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Abstract
This paper focuses on the AI-based damage assess-
ment (ADA) applications that leverage state-of-the-
art AI techniques to automatically assess the disas-
ter damage severity using online social media im-
agery data, which aligns well with the “disaster risk
reduction” target under United Nations’ Sustain-
able Development Goals (UN SDGs). This paper
studies an ADA model generality problem where
the objective is to address the limitation of cur-
rent ADA solutions that are often optimized only
for a single disaster event and lack the generality to
provide accurate performance across different dis-
aster events. To address this limitation, we work
with domain experts and local community stake-
holders in disaster response to develop CollabGen-
eral, a subjective logic-driven crowd-AI collabo-
rative learning framework that integrates AI and
crowdsourced human intelligence into a principled
learning framework to address the ADA model gen-
erality problem. Extensive experiments on four
real-world ADA datasets demonstrate that Collab-
General consistently outperforms the state-of-the-
art baselines by significantly improving the ADA
model generality across different disasters.

1 Introduction
The increasing frequency and severity of natural disaster
events (e.g., hurricanes, earthquakes, wildfires) have posed
serious challenges to human society with significant casual-
ties and enormous economic losses [McEntire, 2021]. For
example, the recent Turkey–Syria earthquake has directly im-
pacted 23 million people across Turkey and Syria along with
over 50, 000 deaths and $80 billion loss.1 Damage assess-
ment is an essential process during disaster response that aims
to acquire accurate and timely information about the damages
caused by the disaster, assist local/federal authorities (e.g.,
FEMA, public health agencies, police departments), and civil
society stakeholders (e.g., regional red cross society, commu-
nity disaster experts, local NGOs) in their decision making

1https://www.redcross.org.uk/stories/disasters-and-
emergencies/world/turkey-syria-earthquake

process, and prevent further damages [Kankanamge et al.,
2020]. The recent advances in AI have enabled more effective
and scalable AI-driven solutions for timely disaster damage
assessment, which aligns well with the “disaster risk reduc-
tion” objective under “Sustainable Cities and Communities”
(i.e., Goal 11 of United Nations’ Sustainable Development
Goals (UN SDGs)). Meanwhile, the proliferation of social
media also provides a pervasive data source to obtain real-
time situation awareness of disaster events from common cit-
izens [Wang et al., 2019a]. In this paper, we focus on the
AI-based damage assessment (ADA) application, where the
goal is to leverage the advanced AI techniques (e.g., deep
convolutional network, graph neural network, transformer) to
automatically assess the disaster damage severity using so-
cial media imagery data [Nguyen et al., 2017]. Specifically,
we focus on addressing the limitation of current ADA models
that are often optimized only for a single disaster event and
lack the generality to provide accurate performance across
different disaster events. We refer to such a knowledge gap as
the ADA model generality problem.

Recent progress in AI and deep learning have been made to
improve the performance of ADA applications [Imran et al.,
2022; Li et al., 2019; Mouzannar et al., 2018; Zhang et al.,
2021]. Current solutions often focus on designing tailored AI
models that can accurately identify the event-specific dam-
age visual characteristics for a specific disaster event to en-
sure accurate ADA performance [Li et al., 2019]. We refer
to the optimized performance of a customized ADA model
for a specific disaster event as the model’s specificity to that
event. However, we observe that current ADA solutions of-
ten lack model generality, which leads to poor performance
when the model is applied to a disaster event that is differ-
ent from the one on which the model was trained [Zhang et
al., 2021]. For example, in Figure 1, we observe that (A)
and (B) share similar visual features of grey sky but end up
with completely different damage severity levels. An ADA
model trained for the wildfire event mistakenly identifies the
image in (B) as severe damage, and an ADA model trained
for the hurricane event incorrectly classifies the image in (A)
as no damage due to the lack of generality of the AI mod-
els. A possible solution to address the ADA model general-
ity problem is to simultaneously train multiple ADA models,
one for each specific disaster event [Li et al., 2019]. How-
ever, a critical problem is that such a solution requires a good
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Figure 1: Illustrations of Lacking Generality for ADA Model

amount of high-quality training data from each event, which
is not always available [Kumar et al., 2020]. The lack of
event-specific training data often leads to an overfitting issue
where the trained ADA models fail to learn the event-specific
damage visual features for the studied event, leading to an
undesirable performance loss of the events that lack training
data [Saunders, 2022].

In this paper, we jointly explore the different yet comple-
mentary AI and human intelligence from crowdsourcing sys-
tems such as Amazon Mechanical Turk2 (i.e., crowd intelli-
gence) to address the ADA model generality problem. Unlike
the AI models that often rely on the training data available in
each disaster event to generate the estimated ADA labels, hu-
mans can often reasonably estimate the ADA labels across
different disaster events without the need for training data
from such events [Fuchs, 2022; Zhang et al., 2022a]. For
example, in Figure 1, we can clearly understand that the grey
sky in (A) indicates large smokes caused by a wildfire but
reflects a heavy cumulonimbus in (B). As a result, crowd in-
telligence is often more generalizable in identifying disaster
damages across different disaster events. However, unlike the
AI models that can maintain a certain level of consistency and
accuracy once they are trained for a specific disaster event,
crowd workers often make inadvertent mistakes on the im-
agery data from a disaster event [Draws et al., 2021]. Moti-
vated by the above observations, this paper develops a hybrid
crowd-AI collaborative learning framework that jointly lever-
ages the specificity of AI and the generality of human intelli-
gence to address the ADA model generality problem. How-
ever, two technical challenges exist in designing our frame-
work.

The first challenge is how to effectively optimize the ADA
model generality without sacrificing its specificity on an indi-
vidual disaster event. A possible solution to tackle the ADA
model generality problem is to train an ADA model using
the training data from all studied disaster events so that the
ADA model instance can learn the disaster-related visual fea-
tures from all trained events. However, such a one-size-fits-all
solution can lose the sensitivity on the event-specific visual
features and lead to undesirable performance loss on spe-
cific events of interest [Ghifary et al., 2016]. On the other
hand, recent efforts have been made to tackle the AI model
generality problem [Zhang et al., 2020; Sankaranarayanan et
al., 2018]. Those solutions often leverage the divergence-
based or adversarial-based neural network designs to transfer
or adapt the ADA model learned from a source event (with
sufficient training data) to a target event (with little training

2https://www.mturk.com/

data) that shares similar damage visual characteristics with
the source event. However, the actual ADA performance
largely depends on the level of similarity between the source
and target events, and an appropriate source event is not guar-
anteed to exist [Zhang et al., 2021].

The second challenge is how to effectively integrate the
complementary yet different AI and crowd intelligence to ad-
dress the ADA model generality problem. In particular, a
few recent crowd-AI collaborative systems have been devel-
oped to leverage crowd intelligence to troubleshoot the AI
failure cases or retrain the AI models to boost the application
performance [Sener and Savarese, 2018; Zhang et al., 2019].
However, those solutions are not designed to address the AI
model generality problem and can lead to suboptimal per-
formance when they are directly applied to different disaster
events [Risi and Togelius, 2020]. In addition, we observe that
the imperfect crowd labels could confuse the AI models to
identify incorrect visual features that might further impair the
model generality across different events [Rolnick et al., 2017;
Zhang et al., 2022b]. Moreover, there also exist efforts in ac-
tive learning and label aggregation that can be applied to fuse
the inputs from both AI and crowd intelligence [Gemalmaz
and Yin, 2021; Hube et al., 2019]. Those solutions often
leverage analytical approaches (e.g., Bayesian optimization,
maximum likelihood estimation) to boost the aggregated la-
bel accuracy. However, those approaches do not jointly model
the specificity of AI and the generality of crowd intelligence
to achieve the optimal ADA performance on individual disas-
ter events.

To address the above challenges, this paper develops Col-
labGeneral, a subjective logic-driven crowd-AI collaborative
learning framework that exploits AI and crowd intelligence
to address the ADA model generality problem. To address
the first challenge, we develop a novel deep model optimiza-
tion framework that designs a generality-aware network op-
timization function design to optimize the trade-off between
the ADA model’s generality and specificity. To address the
second challenge, we model the crowd intelligence and AI
through a novel subjective logic framework to fuse the in-
telligence from both humans and AI. We work closely with
domain experts and local community stakeholders in disas-
ter response to provide the in-the-field know-how to validate
our framework. To the best of our knowledge, CollabGen-
eral is the first crowd-AI hybrid approach to tackle the AI
model generality problem in ADA applications. We also
envision that our framework can be applied to address the
AI model generality problem in a much broader set of AI-
driven applications beyond ADA (e.g., misinformation de-
tection, intelligent transportation, smart health). We evaluate
CollabGeneral through four real-world ADA datasets and the
results demonstrate that CollabGeneral consistently outper-
forms state-of-the-art deep neural networks, crowd-AI mod-
els, and AI model generality frameworks by improving ADA
model generality under a rich set of evaluation scenarios.

2 Related Work
AI-based Disaster Informatics: AI-based disaster informat-
ics received a good amount of attention in recent years due to
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its efficiency, scalability, and effectiveness in providing accu-
rate and timely information during the disaster events [Sun et
al., 2020; Zhang et al., 2023]. From disaster risk and damage
identification [Metaxa-Kakavouli et al., 2018] to emergency
response and recovery [Soden and Owen, 2021], AI-based
disaster informatics plays a vital role in reducing the negative
impacts of natural disasters [Soden and Palen, 2018]. Dis-
aster damage assessment using social media data is an im-
portant application in AI-based disaster informatics, where
timely observations of the disaster damages from social me-
dia posts are leveraged to obtain the situational awareness
(e.g., damage severity, casualties and injuries) during dev-
astating natural disasters [Zade et al., 2018]. For example,
Ning et al. designed a deep convolutional network based con-
text information extraction framework that explores the real-
time Twitter posts to identify highly impacted areas and track
the dynamic damage severity during flood disasters [Ning et
al., 2020]. Mangalathu et al. developed a recurrent neural
network model that analyzes earthquake-related social me-
dia posts to estimate building damage severity in earthquake
events [Mangalathu and Burton, 2019]. Barmpoutis et al. de-
signed a convolutional neural network framework that lever-
ages the multimodal social media posts to detect fire regions
[Barmpoutis et al., 2019]. However, current ADA models of-
ten focus on optimizing the performance for a single disaster
event and lack model generality when performing ADA tasks
on different events. In contrast, we design a crowd-AI hybrid
learning solution to tackle the ADA model generality prob-
lem in AI-based disaster informatics.

AI Model Generality: The lack of generality is a fun-
damental issue in AI applications, and recent efforts have
been made to improve the generality for AI models [Li et
al., 2020; Sankaranarayanan et al., 2018; Kini et al., 2021;
Wang et al., 2019b; Chan et al., 2018; Zong et al., 2023]. For
instance, Li et al. proposed an unsupervised domain adap-
tation solution that incorporates a cluster-based regulariza-
tion to improve the image classification performance across
different domains [Li et al., 2020]. Kini et al. designed a
vector-scaling optimization framework that leverages a mul-
tiplicative logit adjustment mechanism to improve the cross-
domain model generality in domain-sensitive image classifi-
cation [Kini et al., 2021]. Wang et al. developed a symmetric
cross-entropy optimization framework that leverages a coun-
terpart reverse optimization design to minimize the domain-
wise overfitting problem and improve the model generality
in natural scene classification [Wang et al., 2019b]. How-
ever, current AI model generalization solutions often sacrifice
the AI model’s specificity when optimizing the generality of
the model. To the best of our knowledge, CollabGeneral is
the first crowd-AI hybrid learning framework that explicitly
leverages the complementary nature of AI and crowd intelli-
gence to optimize the ADA model generality without sacri-
ficing the ADA performance in each studied disaster event.

3 Problem Description
Definition 1. Disaster Event (D): We define D =
{D1, D2, ..., DT } to be a set of studied disaster events where
Dt represent tth studied disaster event, and T is the total

number of disaster events in the studied ADA application.

Definition 2. Disaster-related Imagery Data (X): We de-
fine X = {X1, X2, ..., XI} to be a set of disaster-related
social media imagery data posted during different disaster
events for the ADA application (e.g., Figure 1). In particu-
lar, Xi indicates the ith image sample, and I represents the
total number of studied image samples. In addition, we define
XDt to be the subset of image samples in X collected from
the tth studied disaster event Dt.

Definition 3. Class Label Estimated by AI (Ŷ A): This
work focus on the physical status based disaster scene clas-
sification in ADA applications. For instance, in a prior ADA
study [Nguyen et al., 2017], the disaster damage severity is
categorized into three different classes: no/minor damage,
medium damage, and severe damage. In particular, we de-
fine Ŷ A as the set of class labels estimated by the AI model
for all imagery data X , where Ŷ A

i represents the estimated
class label for Xi.

In our paper, we focus on exploring both AI and crowd
intelligence to tackle the ADA model generality problem.
Therefore, we further define a few key definitions on acquir-
ing the crowdsourcing-based human intelligence.

Definition 4. Crowd Intelligence Query (Q): We define Q
as a crowdsourcing task to acquire human intelligence from
crowd workers. In particular, our CollabGeneral framework
focuses on identifying a subset of image samples in X that
the AI models fail to provide accurate estimation results due
to their lack of generality [Ren et al., 2021]. The identified
image samples are forwarded to a crowdsourcing platform
where each image in Q is annotated by a set of B crowd
workers. We define W = {W1,W2, ...,WB} as the set of
crowd workers participating in Q. Wb indicates the bth crowd
worker. We present the details of crowd intelligence query
tasks in Section 4.

Definition 5. Class Label Annotated by Crowd Workers
(Ŷ W ): We define Ŷ W as the set of class labels annotated
by crowd workers for the imagery data that are selected in
Q. In addition, we define Ŷ Wb as the set of class labels con-

tributed by a crowd worker Wb where Ŷ Wb
i is the class label

contributed by Wb for image sample Xi in Q.

Definition 6. Class Label Identified by CollabGeneral
(Ŷ ): We define Ŷ as the final outputs of the CollabGeneral
framework by leveraging the class labels returned by AI (i.e.,
Ŷ A) and crowd workers (i.e., Ŷ W ). Specifically, Ŷi repre-
sents the final identified class label for image sample Xi.

The goal of our ADA model generality problem is to uti-
lize the collaborative strengths of AI and crowd intelligence
to achieve the optimal ADA performance in each studied dis-
aster event as follows:

argmax
ŶDt

(
Pr(ŶDt = YDt | X, Q)

)
, ∀Dt ∈ D (1)

where ŶDt and YDt indicate the estimated and ground-truth
class labels for imagery data XDt from disaster event Dt,
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respectively. Note that, instead of learning an individually
tailored ADA model for each studied disaster event, our Col-
labGeneral framework leverages the image samples X from
all events to learn a holistic and accurate ADA model that
generates the optimized results for each event.

4 Solution
CollabGeneral is a crowd-AI hybrid learning framework that
integrates AI and crowd intelligence to optimize model gen-
erality in AI-based disaster damage assessment applications.

1) Generality-aware Deep Optimization (GDO): it designs
a novel deep model optimization scheme that effectively
learns a set of ADA model instances to achieve a good trade-
off between AI model generality and specificity through a
novel generality-aware network optimization design. The
learned ADA model instances are then used to identify the
subset of image samples for crowd intelligence query.

2) Subjective logic-driven Crowd-AI Fusion (SCF): it de-
velops a principled subjective logic-driven crowd-AI fusion
framework to effectively integrate the class labels generated
by the ADA model instances from GDO module and the
crowd labels returned by crowd intelligence query to derive
accurate ADA results for each studied disaster event.

4.1 Generality-aware Deep Optimization
We first present the generality-aware deep network optimiza-
tion design to learn a set of ADA model instances that have a
high likelihood of achieving an optimized trade-off between
the model generality and specificity in ADA applications. We
first introduce a key definition for our GDO module.
Definition 7. Deep Estimation Network (Φ): We define Φ
to be the deep estimation network (i.e., AI model) in the GDO
module that estimates the class labels from the input image
samples. Rather than reinventing the wheel, we set Φ to be
a representative convolutional neural network (e.g., ResNet,
VGG, DenseNet) that is designed to perform the image-based
multi-class classification tasks.

Given the deep estimation network Φ, our next step is to
learn the optimal network instance of Φ for accurate event-
wise ADA performance. To that end, our GDO module intro-
duces two sets of loss functions to explicitly supervise the net-
work optimization process and derive the optimal network in-
stance that can achieve a good trade-off between ADA model
generality and specificity. We first define the accuracy-aware
loss function for Φ as:

L1 =
∑

∀Dt∈D

K∑
k=1

||Pr(Ŷ Φ
Dt

̸= k|YDt = k)||2 (2)

where L1 denotes the accuracy-aware loss function for Φ. Dt

is a disaster event from the set of studied events D. K de-
notes the number of unique classes in the ADA application
of interest. Ŷ Φ

Dt
and YDt

indicate the estimated class labels
from Φ and ground-truth class labels for all imagery data
from disaster event Dt, respectively. || · ||2 is the L2-norm
of a matrix. The objective of the accuracy-aware loss is to
supervise Φ to accurately estimate the class labels from all
input imagery data. However, a limitation of L1 loss function

is that L1 only focuses on the overall ADA performance but
may not supervise Φ to achieve optimized ADA performance
on each individual disaster event. Therefore, we further de-
fine the generality-aware loss function for Φ to address such
a limitation as:

L2 =
∑

∀Dt1
,Dt2

∈D,Dt1
̸=Dt2

K∑
k=1

||Pr(Ŷ Φ
Dt1

= k|Dt1 , YDt1
= k)

−Pr(Ŷ Φ
Dt2

= k|Dt2 , YDt2
= k)||2

(3)

where L2 is the generality-aware loss function for Φ.
Dt1 , Dt2 represent any two different disaster events from the

set of studied disaster events D. Ŷ Φ
Dt1

and Ŷ Φ
Dt2

indicate the
estimated class labels for all imagery data from event Dt1 and
Dt2 , respectively. YDt1

and YDt2
indicate the ground-truth

class labels for all imagery data from event Dt1 and Dt2 , re-
spectively. We then combine the two loss functions to derive
the overall loss function for Φ to learn the optimal network
instance of Φ as:

LOverall = L1 + L2 (4)

Using the overall loss function above, the optimal network
instances of Φ can be learned by investigating the trade-off
between the exploitation and exploration during the network
optimization process through a budget-constrained multi-
armed bandit learning process [Feurer and Hutter, 2019]. On
the one hand, we keep tuning the same network instance that
achieves the low value for LOverall. On the other hand, we take
action to attempt new network instances to prevent the model
from being trapped into a local optimum. Such a optimiza-
tion strategy could jointly explore the large network instance
space while finding the optimal network instance for Φ.

After performing the budget-constrained multi-armed ban-
dit learning process, one possible solution to obtain the op-
timal network instance is to use the network instance with
the lowest value of LOverall as the optimal network instance.
However, the optimized network instance could be overfitted
to the training/validation data and lead to non-negligible per-
formance degradation when it is applied to the testing data
due to the potential feature discrepancy between the train-
ing/validation and testing sets [Saunders, 2022]. To address
such an issue, our GDO module not only exploits the network
instances with the lowest value of LOverall but also explores
other candidate network instances with low values of LOverall.
We formally define the network instances generated by our
GDO module as follows.
Definition 8. Optimized Network Instance Set (M): We
define M = {M1,M2, ...,MJ} as a set of network instances
learned by the GDO module, which includes network in-
stances with top J lowest values in LOverall. In addition, Mj

indicate the jth learned network instance.
Note that all network instances in M are the instances of

the deep estimation network Φ (Definition 7). To generate
different network instances in M , our GDO module keeps
tracking the LOverall of different network instances generated
during one budget-constrained multi-armed bandit learning
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process. Our GDO module then adds the network instances
with top J lowest values in LOverall to M . The above de-
sign avoids the low computational efficiency of performing
the budget-constrained multi-armed bandit learning process
J times to generate different network instances in M .

Our CollabGeneral then jointly leverages the identified
network instances and crowd intelligence to derive accurate
ADA results for all studied disaster events, which will be dis-
cussed in the next subsection.

4.2 Subjective Logic-driven Crowd-AI Fusion
In this module, we design a novel subjective logic-driven
crowd-AI fusion framework to fuse the AI and crowd intel-
ligence to derive the accurate ADA results for all studied dis-
aster events to address the ADA model generality problem.

We first discuss how to perform crowd intelligence query
Q to collect crowd intelligence for the SCF module. We ob-
serve that it is impractical to query the crowd intelligence for
all studied image samples due to the budget and resource con-
straints, which is especially challenging in ADA applications
with massive social media data inputs [Li et al., 2019]. There-
fore, our SCF module samples a subset of image samples for
Q in which different network instances in M (Definition 8)
cannot reach a consensus on. We first measure the divergence
of the class labels estimated by all network instances in M for
each image sample Xi using Shannon entropy [Lin, 1991].
The divergence indicates the degree of disagreement between
different network instances in M on the estimated class la-
bel for Xi. We then select the image samples with top δ × I
highest divergence for Q. Here, δ indicates the percentage of
studied disaster-related imagery data that are sampled for Q.
δ is determined by the trade-off between the ADA model per-
formance and the crowdsourcing cost in the ADA application
of interest. I is the total number of studied images.

Our next step is to effectively fuse the crowd labels re-
turned by Q with the estimated labels generated by different
network instances in M . In particular, we define:

Definition 9. Crowd-AI Fusion Committee (S): We de-
fine S = {S1, S2, ..., SC} as a crowd-AI fusion committee,
which contains all J different optimized network instances
M learned by the GDO module and all B different crowd
workers W in an ADA application. In particular, we have
S = M ∪W , where C = J + B. C is the size of commit-
tee S, and Sc is a committee member in S (i.e., either an AI
network instance or a crowd worker.

The goal of our SCF module is to effectively fuse the in-
puts from all members in S to derive the accurate ADA labels
for the studied disaster events. To that end, we first define the
“opinion” of each committee member towards the class label
of each image sample through subjective logic, a probabilistic
logic that models the epistemic uncertainty and source trust
when combining the opinions from different sources [Jøsang,
2016]. In our paper, we leverage the subjective logic to ex-
plicitly model each committee member’s uncertainty and re-
liability in estimating the ADA labels for all disaster events.

Definition 10. Committee Member Opinion Entity (E):
We define Ek

Sc
= {T k

Sc
, F k

Sc
, Uk

Sc
} to represent the opinion

of a member Sc on whether an image sample belongs to a
particular class k or not. In particular, we have:

T k
Sc
, F k

Sc
, Uk

Sc
∈ [0, 1], T k

Sc
+ F k

Sc
+ Uk

Sc
= 1 (5)

where T k
Sc

and F k
Sc

indicates Sc’s belief and disbelief in the
class label of an image sample to be k, respectively. Uk

Sc

indicates Sc’s uncertainty in determining if the class label of
an image sample to be k or not.

Given the opinion entity of each committee member, we
can utilize the consensus operation from subjective logic to
combine the opinions from different committee members.
Consensus operation is a key operation in subjective logic that
is used to determine the shared belief and uncertainty of two
sources by considering the individual belief and uncertainty
of each source. In particular, we can use the consensus op-
eration ⊕ to combine the opinions from any two committee
member Sp and Sq as follows:

EK
Sp,Sq

= {T k
Sp,Sq

,F k
Sp,Sq

, Uk
Sp,Sq

} = Ek
Sp

⊕ Ek
Sq

(6)

where EK
Sp,Sq

indicates the opinion entity after combining the
opinions from both Sp and Sq , which indicates their collec-
tive opinions on whether an image sample belongs to a par-
ticular class k or not.

Then, we can recursively adopt the consensus operation ⊕
to combine the opinions from all committee members in the
crowd-AI fusion committee as follows:

Ek
S = {T k

S , F
k
S , U

k
S} = Ek

S1
⊕ Ek

S2
⊕, ...,⊕Ek

SC
(7)

Given the combined opinion Ek
S from all committee mem-

ber in the crowd-AI fusion committee S, we can leverage it
to derive the accurate class label for each image sample. In
particular, we set the class label estimated by our CollabGen-
eral framework to be the one that has the highest belief value
T k
Si,k among all possible class labels k for each studied image

sample Xi as follows:

argmax
k∗

T k
Si,k , where k ∈ {1, 2, ...,K}, set k∗ as Ŷi (8)

where Si,k indicates the set of committee members who esti-
mates the class label for Xi as k.

However, Ek
Sc

for each committee member Sc in S is un-
known a priori and we need to infer the value for each Ek

Sc

before estimating the accurate class label for each image sam-
ple. To that end, we further design an iterative learning frame-
work in our SCF module to obtain the accurate value for each
Ek

Sc
. In particular, we first introduce two important concepts

in our iterative learning framework.
Definition 11. Committee Member Reliability (R): We
define Rk

c to be the probability of a committee member Sc in
correctly estimating the class label of an image from class k.
Definition 12. Image Sample Discriminative Score (Z):
We define Zk

i as the discriminative score of an image sample
Xi in terms of identifying the reliable committee member that
can correctly estimate the label for image samples of class k.

Given the above two definitions, we note that the values
of both committee member reliability R and the image sam-
ple discriminative score Z are unknown and depend on each
other. Therefore, we optimize R and Z alternately as follows.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6321



First, we optimize the image sample discriminative score
Z given the committee member reliability R as follows:

Zk
i =

∑
Sp,Sq∈Si,k Rk

p ×Rk
q ×

Nk
Sp,Sq

Nk
Sq∑

Sp,Sq∈Si,k Rk
p ×Rk

q

(9)

where Si,k is the set of crowd-AI committee members who
estimate the class label of Xi to be k. Sp and Sq are any two
committee members in Si,k. Rk

p and Rk
q are the reliability

of Sp and Sq , respectively. Nk
Sp,Sq

is the number of image
samples where both Sp and Sq estimate the class label to be
k. Nk

Sq
is the number of image samples where Sq estimates

the class label to be k. In addition, Zk
i is set to be 0 if there is

only 1 or no committee member label Xi to be k. Intuitively, a
high value of Zk

i indicates a high likelihood that the estimated
class label for Xi is to be k, and vice versa.

Then, we compute the committee member reliability R us-
ing the updated image sample discriminative score Z as:

Rk
c =

∑
∀i∈∆

Sc
k

(
Zk

i ×
∑

Sp∈Si,k

Nk
Sp,Sc

Nk
Sc

)
∑

∀i∈∆
Sc
k

Zk
i

(10)

where ∆Sc

k indicates the set of all image samples where Sc

estimates the class label to be k. Intuitively, a high value of
Rk

c indicates that the class labels estimated by Sc are more
likely to be correct.

Given the above two definitions, we can obtain the optimal
value for all Zk

i
∗ and Rk

c
∗ by iteratively updating all Zk

i and
Rk

c until their values convergence (e.g., the values of Zk
i and

Rk
c remains unchanged between two consecutive iterations).

We then leverage Zk
i
∗ and Rk

c
∗ to derive the optimal opinion

entity Ek
Sc

∗ for each committee member as follows:

Uk
Sc

∗
= 1− Ω(Z), T k

Sc

∗
= Ω(Z)×Rk

c

∗
, F k

Sc

∗
= 1− T k

Sc

∗ − Uk
Sc

∗

(11)

where Ω(·) is a normalization function to normalize the input
between 0 and 1. Z =

∑
∀i∈∆Sc

k
Zk
i
∗ indicates the likelihood

that Sc is certain about estimated labels for images of class k.
The learned opinion entity Ek

Sc

∗ is then plugged in Equa-
tion (7) to derive the accurate class labels for all imagery data
in each studied disaster event.

5 Evaluation
5.1 Datasets and Crowdsourcing Settings
Disaster Damage Assessment Datasets: In the experiments,
we use four publicly available real-world ADA datasets.3 The
datasets consist of social media images collected from four
different disaster events: Hurricane Irma (2017), Ecuador
Earthquake (2016), Nepal Earthquake (2015), and Sri Lanka
Flooding (2017). Images in each dataset reflect disaster-
specific visual characteristics of a disaster (e.g., structure
damage vs. flooding damage, urban layout vs. rural layout,

3https://crisisnlp.qcri.org/

plateau landscape vs. coastal landscape). Following the stan-
dard practice in ADA applications [Nguyen et al., 2017], we
classify the disaster damages into three classes including se-
vere damage, medium damage, and no/minor damage. Each
image is annotated by three independent annotators, with the
majority voting as the aggregated label. We invited our do-
main expert to cross-validate the aggregated label to obtain
the final ground-truth annotation. A summary of all datasets
is presented in Table 1. Additionally, we split the training
and testing sets with a ratio of 7:3 and use the training sets to
train all compared schemes for ADA tasks and evaluate their
performance on the testing sets.

Crowdsourcing Settings: We leverage the widely-used
Amazon Mechanical Turk (AMT) to acquire crowd intel-
ligence in our experiments. AMT is one of the largest
crowdsourcing platforms offering 24/7 crowdsourcing ser-
vices from a massive amount of crowd workers around the
world. For each task on AMT, we recruit crowd workers who
have finished at least 1000 approved tasks with an overall task
approval rate of 95% or above to ensure the crowdsourcing la-
bel quality. We pay $0.05 per image to the crowd workers and
follow the IRB protocol approved for this project.

Event Images No/Minor Medium Severe
Hurricane Irma 893 34.6% 39.6% 25.8%
Ecuador Earthquake 670 41.0% 5.7% 53.3%
Nepal Earthquake 666 41.9% 13.5% 44.6%
Sri Lanka Flooding 144 40.4% 40.3% 19.3%

Table 1: Statistics of Four ADA Datasets

5.2 Baseline Methods and Experiment Settings
In our evaluation, we compare CollabGeneral with a set of
state-of-the-art baselines, including (1) Deep Neural Network
(DNN): ResNet [Targ et al., 2016], DenseNet [Huang et al.,
2017], and VGG [Li et al., 2018]; (2) AI Model Gener-
alization: GTA [Sankaranarayanan et al., 2018], VS [Kini
et al., 2021], SL [Wang et al., 2019b]; (3) Crowd-AI
Collaboration: Deep Active [Sener and Savarese, 2018],
CrowdLearn [Zhang et al., 2019], SL [Wang et al., 2019b].

In the experiments, to ensure the fairness of comparison,
we use the same inputs for all compared methods. In particu-
lar, the inputs to each scheme include: 1) the social media im-
ages for all studied disaster events in both training and testing
datasets; 2) the ground-truth labels for social media images
in the training dataset, where the number of training images
from each disaster event is proportional to the total number
of images from that event as shown in Table 1; and 3) the la-
beled social media images returned by the crowd workers. In
particular, we use the crowd labels to retrain the DNN and AI
model generalization baselines to ensure all baselines have
the same inputs and the performance of compared baselines
is optimized. For the DNN baselines, we consider two dif-
ferent training settings: 1) training a single DNN model for
all studied disaster events, which is referred as DNN-A (e.g.,
ResNet-A for ResNet); 2) training four DNN models, one for
each specific disaster event, which is referred as DNN-S (e.g.,
ResNet-S for ResNet).
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Ecuador Earthquake Sri Lanka Flooding Overall

Category Algorithm F1-Score MCC K-Score F1-Score MCC K-Score F1-Score MCC K-Score

ResNet-A 0.8032 0.6658 0.6513 0.5214 0.4582 0.3732 0.7326 0.6138 0.5851

DNN-A DenseNet-A 0.7999 0.6529 0.6444 0.5519 0.4607 0.3942 0.7384 0.6098 0.5904

VGG-A 0.8023 0.6469 0.6319 0.7105 0.5647 0.5323 0.7785 0.6505 0.6330

ResNet-S 0.8315 0.6849 0.6833 0.6434 0.5507 0.4850 0.7779 0.6518 0.6426

DNN-S DenseNet-S 0.7975 0.6527 0.6399 0.6913 0.5796 0.5372 0.7758 0.6539 0.6363

VGG-S 0.8132 0.6569 0.6493 0.4837 0.4232 0.3264 0.7270 0.5875 0.5639

GTA 0.7117 0.4523 0.4516 0.5545 0.4106 0.3733 0.6666 0.4498 0.4488

AI Model VS 0.7724 0.5457 0.5334 0.7502 0.6212 0.5950 0.7561 0.5940 0.5820

Generalization SL 0.8309 0.7058 0.7034 0.6406 0.4897 0.4622 0.7870 0.6668 0.6607

Deep Active 0.7986 0.6524 0.6452 0.4347 0.4184 0.3329 0.7112 0.5912 0.5695

Crowd-AI CrowdLearn 0.8145 0.6574 0.6552 0.5263 0.4796 0.3955 0.7425 0.6074 0.5938

LL4AL 0.7886 0.6133 0.6123 0.4177 0.3830 0.3110 0.7018 0.5565 0.5459

Ours CollabGeneral 0.8574 0.7267 0.7266 0.8024 0.6864 0.6791 0.8436 0.7388 0.7384

Table 2: Evaluation Results (Different Types of Events)

We use three evaluation metrics that are commonly used
to quantify the performance of multi-class text classification:
1) F1-score, and 2) Matthews Correlation Coefficient (MCC),
3) kappa score (K-Score). We use MCC and K-Score in our
evaluation because our datasets are imbalanced, and these two
metrics are known to be reliable on imbalanced data [Chicco
and Jurman, 2020]. The higher values of the above metrics
demonstrate better ADA performance.

5.3 Evaluation Results
Model Generality on Different Types of Disaster Events
Firstly, we study the ADA model generality with a challeng-
ing evaluation setting, where the studied disaster events are
of completely different types: Ecuador Earthquake and Sri
Lanka Flooding. We summarize the evaluation results in
Table 2. We observe that CollabGeneral consistently out-
performs all compared baselines in terms of the ADA per-
formance on each individual event and the overall perfor-
mance across two different types of events. For example, the
performance gains of CollabGeneral compared to the best-
performing baseline (i.e., VS) on the Sri Lanka Flooding
event on F1-Score, MCC, and K-Score are 5.22%, 6.52%,
and 8.41%, respectively.

Model Generality on Different Number of Events
Secondly, we evaluate the ADA performance of CollabGen-
eral when there exist more than two disaster events. In par-
ticular, we evaluate CollabGeneral up to four different dis-
aster events by leveraging all possible disaster events avail-
able in our datasets. In our experiments, we evaluate the
ADA performance by comparing CollabGeneral with the
best-performing baselines in each category. The results are
presented in Figure 2. Note that we only show the evaluation
results on the F1-Score due to the page limit. The evaluation
results on other metrics are similar. We observe that our Col-
labGeneral continuously outperforms all compared baselines
on both individual events and overall performance when the
number of studied disaster events increases. This is because

our subjective logic-based crowd-AI framework design effec-
tively improves the ADA model generality without sacrificing
the model’s specificity on each studied disaster event.

Figure 2: Performance Comparisons on Different Number of Events

6 Conclusion
The paper presents a CollabGeneral framework to address the
ADA model generality problem. In particular, we design
a generality-aware crowd-AI collaborative framework that
integrates the complementary AI and crowd intelligence to
achieve an optimized trade-off between generality and speci-
ficity of ADA models. Our CollabGeneral is shown to signif-
icantly improve the ADA model generality by achieving the
highest ADA accuracy in each studied disaster event com-
pared to a rich set of deep neural networks, AI model gen-
erality, and crowd-AI baselines in four different real-world
ADA datasets. We believe CollabGeneral provides useful in-
sights to address the AI model generality problem in many
real-world AI-driven applications (e.g., intelligent transporta-
tion, smart health, AIoT) for future research in this domain.
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