
Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization
Pathways (Extended Abstract)∗

Francesco Fabbri1 , Yanhao Wang2 , Francesco Bonchi3,4 , Carlos Castillo5,6 and
Michael Mathioudakis7
1Spotify, Barcelona, Spain

2East China Normal University, Shanghai, China
3CENTAI Institute, Turin, Italy

4Eurecat, Barcelona, Spain
5ICREA, Barcelona, Spain

6Universitat Pompeu Fabra, Barcelona, Spain
7University of Helsinki, Helsinki, Finland

francescof@spotify.com, yhwang@dase.ecnu.edu.cn, bonchi@centai.eu, chato@icrea.cat,
michael.mathioudakis@helsinki.fi

Abstract
Recommender systems typically suggest to users
content similar to what they consumed in the past.
A user, if happening to be exposed to strongly po-
larized content, might be steered towards more and
more radicalized content by subsequent recommen-
dations, eventually being trapped in what we call a
“radicalization pathway”. In this paper, we investi-
gate how to mitigate radicalization pathways using
a graph-based approach. We model the set of rec-
ommendations in a “what-to-watch-next” (W2W)
recommender as a directed graph, where nodes cor-
respond to content items, links to recommenda-
tions, and paths to possible user sessions. We mea-
sure the segregation score of a node representing
radicalized content as the expected length of a ran-
dom walk from that node to any node representing
non-radicalized content. A high segregation score
thus implies a larger chance of getting users trapped
in radicalization pathways. We aim to reduce the
prevalence of radicalization pathways by selecting
a small number of edges to “rewire”, so as to mini-
mize the maximum of segregation scores among all
radicalized nodes while maintaining the relevance
of recommendations. We propose an efficient yet
effective greedy heuristic based on the absorbing
random walk theory for the rewiring problem. Our
experiments on real-world datasets confirm the ef-
fectiveness of our proposal.

1 Introduction
“What-to-watch-next” (W2W) recommenders are a key fea-
ture of video sharing platforms [Zhao et al., 2019], as they
sustain user engagement, thus increasing content views and

∗This is an extended abstract of [Fabbri et al., 2022] that won the
best paper award at WWW ’22.

driving advertisement and monetization. However, recent
studies have raised serious concerns about the potential role
played by W2W recommenders, especially in driving users
towards undesired or polarizing content [Ledwich and Zait-
sev, 2020; Cinus et al., 2022]. Specifically, radicalized com-
munities on social networks and content-sharing platforms
have been recognized as keys to news consumption and opin-
ion formation around politics and related subjects [Lewis,
2018; Weiss and Winter, 2018; Roose, 2019]. Recent work
highlighted the role of recommender systems, which may
steer users towards radicalized content, eventually building
“radicalization pathways” [Lewis, 2018; Ribeiro et al., 2020;
McCauley and Moskalenko, 2008], i.e., a user might be fur-
ther driven towards radicalized content even when this was
not her initial intent. Therefore, we study how to reduce
the prevalence of radicalization pathways in W2W recom-
menders while maintaining the relevance of recommenda-
tions in our WWW ’22 paper [Fabbri et al., 2022].

Formally, we model a W2W recommender system as a di-
rected labeled graph where nodes correspond to videos (or
other types of content), and directed edges represent rec-
ommendation links from one node to another. In this sce-
nario, each video has the same number d of recommendation
links; thus, every node in the graph has the same out-degree
d. Moreover, each node has a binary label such as “harm-
ful” (e.g., radicalized) or “neutral” (e.g., non-radicalized). A
user’s browsing activity through the W2W recommendations
is modeled as a random walk on the graph. After visiting a
node (e.g., watching a video), the user moves to one of the
d recommended videos with a probability that depends on its
visibility or ranking in the recommendation list. In this set-
ting, for each harmful node v, we measure the expected num-
ber of consecutive harmful nodes visited in a random walk
before reaching any neutral node. We call this measure the
“segregation” score of node v: Intuitively, it quantifies how
easy it is to get “stuck” in radicalization pathways starting
from a given node. Our goal is to reduce the segregation
of the graph while guaranteeing that the quality of recom-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6431



mendations is maintained, where the quality is measured by
the normalized discount cumulative gain [Biega et al., 2018;
Järvelin and Kekäläinen, 2002] (nDCG) of each node. An
important challenge is that the underlying recommendation
graph has some level of homophily intrinsically because,
given that the W2W seeks to recommend relevant videos, it
is likely to link harmful nodes to other harmful nodes.

We formulate the problem of reducing the segregation of
the graph as picking k rewiring operations on edges (w.r.t.
modifications in the lists of recommended videos for some
nodes) so as to minimize the maximum of segregation scores
among all harmful nodes while maintaining recommenda-
tion quality measured by nDCG above a given threshold for
all nodes. We prove that our k-REWIRING problem is NP-
hard and NP-hard to approximate within any factor. We,
therefore, turn our attention to designing efficient and ef-
fective heuristics. Our proposed algorithm is based on the
absorbing random walk theory [Mavroforakis et al., 2015],
thanks to which we can efficiently compute the segregation
score of each node and update it after every rewiring opera-
tion. Our algorithm finds a set of k rewiring operations by
greedily choosing the optimal rewiring for the special case
of k = 1 – i.e., the 1-REWIRING problem, then updates the
segregation score of each node. We further design a sort-
ing and pruning strategy to avoid unnecessary attempts and
thus improve the efficiency of searching for optimal rewiring.
Finally, we present experiments on real-world datasets in
the context of video sharing. We compare our proposed
algorithm against several baselines, including an algorithm
for suggesting new edges to reduce radicalization in Web
graphs [Haddadan et al., 2021]. The results show that our
algorithm outperforms existing solutions in mitigating radi-
calization pathways. Our code and data are publicly available
at https://github.com/FraFabbri/rewiring-what-to-watch.

2 Preliminaries
Let us consider a set V of n items and a matrix S ∈ Rn×n,
where each entry suv ∈ [0, 1] at position (u, v) denotes the
relevance score of an item v given that a user has browsed an
item u. This expresses the likelihood that a user who has just
watched u would be interested in watching v. Typically, a rec-
ommender system selects the d most relevant items to com-
pose the recommendation list Γ+(u) of u, where the number
of recommendations d is a design constraint (e.g., given by
the size of the app window). We assume that the system se-
lects the top-d items v w.r.t. suv and that their relevance score
uniquely determines the ranking of the d items in Γ+(u). For
each v ∈ Γ+(u), we use iu(v) to denote its ranking in Γ+(u).
After a user has seen u, the user will find the next item to see
from Γ+(u), and the probability puv of selecting v ∈ Γ+(u)
depends on the ranking iu(v) of v in Γ+(u). More formally,
puv = f(iu(v)), where f is a non-increasing function that
maps from iu(v) to puv with

∑
v∈Γ+(u) puv = 1.

This setting is modeled as a directed probabilistic d-regular
graph G = (V,E,M), where the node set V corresponds to
the set of all n items, the edge set E comprises n · d edges
where each node u ∈ V has d out-edges connected to nodes
in Γ+(u), and M is an n×n transition matrix with a value of

puv for each (u, v) ∈ E and 0 otherwise. A user’s browsing
session is modeled as a random walk on G starting from an
arbitrary node in V with transition probability puv for each
(u, v) ∈ E. The nodes in V are divided into two disjoint
subsets: Vn and Vh w.r.t. “neutral” (e.g., not-radicalized) and
“harmful” (e.g., radicalized) items.

The risk we want to mitigate is having users stuck in a long
sequence of harmful nodes while performing a random walk.
In order to quantify this phenomenon, we define the measure
of segregation score. Given a set S ⊂ V of nodes and a node
u ∈ V \ S, we use a random variable Tu(S) to indicate the
first instant when a random walk starting from u reaches (or
“hits”) any node in S. We define EG[Tu(S)] as the hitting
length of u w.r.t. S, where the expectation is over the space of
all possible random walks on G starting from u. In our case,
we define the segregation score zu of node u ∈ Vh by its ex-
pected hitting length EG[Tu(Vn)] w.r.t. Vn. The segregation
Z(G) of graph G is defined by the maximum of segregation
scores among all nodes in Vh – i.e., Z(G) = maxu∈Vh

zu. In
the following, we omit the argument G from Z(G) when it is
clear from the context.

Our main problem is to mitigate the effect of segregation
by modifying the structure of G. Specifically, we aim to find
a set O of rewiring operations on G, each of which removes
an existing edge (u, v) ∈ E and inserts a new one (u,w) /∈ E
instead, such that Z(GO) is minimized, where GO is the new
graph after performing O on G. For simplicity, we require
that u, v ∈ Vh, w ∈ Vn, and puv = puw. In other words, each
rewiring operation changes the recommendation list Γ+(u)
of u by replacing one (harmful) item v ∈ Γ+(u) with an-
other (neutral) item w /∈ Γ+(u) and keeping the ranking
iu(w) of w the same as the ranking iu(v) of v in Γ+(u).
Another goal, which is often conflicting, is to preserve the
relevance of recommendations after performing the rewiring
operations. Besides requiring only a predefined number k of
rewirings, we also consider an additional constraint on the
loss in the quality of the recommendations. For this purpose,
we adopt the well-known normalized discounted cumulative
gain (nDCG) [Järvelin and Kekäläinen, 2002], i.e., the ratio
of the DCGs between Γ+(u) after rewiring operations and
the original (ideal) recommendation list Γ+

0 (u), to evaluate
the quality loss L(Γ+(u)). Let o = (u, v, w) be a rewiring
operation that deletes (u, v) and adds (u,w) and O be a set
of rewiring operations. For ease of presentation, we define a
function ∆(O) ≜ Z(G) − Z(GO) to denote the decrease in
the segregation after performing the rewiring operations in O
and updating G to GO. Based on all the above notions, we
formally give the following problem definition.
Problem 1 (k-REWIRING). Given a directed probabilistic
graph G = (V,E,M), a positive integer k ∈ Z+, and a
threshold τ ∈ (0, 1), find a set O of k rewiring operations that
maximizes ∆(O), under the constraint that L(Γ+(u)) ≥ τ
for each node u ∈ V .

The hardness of the k-REWIRING problem is analyzed in
the following theorem.
Theorem 1. The k-REWIRING problem is NP-hard and NP-
hard to approximate within any factor.

See [Fabbri et al., 2022, Appendix A] for the proof.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6432

https://github.com/FraFabbri/rewiring-what-to-watch


Algorithm 1: OPTIMAL 1-REWIRING

Input : Graph G = (V,E,M), fundamental matrix
F, segregation vector z, threshold τ

Output: Optimal rewiring operation o∗

1 Initialize Ω← ∅, o∗ ← NULL, ∆∗ ← 0;
2 foreach node u ∈ Vh do
3 Find w ∈ Vn s.t. (u,w) /∈ E with the largest suw;
4 foreach v ∈ Vh with (u, v) ∈ E do
5 Add o = (u, v, w) to Ω if L(Γ+(u)) ≥ τ after

replacing (u, v) with (u,w);

6 Sort Vh as ⟨h1, . . . , hnh
⟩ in descending order of zh;

7 foreach o ∈ Ω do
8 Compute ∆(h1, o) using Eq. 1;
9 if z′h1

> zh2
then

10 ∆(o)← ∆(h1, o);
11 else
12 Find the largest j > 1 such that z′h1

< zhj
;

13 Compute ∆(hi, o) for each i = 2, . . . , j;
14 ∆(o)← zh1

−maxi∈[1,j] z
′
hi

;

15 if ∆(o) > ∆∗ then
16 o∗ ← o and ∆∗ ← ∆(o);

17 return o∗;

3 Algorithms
Due to the NP-hardness of k-REWIRING, we propose an effi-
cient heuristic for the problem. The heuristic is motivated by
the following observation: the special case of k-REWIRING
when k = 1, which we call 1-REWIRING, is solvable in poly-
nomial time. Given an optimal 1-REWIRING algorithm, k-
REWIRING can be addressed by running it k times. Next, we
first present an optimal 1-REWIRING algorithm (Section 3.1)
and then a greedy k-REWIRING algorithm (Section 3.2).

3.1 Optimal 1-REWIRING Algorithm
We now introduce our method to find the optimal solution
o∗ of 1-REWIRING, i.e., the rewiring operation that maxi-
mizes ∆(o) among all o ∈ Ω. The detailed procedure is
presented in Algorithm 1, to which the fundamental matrix
F = (I − Mhh)

−1, where Mhh is the sub-matrix of M
w.r.t. all harmful nodes, and the vector z consisting of the
segregation scores of all nodes before rewiring are given as
input. The algorithm proceeds in two steps: (1) candidate
generation, as described in Lines 2–5, which returns a set Ω
of possible rewiring operations that include the optimal 1-
REWIRING, and (2) optimal rewiring search, as described in
Lines 6–16, which computes the objective value for each can-
didate rewiring to identify the optimal one.

In the first step, we should exclude all rewiring operations
that violate the quality constraint for candidate generation.
Towards this end, we do not consider any rewiring operation
for any node u that will lead to the normalized discount cumu-
lative gain (nDCG) of u below the threshold τ . Since ∆(h, o)
of node h w.r.t. o = (u, v, w) is independent of (u,w), for a
specific node u, we fix w to the neutral node with the highest
relevance score suw and (u,w) /∈ E so that as many rewiring

Algorithm 2: HEURISTIC k-REWIRING

Input : Graph G = (V,E,M), threshold τ , size k
Output: A set O of k rewiring operations

1 Compute the initial F and z based on M;
2 Acquire Ω using Lines 2–5 of Alg. 1;
3 Initialize O ← ∅;
4 for i← 1, 2, . . . , k do
5 Run Lines 6–16 of Alg. 1 to get o∗ = (u∗, v∗, w∗);
6 O ← O ∪ {o∗} and update G, M, F, and z for o∗;
7 Delete the existing rewiring operations of u∗ from

Ω and add new possible operations of u∗ to Ω;
8 if Ω = ∅ then break;
9 return O;

operations as possible are feasible. Then, we should select the
node v where (u, v) ∈ E will be replaced. We should guar-
antee that L(Γ+(u)) ≥ τ after (u, v) is replaced by (u,w).
For each node v ∈ Γ+(u), we take suv and suw into the for-
mula of nDCG calculation [Järvelin and Kekäläinen, 2002].
If L(Γ+(u)) ≥ τ , we will list o = (u, v, w) as a candidate.
After considering each node u ∈ Vh, we generate the set Ω of
all candidate rewiring operations.

The second step is to search for the optimal rewiring oper-
ation o∗ from Ω. We first sort all harmful nodes in descending
order of their segregation scores as ⟨h1, h2, . . . , hnh

⟩, where
hi is the node with the i-th largest segregation score. Since
we want to minimize the maximum segregation, we can fo-
cus on the first few nodes with the largest segregation scores
and ignore the remaining ones. We need to compute ∆(o)
for each o ∈ Ω and always keep the maximum of ∆(o). In
particular, for any node h and operation o = (u, v, w), we
calculate ∆(h, o) as:

∆(h, o) = zh − z′h =
fhuzv

1/po + fvu
. (1)

After evaluating every o ∈ Ω, the one maximizing ∆(o) is o∗.
Furthermore, to compute ∆(o) for operation o, we perform
the following steps: (1) compute ∆(h1, o) using Eq. 1; (2)
if z′h1

> zh2
, then ∆(o) = ∆(h1, o); (3) otherwise, find the

largest j such that z′h1
< zhj

, compute ∆(hi, o) for each i =
2, . . . , j; in this case, we have ∆(o) = zh1 −maxi∈[1,j] z

′
hi

.
The above steps guarantee finding the optimal rewiring oper-
ation, as all rewiring operations that might be optimal have
been considered.

3.2 Heuristic k-REWIRING Algorithm
Our k-REWIRING algorithm based on the 1-REWIRING algo-
rithm is presented in Algorithm 2. Its basic idea is to find the
k rewiring operations by running the 1-REWIRING algorithm
k times. The first step is initializing the fundamental matrix
F and the segregation vector z. In our implementation, F
and z are approximately computed through the power itera-
tion method in [Mavroforakis et al., 2015]. Then, the can-
didate generation procedure is the same as in Algorithm 1.
Next, it runs k iterations for getting k rewiring operations. At
each iteration, it also searches for the optimal rewiring op-
eration o∗ = (u∗, v∗, w∗) among Ω as Algorithm 1. After

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6433



that, G, M, F, and z are updated according to o∗ (see [Fab-
bri et al., 2022] for the update procedure). Since the existing
rewiring operations of u∗ are not feasible anymore, it will
regenerate new possible operations of u∗ based on the up-
dated Γ+(u∗) and the threshold τ to replace the old ones.
Finally, the algorithm terminates when k rewiring operations
have been found, or there is no feasible operation.

4 Experiments
We conduct experiments to show the effectiveness of our al-
gorithm on mitigating radicalization pathways compared to
existing algorithms. Note that we only present a small frac-
tion of experiments here due to space limitations. Please refer
to [Fabbri et al., 2022] for more comprehensive results.
Datasets. Our experiments are conducted on the YouTube
dataset [Ribeiro et al., 2020] in the context of video sharing,
which contains 330,925 videos and 2,474,044 recommenda-
tions. The dataset includes node labels such as “alt-right”,
“alt-lite”, “intellectual dark web”, and “neutral”. We cat-
egorize the first three classes as “radicalized” or “harmful”
and the last class as “neutral” following the analysis done
by this dataset’s curators [Ribeiro et al., 2020], in which
these three classes are shown to be overlapping in terms of
audience and content. When generating the recommenda-
tion graphs, we only include videos having a minimum of
100k views. We consider the video-to-video recommenda-
tions collected via simulations as implicit feedback interac-
tions, where the video-to-video interactions are formatted as
a square matrix, with position (u, v) containing the number
of times the user jumped from video u to video v. Using
alternating least squares [Hu et al., 2008] (ALS), we first de-
rive the latent dimensions of the matrix, generate the scores
(normalized to [0, 1]), and build the recommendation lists for
each video. We eventually create different d-regular graphs
with d ∈ {5, 10, 20}. Finally, we have three recommendation
graphs, namely, YT-D5-S, YT-D10-S, and YT-D20-S.
Algorithms. We compare our proposed heuristic (HEU) al-
gorithm for k-REWIRING with three baselines and one ex-
isting algorithm. The first baseline (BSL-1) selects the set
of k rewiring operations by running Algorithm 1. Instead
of picking only one rewiring operation, it picks the k op-
erations with the largest values of ∆ all at once. The sec-
ond baseline (BSL-2) considers the best possible k rewiring
operations by looking at the initial values of the vector z.
It firsts selects the k nodes with the largest z values, then
among the possible rewiring operations from those nodes, it
returns the k operations with the largest values of ∆. The
third baseline (RND) picks k random rewiring operations
from all the candidates. Finally, the existing method we com-
pare with is the RePBubLik algorithm [Haddadan et al., 2021;
Haddadan et al., 2022] (RBL). We adapt RePBubLik to our
k-REWIRING problem as follows: (1) we run it to return a
list of potential edges to be added for reducing the structural
bias of the harmful nodes; (2) for each potential insertion, in
order to generate a rewiring operation, we check among the
existing edges to find the one edge that meets the quality con-
straint τ after being replaced by the new edge; (3) we finally
select a set of k rewiring operations from the previous step.

Algorithms

HEU BSL-1 BSL-2 RND RBL

0 10 20 30 40 50
K

0.2

0.4

0.6

0.8

1.0

Z
T
/Z

0

(a) YT-D5-S

0 10 20 30 40 50
K

0.2

0.4

0.6

0.8

1.0

Z
T
/Z

0

(b) YT-D10-S

0 10 20 30 40 50
K

0.2

0.4

0.6

0.8

1.0

Z
T
/Z

0

(c) YT-D20-S

Figure 1: Performance comparison on the YouTube dataset.

Hardware and Implementation. All the experiments were
conducted on a server running Ubuntu 16.04 with an Intel
Broadwell 2.40GHz CPU and 29GB of memory. Our algo-
rithms were implemented in Python 3. For RePBubLik, we
used the implementation published by original authors.
Experimental Results. In Figure 1, we present the results
on the YouTube recommendation graphs. On each graph,
we evaluate the performance of each algorithm along 50
rewiring operations with the threshold of quality constraint
fixed to τ = 0.9. We keep track of the relative decrease in
the segregation ZT /Z0 after each rewiring operation, where
Z0 is the initial segregation and ZT is the segregation af-
ter T rewiring operations. On all the graphs, it is clear that
our greedy heuristic (HEU) outperforms all the competitors.
On the graph with the smallest out-degree (d = 5), it de-
creases Z by over 40% within only 10 rewiring operations
(i.e., Z10/Z0 ≤ 0.6). In this case, it stops decreasing Z after
30 rewiring operations, which implies that only after a few
rewiring operations it has found the best possible operations
constrained by the threshold τ . On the graph with d = 10,
our heuristic algorithm is able to decrease Z by nearly 80%,
which is even larger than the case of d = 5. On the graph with
the largest out-degree (d = 20), the algorithm is still effective
but, as expected, achieves a comparable reduction in Z after
50 operations. The first baseline (BSL-1) shows almost the
same solution quality as HEU since most of the operations
found by both algorithms are the same. Although the rewiring
operations provided by RePBubLik (RBL) also decrease the
original Z0 significantly, they are less effective than the ones
given by our algorithm. When d = 5, it also reaches some
steady states along the iterations, where the new rewiring op-
erations do not decrease the Z value at all. The other baseline
(BSL-2) and the random solution (RND) do not produce sub-
stantial decreases over the initial Z0.

5 Conclusion
In this paper, we studied the problem of reducing the risk
of radicalization pathways in what-to-watch-next recom-
menders via edge rewiring on the recommendation graph. We
formally defined the segregation score of a radicalized node
to measure its potential to trap users into radicalization path-
ways. We formulated the k-REWIRING problem to minimize
the maximum segregation score among all radicalized nodes
while maintaining the quality of the recommendations. We
proposed an efficient yet effective greedy algorithm for k-
REWIRING based on the absorbing random walk theory. Our
experimental results in the context of video recommendations
confirmed the effectiveness of our proposed algorithm.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6434



Ethical Statement
In this work, we aim to reduce the exposure to radicalized
content generated by W2W recommender systems. Our ap-
proach does not include any form of censorship and instead
limits algorithmic-induced over-exposure, which is stimu-
lated by biased organic interactions (e.g., the spread of rad-
icalized content through user-user interactions). Our work
contributes to raising awareness on the importance of devis-
ing policies to reduce harmful algorithmic side effects. Gen-
erally, we do not foresee any immediate or direct harmful im-
pacts from this work.

Acknowledgements
Francesco Fabbri was a fellow of Eurecat’s Vicente López
Ph.D. grant program when he finished this research; his
work was partially financially supported by the Catalan Gov-
ernment through the funding grant ACCIÓ-Eurecat (Project
PRIVany-nom). Yanhao Wang has been supported by the
National Natural Science Foundation of China under grant
number 62202169. Francesco Bonchi acknowledges support
from Intesa Sanpaolo Innovation Center. Carlos Castillo has
been partially supported by the HUMAINT programme (Hu-
man Behaviour and Machine Intelligence), European Com-
mission, and by “la Caixa” Foundation (ID 100010434),
under agreement LCF/PR/PR16/51110009. Michael Math-
ioudakis has been supported by the University of Helsinki and
Academy of Finland Projects MLDB (322046) and HPC-HD
(347747).

The funders had no role in the study design, data collec-
tion and analysis, decision to publish, or preparation of the
manuscript.

References
[Biega et al., 2018] Asia J. Biega, Krishna P. Gummadi, and

Gerhard Weikum. Equity of attention: Amortizing indi-
vidual fairness in rankings. In Proceedings of the 41st In-
ternational ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, pages 405–414, 2018.

[Cinus et al., 2022] Federico Cinus, Marco Minici, Corrado
Monti, and Francesco Bonchi. The effect of people recom-
menders on echo chambers and polarization. Proceedings
of the International AAAI Conference on Web and Social
Media, 16(1):90–101, 2022.

[Fabbri et al., 2022] Francesco Fabbri, Yanhao Wang,
Francesco Bonchi, Carlos Castillo, and Michael Math-
ioudakis. Rewiring what-to-watch-next recommendations
to reduce radicalization pathways. In Proceedings of the
ACM Web Conference 2022, pages 2719–2728, 2022.

[Haddadan et al., 2021] Shahrzad Haddadan, Cristina
Menghini, Matteo Riondato, and Eli Upfal. RePBubLik:
Reducing polarized bubble radius with link insertions. In
Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 139–147, 2021.

[Haddadan et al., 2022] Shahrzad Haddadan, Cristina
Menghini, Matteo Riondato, and Eli Upfal. Reducing
polarization and increasing diverse navigability in graphs

by inserting edges and swapping edge weights. Data Min.
Knowl. Discov., 36(6):2334–2378, 2022.

[Hu et al., 2008] Yifan Hu, Yehuda Koren, and Chris Volin-
sky. Collaborative filtering for implicit feedback datasets.
In Proceedings of the 8th IEEE International Conference
on Data Mining, pages 263–272, 2008.

[Järvelin and Kekäläinen, 2002] Kalervo Järvelin and Jaana
Kekäläinen. Cumulated gain-based evaluation of IR tech-
niques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[Ledwich and Zaitsev, 2020] Mark Ledwich and Anna Zait-
sev. Algorithmic extremism: Examining YouTube’s rabbit
hole of radicalization. First Monday, 25(3), 2020.

[Lewis, 2018] Rebecca Lewis. Alternative influence: Broad-
casting the reactionary right on YouTube. Technical report,
Data & Society Research Institute, September 2018.

[Mavroforakis et al., 2015] Charalampos Mavroforakis,
Michael Mathioudakis, and Aristides Gionis. Absorbing
random-walk centrality: Theory and algorithms. In
Proceedings of the 2015 IEEE International Conference
on Data Mining, pages 901–906, 2015.

[McCauley and Moskalenko, 2008] Clark McCauley and
Sophia Moskalenko. Mechanisms of political radical-
ization: Pathways toward terrorism. Terror. Political
Violence, 20(3):415–433, 2008.

[Ribeiro et al., 2020] Manoel Horta Ribeiro, Raphael Ottoni,
Robert West, Virgı́lio A. F. Almeida, and Wagner Meira
Jr. Auditing radicalization pathways on YouTube. In Pro-
ceedings of the 2020 Conference on Fairness, Account-
ability, and Transparency, pages 131–141, 2020.

[Roose, 2019] Kevin Roose. The making of a YouTube rad-
ical. The New York Times, 2019.

[Weiss and Winter, 2018] Bari Weiss and Damon Winter.
Meet the renegades of the intellectual dark web. The New
York Times, 2018.

[Zhao et al., 2019] Zhe Zhao, Lichan Hong, Li Wei,
Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee
Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and
Ed H. Chi. Recommending what video to watch next: A
multitask ranking system. In Proceedings of the 13th ACM
Conference on Recommender Systems, pages 43–51, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6435


	Introduction
	Preliminaries
	Algorithms
	Optimal 1-Rewiring Algorithm
	Heuristic k-Rewiring Algorithm

	Experiments
	Conclusion

