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Abstract
In this paper, we propose an efficient framework
to accelerate a lightweight brain-inspired learn-
ing solution, hyperdimensional computing (HDC),
on existing edge systems. Through algorithm-
hardware co-design, we optimize the HDC mod-
els to run them on the low-power host CPU and
machine learning accelerators like Edge TPU. By
treating the lightweight HDC learning model as a
hyper-wide neural network, we exploit the capabil-
ities of the accelerator and machine learning plat-
form, while reducing training runtime costs by us-
ing bootstrap aggregating. Our experimental re-
sults conducted on mobile CPU and the Edge TPU
demonstrate that our framework achieves 4.5 times
faster training and 4.2 times faster inference than
the baseline platform. Furthermore, compared to
the embedded ARM CPU, Raspberry Pi, with sim-
ilar power consumption, our framework achieves
19.4 times faster training and 8.9 times faster in-
ference.

1 Introduction
With the advent of the Internet of Things (IoT), numerous ap-
plications incorporate machine learning algorithms [Dall’Ora
et al., 2019]. However, the majority of these applications
rely on highly complex algorithms, such as Deep Neural Net-
works (DNNs), which necessitate billions of parameters and
extensive training time within a robust and high-performance
computing environment [Pan and McElhannon, 2017; Li et
al., 2018; Shafique and others, 2020]. In light of the con-
strained memory and resources of edge devices, coupled with
potential network disturbances and hardware failures inherent
in IoT systems, current computing environments fall short of
achieving real-time learning [Ram and others, 2021].

In contrast to existing machine learning, the human brain
can train effortlessly and efficiently without much concern
for noisy and broken neuron cells [Kanerva, 2009]. To
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more closely model the human brain, earlier researchers pro-
posed HyperDimensional Computing (HDC) as an alterna-
tive computing method, which mimics important brain func-
tionalities towards high-efficiency and noise-tolerant compu-
tation [Imani and others, 2017b; Hernández-Cano and oth-
ers, 2021a]. HDC is motivated by the observation that the
human brain operates on high-dimensional data representa-
tions. In HDC, objects and data are thereby encoded with
high-dimensional vectors, called hypervectors, which have
10,000 or more elements, to perform learning tasks with com-
putation in the high-dimensional space. HDC is well suited
to address learning on edge systems as HDC models are
computationally efficient to train [Imani and others, 2017a;
Genssler and others, 2021; Halawani et al., 2021], offer in-
tuitive and human-interpretablity [Zou and others, 2021a],
and provide strong robustness to noise [Poduval and others,
2021b; Imani and others, 2019].

These features make HDC a promising solution for to-
day’s embedded devices with limited storage, battery, and re-
sources. To fully utilize its lightweight characteristics, most
prior works rely on ASIC or emerging hardware acceleration.
However, these designs are not commercially available and
need a relatively long period to synthesize and fabricate after
deriving the new applications.

In this paper, we show an acceleration solution for HDC
by exploiting and reusing readily available and standardized
DNN accelerators to ease the deployment of HDC in the real
world, particularly focusing on Google Edge TPU. We pro-
pose a framework for efficient acceleration of the HDC in
the edge environment by optimizing its algorithm to fully uti-
lize the low-power Edge TPU as well as the host CPU. Our
framework maps the HDC model to TensorFlow which works
seamlessly with the Edge TPU. The bulky matrix operations
in HDC efficiently utilize hardware parallelism. We further
accelerate the training runtime on a low-power ARM CPU at
the host by employing the ensemble methods based on boot-
strap aggregating (bagging). Our results show that the joint
experiments on mobile CPU and the Edge TPU show that
our framework achieves 4.5× faster training and 4.2× faster
inference than the baseline platform. In addition, our frame-
work achieves 19.4× faster training and 8.9× faster inference
compared to the embedded ARM CPU, Raspberry Pi, that
consumes similar power consumption.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6474



2 Related Work
HDC, inspired by the large neural circuits inside the hu-
man brain, is both efficient in the calculation and robust
against noise. Recent researchers have shown those advan-
tages in multiple HDC applications, e.g., gesture/object de-
tection [Moin and others, 2021; Zou and others, 2021b], DNA
pattern matching [Kim and others, 2020; Poduval and oth-
ers, 2021a], regression [Hernández-Cano and others, 2021b],
and manufacturing [Chen and others, 2021], and cluster-
ing [Imani and others, 2020]. Recently, an increasing number
of researchers focused on the acceleration of HDC utilizing
the parallelism of its hardware-friendly operations. Multiple
hardware platforms have been used to accelerate the train-
ing and inference process, e.g., FPGA [Schmuck and oth-
ers, 2019] and ASIC [Datta and others, 2019; Khaleghi and
others, 2020; Karunaratne and others, 2020; Wu and others,
2018]. However, their custom application-specific designs
are less likely to be available due to the high manufactur-
ing cost. In this paper, we tackle this issue by devising an
HDC acceleration framework based on a readily available
low-power platform, i.e., Google Edge TPU accelerator.

3 Hyperdimensional Computing at the Edge
The primary objective of this paper is to effectively map HDC
operations for both training and inference to viable DNN-like
models, thereby enabling acceleration through low-power
Edge TPU. Figure 1 shows the overview of our framework.
In the training phase, we generate base hypervectors ran-
domly using the normal distribution. Then, it takes samples
from the training dataset and encodes them on the Edge TPU.
These encoded hypervectors are then sent to the host CPU to
update the class hypervectors. During the inference phase,
our framework relies on an inference neural network model
parameterized with the trained class hypervectors and base
hypervectors. The model is loaded onto the accelerator and
operates on samples from the testing dataset. By effectively
mapping the entire inference process to the Edge TPU, our
framework enables real-time and efficient predictions.

3.1 Mapping HDC to Edge TPU
Inference in the HDC is performed with three major subtasks,
input vectors encoding, class hypervectors update, and classi-
fication. We can view it as a three-layer wide neural network.
The first part of the network includes the input layer with n
nodes and the wide hidden layer with d nodes, and it maps the
inputs to higher dimensions. The second part of the network
takes the hidden layer as inputs and generates the classifica-
tion results at the output layer with k nodes.

Encoding. As the basis of HDC, encoding maps the in-
put space to higher dimensions, e.g., d = 10, 000. Sup-
pose an n-feature input sample vector has the form F⃗ =
{f1, f2, . . . , fn}. Following the non-linear encoding [Imani
and others, 2020], our mapping relies on randomly gener-
ated 1 × d base hypervectors {

−→
B 1,

−→
B 2, . . . ,

−→
Bn} for each

input feature, and the randomness is realized through the nor-
mal distribution for components in these hypervectors, i.e.,
b ∼ N (µ, σ2) with µ = 0 and σ = 1. The components of

these random hypervectors follow a symmetric distribution
around zero so that the dot product between any two base hy-
pervectors is very close to zero. Thus, we also regard them as
near orthogonal. Then these hypervectors multiply with cor-
responding feature values, and the outputs are aggregated as
1× d encoded hypervectors:

−→
E = tanh(f1 ×

−→
B 1 + f2 ×

−→
B 2 + . . .+ fn ×

−→
Bn)

We refer to this hypervector addition as the bundling oper-
ation, which preserves the information of each hypervector.
Especially for non-linear encoding, we take the hyperbolic
tangent value of each component in the encoded hypervector.

To map the encoding process to Edge TPU, we notice that
bundling in the encoding process is essentially a large number
of MAC operations. In other words, the encoding is indeed
a vector-matrix multiplication that is ready to accelerate on
most hardware accelerators. We map these MAC operations
to the first half of that three-layer wide NN. Within that half,
the input is the 1 × n sample vector, and all the base hyper-
vectors form the n × d weight matrix for edges connecting
the input layer and the hidden layer. The non-linear term can
be integrated into the NN as an activation function of nodes
in the wide hidden layer.
Class hypervectors update. The process for generating
and updating k class hypervectors uses lightweight opera-
tions called bundling. Starting with all zeros in the 1×d class
hypervectors {

−→
C 1,

−→
C 2, · · · ,

−→
C k}, these hypervectors are up-

dated according to the classification correctness of each input.
For instance, if an encoded hypervector

−→
Em that belongs to

class a, is instead classified to b incorrectly, then the HDC
training algorithm will update the class hypervectors for both
class a and b with the bundling,

−→
C a =

−→
C a + λ

−→
Em and

−→
C b =

−→
C b − λ

−→
Em. where λ is the learning rate.

Class hypervector training is interpreted as weights update
in the neural network. Most edge accelerators are not de-
signed for training or weights update. For example, Edge
TPU lacks support for element-wise operations, so the accel-
eration for class hypervectors update is not available. Thus,
we deploy this part on the host CPU due to this limitation; we
devised an ensemble learning-based optimization method for
higher efficiency as discussed in the next section.
Classification. In the final classification step of the HDC,
the associative search checks the similarity between encoded
query hypervectors and class hypervectors. We compute the
similarity using the dot product: δ(

−→
Em,

−→
C k) =

−→
Em ·

−→
C k.

After repeating this for each class hypervector, the final result
is the class with the highest similarity. Similarity check maps
to the second half of that three-layer fully connected network.
The input to this half is the encoded hypervectors coming out
of the wide hidden layer, and the network parameters, i.e.,
the d × k weight matrix, are determined by the trained class
hypervectors. Through the network, the output is the sum of
the product between hidden node outputs and the weight on
edge, which is the same calculation of the similarity check.

3.2 Boost Efficiency with Bagging
As mentioned in Section 3.1, a large portion of the training
process is not accelerated due to the limitation of Edge TPU,
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Figure 1: HDC acceleration framework with multi-model bootstrap sampling (Bagging) for runtime reduction

which has no support for on-device weights update. Low-
power host machines at the edge also lack the computing
power for fast training with wide hypervectors. This leads
to our idea behind the use of the bagging method, which is
to achieve more efficient training without compromising the
HDC learning quality.
Bagging for faster HDC training. Bagging and other en-
semble methods provide higher accuracy but often require the
cost of longer training runtime because of the need for train-
ing multiple sub-models. However, we interpret its accuracy
advantage from another angle. Because of the aggregation
and the consensus-based prediction process, bagging is able
to improve the accuracy of each sub-model. In other words,
multiple smaller-sized models with fewer training iterations
can still provide similar accuracy compared with fully-trained
models. This outcome aligns with our targets, i.e., lower run-
time cost of weights update. The cost of weights update is di-
rectly related to the class hypervector width. However, train-
ing multiple sub-models significantly increases the compu-
tation cost if the hypervector width stays unchanged. Thus,
we decrease the hypervector width to d′ = d/M , where d
is the original hypervector width and M is the number of
sub-models generated. Next, we further reduce the runtime
through fewer training iterations. We utilize the property of
bagging that it does not require fully-trained sub-models. The
bagging method achieves similar accuracy with fewer than
half iterations, which dramatically lowers the runtime. Then
through the bootstrap sampling in bagging, we also speed up
the training process. Both dataset and feature sampling gen-
erate a training subset, which means less computation cost.
Inference model generation. Even though we utilize the
bagging method mainly for optimizing the training runtime
on the host CPU, the inference process on Edge TPU also
needs to adapt accordingly. As the bagging method trained
multiple sub-models, which also take inputs from different
sub-datasets, accelerating these models on Edge TPU in se-
ries is not efficient. Most Edge TPU only take one model at a
time, and the weights have to be loaded to the on-chip buffer
every time. This brings the overhead for preparing the accel-
erators for multiple models. Also, these sub-models trained
through bagging are smaller, so running them in series may
not fully utilize accelerator hardware parallelism. Thus, we
design a technique to combine multiple trained sub-models

as a single full-sized inference model.
For an n-feature input F⃗ , it first passes through the en-

coding process, where its features are sampled and then dif-
ferent groups of base hypervectors encode it. Suppose the
bagging process uses M different sub-models, and each of
them is based on an n × d′ matrix of base hypervectors
Bm = {

−→
Bm

1 ,
−→
Bm

2 , · · · ,
−→
Bm

n }. For this matrix of each sub-
model, some of the columns are set to zero, because they cor-
respond to features that are not sampled. In this way, the
feature sampling process is automatically finished. Then we
stack these matrices horizontally to form a full n × d weight
matrix B for the encoding part of the inference model. The
output 1× d encoded hypervector E⃗ is calculated as below:

−→
E = F⃗ × B = F⃗ × [B1 B2 . . . BM ]

Then these encoded hypervectors enter the second half of
the inference model for classification of k different classes.
For the different groups of class hypervectors trained through
the bagging, we also stack them vertically to form a bigger
d× k matrix C with the same dimension as before:

O⃗ =
−→
E × C =

−→
E × [C1 C2 · · · CM ]T

where the d′ × k matrix Cm = {
−→
Cm

1 ,
−→
Cm

2 , · · · ,
−→
Cm

k }. In-
stead of aggregating the results of similarity checks for each
sub-model, i.e., multiple vector-matrix multiplications fol-
lowed by an element-wise addition, we could perform a sin-
gle time vector-matrix multiplication and the classification re-
sult is available directly using the aforementioned similarity
search. Because the full inference NN model generated here
has the same dimensions as the one generated without using
bagging, it does not incur extra overhead during inference.

4 Experimental Results
We implement our framework on the Google Edge TPU con-
nected through USB 3.0 to a lower-end laptop having a mo-
bile Intel CPU i5-5250U. For the CPU baseline experiments
and those on TPU without bagging, we train the model for 20
iterations to achieve fully trained models. For experiments
on TPU with bagging, we trained 4 sub-models with hyper-
vector width d = 2500 for 6 iterations. We used 60% of the
training dataset for each sub-model. We tested five datasets
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Figure 2: Training runtime cost comparison of three different frame-
work settings: CPU baseline, TPU (without bagging method) and
TPU B (with bagging method). The runtime costs are normalized to
the measurement on CPU within each dataset.

widely used in the HDC community: FACE [Kim and others,
2017], ISOLET [Cole and Fanty, 1994], UCIHAR [Anguita
and others, 2013], MNIST [LeCun and others, 1998], and
PAMAP2 [Reiss and others, 2012].

4.1 Training Efficiency
Figure 2 shows the runtime measurement for each component
of the training process in HDC. Our framework without bag-
ging, i.e., the TPU baseline, maps the training set encoding
from the host CPU to Edge TPU. Compared with the CPU
baseline, we observe that the encoding time, with the acceler-
ation of Edge TPU, significantly decreases for four datasets.
One exception is observed for PAMAP2 since the number of
features in this dataset is relatively small, i.e., n = 27, be-
ing less compute-intensive during the encoding. Our frame-
work is able to provide high encoding runtime speedup for
datasets with large inputs. The maximum encoding runtime
speedup is 9.37× for the MNIST dataset. For datasets such
as FACE, the encoding runtime takes up a large portion of
the total training time, and our framework with the Edge TPU
significantly reduces the overall runtime with 2.95× speedup.

Our framework with bagging, i.e., TPU B, achieves dra-
matically lower runtime for class hypervector update on the
host CPU. For example, compared to the CPU baseline, the
bagging method brings up to 4.74× speedup for the hyper-
vector update process in the host CPU. Compared with the
overall training runtime in the CPU baseline, our framework
brings up to 4.49× speedup on the MNIST dataset by op-
timizing operations on both the Edge TPU and host CPU.
It also achieves significantly faster training on FACE, ISO-
LET, and UCIHAR datasets with 3.49×, 2.45× and 1.81×
speedup, respectively.

4.2 Inference Efficiency and Accuracy
Figure 3 shows the runtime measurements for the inference
process of HDC on the Edge TPU. Besides our counterex-
ample PAMAP2, our framework significantly accelerates the
inference process. For example, the maximum inference
speedup achieved on MNIST with the bagging method is
4.19×. The speedups for other 3 datasets are: 3.16×(FACE),
2.13×(ISOLET), 3.08×(UCIHAR). The bagging method,
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Figure 3: Inference runtime cost comparison: the runtime costs are
normalized to the measurement on CPU within each dataset.
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Figure 4: Inference accuracy for different framework settings

FACE ISOLET UCIHAR MNIST PAMAP2
Training 21.5 × 15.6× 17.9× 23.6× 18.6×
Inference 11.4× 7.2× 7.9× 11.1× 6.8×

Table 1: Our Edge TPU-based efficiency vs. Raspberry Pi 3.

with a unified inference model, can achieve the inference run-
time with no extra overhead compared with the TPU baseline.

Figure 4 summarizes the accuracy results of our experi-
ments on five different datasets. The comparison illustrates
that our proposed method is able to achieve similar inference
accuracy on the Edge TPU. Because the ensemble method
compensates for the possible incorrect classification of each
sub-model, the final inference model even achieves higher
accuracy than the full-sized, fully-trained model for some
datasets, e.g., ISOLET and PAMAP2.

We also compare our Edge TPU-based platform with an
embedded CPU which consumes similar average power con-
sumption. Table 1 shows the performance improvement of
our framework as compared to Raspberry Pi 3 using ARM
Cortex A53 processor. Our results indicate that our frame-
work can provide 19.4× and 8.9× faster training and infer-
ence compared to Raspberry Pi 3.

5 Conclusion
We propose a framework for efficient acceleration of HDC
in the edge environment which optimizes the algorithm to
fully utilize the low-power Edge TPU and the host CPU. It
interprets the major computation of HDC as a hyper-wide
lightweight NN and further accelerates the training on the
host CPU by employing bagging. Our evaluation showed
that the proposed framework offers significant efficiency im-
provements in training and inference on edge platforms.
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