Overall, as seen in the figure, RL’s average score per session
is approximately 20% higher than that of PSO.

4.3 User Trial Evaluation
The fitness recommendation framework was further evaluated
in a real world trial that ran for 15 weeks. We collect a dataset
of 69 users with 559 workout sessions in total. There were 27
males and 42 females participating in the study. 268 sessions
were completed featuring RL recommendations, and 291 ses-
sions using the baseline. The trial was performed using a
randomised crossover protocol, similar to [Bonafiglia et al.,
2016] with an interval of one week. At the start of the trial,
participants were randomly assigned to either RL or PSO rec-
ommendations, and switched at the end of each week.

At the end of each session, users were presented with a
Paces-8 questionnaire [Mullen et al., 2011] rating their ses-
sion experience according to eight criteria. Generalized esti-
mating equations (GEE) [Hardin and Hilbe, 2012] were used
to assess differences in user responses, using an exchangeable
correlation structure. The model was corrected for dependent
observations by including participants’ id as a subject effect.
The a priori p-value for this analysis was set at p < 0.05.

The GEE estimated a main mean effect for condition (p
= 0.015). The mean PACES-8 response differed significantly
between sessions generated by the RL model and the baseline
(mean response for RL condition = 4.0 [95%CI: 6 to 6.78];
mean response for the baseline condition = 3.73[95%CI: 4.9

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6242



Paces8
Pleasurable Fun Pleasant Invigorat. Gratifying Exhilar. Stimulat. Refreshing Overall

PSO 3.66 3.53 3.53 3.75 3.84 3.74 3.85 3.84 3.73
RL 3.88* 3.72 3.71 4.15* 4.17* 4.04* 4.13* 4.06* 4*

Table 1: User Trial Results comparing the average PACES-8 responses for PSO and RL. Results with an ∗ indicate significance at p < 0.05.

Sentiment Corr. with P-Value Mean RL Mean PSO
Satisfaction

Diversity 0.594 10−7 0.103 -0.722
Intensity 0.102 0.51 0 -0.167
Exercises 0.266 0.06 -0.565 -0.852

App Issues -0.13 0.437

Table 2: Qualitative analysis of user feedback comments

to 5.55], P = 0.015). An analysis of the parameter estimates
associated with these main effects revealed that participants
were likely to be more satisfied with an exercise session that
was generated by the RL model. Summary statistics of the
PACES-8 responses are presented in Table 1, showing that
RL produced a significant effect over the baseline for six of
the eight PACES-8 responses. The table shows clearly an im-
provement of 7% in the mean response of users when they
received RL recommendations compared to the baseline.

One motivation for building this personalised fitness rec-
ommendation framework was to keep users engaged over
time. As shown in Figure 4 (a), an analysis of the mean re-
sponse over time showed that satisfaction with PSO broadly
decreased, whilst for RL it in fact tended upwards. This pos-
itive result indicates that RL kept users engaged for a longer
time, motivating them to continue with their workouts in the
long run, as opposed to the baseline method where satisfac-
tion degraded from an initial naive peak response.

Increased satisfaction with the RL framework can also be
seen using a sentiment analysis on text feedback provided by
the users of the app. When submitting feedback at the end of
a session, users were asked to fill in a textbox with short com-
ments on the workout recommendations. A sentiment analy-
sis using NLTK’s Vader package [Hutto and Gilbert, 2014]
in Python was performed and the results are shown in Fig-
ure 4(b). The results show that the comments given to RL ses-
sions had a much higher positive score (23.13%) than those
for the baseline model, while the overall compound score of
the RL comments was 48.88% higher than that of the base-
line model. This indicates that the users were significantly
more satisfied and gave more positive comments when they
received recommendations from the RL model, as opposed to
recommendations from the baseline.

Furthermore, shown in Table 2, a qualitative analysis of
the user comments was performed, manually labelling each
comment as responding either positively (+1), negatively (-1),
or neutrally (0) to a number of key criteria (diversity, inten-
sity, and choice of exercises) and measuring the correlation of
each metric with the user satisfaction. We note here that users
tend to comment negatively more than positively. The diver-
sity of recommended exercises was seen to correlate strongly
with the PACES-8 responses, with a significant difference in

Figure 4: (a) Weekly averages for RL and PSO. (b) Sentiment analy-
sis on the user trial showing positive, negative and compound scores.

response between RL and PSO. A small but not significant
effect was seen relating to exercise choice. General issues
with the application (e.g loading times, quality of the exer-
cise videos, crashes) were seen to only weakly correlate with
the PACES-8 response, indicating that users adhered to evalu-
ating the recommended workouts, rather than the overall app
experience.

5 Conclusions
An RL framework for health and fitness has been devel-
oped, providing personalised recommendations for promot-
ing healthy and active living at home. Compared to existing
work, the proposed framework uses RL to provide a complete
workout session to users and learns from both their actions
during the workout and feedback after the workout so that it
builds an accurate user profile and provides more tailored rec-
ommendations in future sessions. A comparison of the pro-
posed RL model with a PSO baseline model was performed
using both simulations and a real-world user trial. In both
cases, the proposed RL model significantly outperformed the
baseline, with higher user satisfaction and sentiment scores.

The use of a crossover protocol in the experiments hin-
dered a direct assessment of long term engagement. How-
ever, when taken as proxy for user engagement, the responses
indicate that the level of personalisation of RL sessions RL
served as increased motivation for participants to exercise.
Thus, further development of such methods can reduce the
motivation gap identified in [Smyth, 2019], and nudge users
into better daily routines contributing to longer term adop-
tion of a healthier lifestyle. A limitation was the lack of ex-
tensive data, which required the RL model to be trained en-
tirely on a user simulator. However, the trial results show
that the user simulator was aligned with the real world en-
vironment. It is expected that with more data, methods
such as RL from human feedback [Ziegler et al., 2019;
Ouyang et al., 2022] might be employed for further fine-
tuning, replacing the handcrafted rewards with empirically
learned value functions.
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