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Abstract

Causal discovery from observational data provides
candidate causal relationships that need to be vali-
dated with ad-hoc experiments. Such experiments
usually require major resources, and suitable tech-
niques should therefore be applied to identify can-
didate relations while limiting false positives.
Local causal discovery provides a detailed
overview of the variables influencing a target,
and it focuses on two sets of variables. The first
one, the Parent-Children set, comprises all the
elements that are direct causes of the target or that
are its direct consequences, while the second one,
called the Markov boundary, is the minimal set of
variables for the optimal prediction of the target.
In this paper we present RAveL, the first suite of
algorithms for local causal discovery providing rig-
orous guarantees on false discoveries. Our algo-
rithms exploit Rademacher averages, a key con-
cept in statistical learning theory, to account for
the multiple-hypothesis testing problem in high-
dimensional scenarios. Moreover, we prove that
state-of-the-art approaches cannot be adapted for
the task due to their strong and untestable assump-
tions, and we complement our analyses with exten-
sive experiments, on synthetic and real-world data.

1 Introduction
One of the main challenges in knowledge discovery from
data is to understand how the underlying data generative
process works, that is, to discover the true causal mecha-
nisms of the process under study without reporting spuri-
ous correlations. Such task is becoming increasingly impor-
tant as more information is being collected, and finds ap-
plications in several areas including biology [Pe’er, 2005;
Sachs et al., 2005] and medicine [Velikova et al., 2014].

∗This is the extended abstract of a paper that won the Best Pa-
per Award at the 2022 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
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†Corresponding author.

Correctly determining the causal relationships among all
the variables under study may be too computationally inten-
sive and data demanding, and in some scenarios one may
be interested only in the causal links between all the vari-
ables and a specific variable called target. Such task, also
known as local causal discovery, is a fundamental primitive
for global causal discovery (i.e., among all the variables), and
it focuses on identifying two sets of variables. The first one
is the Parent-Children set, which contains the variables that
are direct causes or consequences of the target variable, while
the second one is the Markov boundary, which is the minimal
set of variables with optimal predictive performance of the
target [Tsamardinos and Aliferis, 2003].

Causal discovery from observational data usually high-
lights potential causal relationships to be validated with
follow-up experiments. Each of such experiments may re-
quire significant resources (e.g. time, money, or chemical
reagents), therefore avoiding false positives, that is, candi-
date causal relations that are not truly causal, is crucial. To-
wards this goal, a common approach to limit false discover-
ies consists in developing algorithms that rigorously bound
the Family-Wise Error Rate (FWER), which is the probability
of returning at least one false discovery in output. However,
current approaches for local causal discovery do not provide
guarantees on the FWER, and causal discovery with false
positive guarantees has received scant attention in general.

In [Simionato and Vandin, 2023] we present two novel al-
gorithms that exploit Rademacher Averages for Local struc-
ture discovery (RAveL) providing rigorous guarantees on
the FWER: RAveL-MB for the MB discovery task and
RAveL-PC for the PC identification task. To the best of our
knowledge, these are the first algorithms for local causal dis-
covery with provable guarantees on the FWER of their output.
RAveL-MB and RAveL-PC crucially rely on Rademacher
averages, a key concept from statistical learning theory, to ac-
count for the multiple hypothesis testing problem that arises
in local causal discovery. We prove that state-of-the-art algo-
rithms for the task cannot be adapted for correcting for the
FWER without additional (strong) assumptions and, finally,
we support our analyses with extensive experiments both on
synthetic and real-world data.
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2 Related Work
Several approaches for local causal discovery have been de-
veloped, mainly focusing on ensuring algorithmic correctness
and on lowering data requirements. In [Peña et al., 2007a],
the authors developed PCMB, a Markov boundary discovery
algorithm that employs a different algorithm, GetPC, for the
parent-children identification task. A different approach has
been presented in [Tsamardinos et al., 2003b], in which the
authors propose IAMB for the Markov boundary discovery
task. These methods provide correct results under the as-
sumption of independence tests being always perfect (i.e., not
returning any false positive and any false negative in output),
which is an unrealistic and untestable assumption. Our algo-
rithms, on the other hand, do not require any such assumption
to identify the Parent-Children set or the Markov boundary.

To the best of our knowledge, the problem of local
causal discovery with guarantees has been addressed only
in [Tsamardinos and Brown, 2008], and the authors used the
Benjamini-Hochberg correction [Benjamini and Hochberg,
1995] for controlling the False Discovery Rate (FDR) in the
Parent-Children identification task only. In our work, we fo-
cus on both local causal discovery problems and we bound
the FWER with high probability, as solutions that control the
FDR may still output false positives.

Rademacher averages have already been successfully used
in the knowledge discovery community, such as in data min-
ing tasks [Riondato and Upfal, 2015; Pellegrina et al., 2019;
Santoro et al., 2020]. To the best of our knowledge, our is the
first work to introduce them in the causal discovery frame-
work.

3 Preliminaries

3.1 Bayesian Networks

Bayesian Networks (BNs) are convenient ways to represent
interactions between a set of variables V. They are defined
as triplets 〈V, G, p〉 where G = 〈W,E〉 is a direct acyclic
graph (DAG) with vertices in W that are in a one-to-one cor-
respondence with variables in V and p is a probability distri-
bution function over variables in V [Neapolitan and others,
2004]. Each BN follows the Markov condition which implies
that each element X ∈ V is conditionally independent of its
non-descendants by conditioning on its parent variables. In-
formally, a Bayesian Network may be faithful [Spirtes et al.,
2000] if the independencies entailed by G and the Markov
condition are present in p (and vice versa), and it may be
causal if each edge encodes a cause-effect relationship [Pearl,
2009; Ma and Tourani, 2020].

In faithful (causal) BN, structural properties ofG can be in-
ferred by performing conditional independence tests between
disjoint sets of variables X,Y, and Z ⊆ V. This is done
by applying the directional separation (or d-separation) cri-
terion [Pearl, 2009] that studies dependency flow between the
elements in X and Y determining if conditioning on Z makes
the two sets of variables independent (written as X ⊥⊥ Y|Z)
or if some dependence may still flow between them (i.e.,
X 6⊥⊥ Y|Z).

3.2 Local Causal Discovery
The task of inferring the local structure of a causal BN related
to a target variable T from data is called local causal discov-
ery, and it mainly focuses on discovering two sets of variables
with different properties.

The first set is the parent-children set PC(T ), defined as
follows.
Definition 1 (Parent-children set of T [Ma and Tourani,
2020]). The parent-children set of T, or PC(T), is the set of
all parents and all children of T , that is, the elements directly
connected to T , in the DAG G.

The elements in PC(T ) are the only variables that cannot
be d-separated from T , that is, by the Markov property, for
each X in PC(T ) : X 6⊥⊥ T |Z, ∀Z ⊆ V \ {X,T}.

The second set is the Markov boundaryMB(T ) of a target
variable T , defined as follows.
Definition 2 (Markov boundary of T [Pearl, 2009; Tsamardi-
nos et al., 2003a]). The Markov boundary of T, or MB(T),
is the smallest set of variables in V \ {T} conditioned on
which all other variables are independent of T , that is ∀Y ∈
V \MB(T ), Y 6= T, T ⊥⊥ Y |MB(T ).

Given its definition and the d-separation criteria, in a faith-
ful BN MB(T ) is composed of all parents, children, and
spouses (i.e., parents of children) of T [Ma and Tourani,
2020], that are those variables X ∈ V \ {T} for which ∃Y ∈
PC(T ) such that X ⊥⊥ T |Z and X 6⊥⊥ T |Z ∪ {Y } for all
Z ⊆ V \ {X,T}. MB(T ) is the minimal subset S ⊆ V for
which p(T |S) is estimated accurately [Ma and Tourani, 2020;
Tsamardinos et al., 2003a], therefore it is the optimal solution
for feature selection tasks.

3.3 Statistical Testing for Independence and
Multiple Hypotheses Testing

Independence testing usually requires to compute a test statis-
tic γ and to calculate a p-value representing the probability of
observing a value as extreme as γ under a null hypothesis
of independence between variables. In previous algorithms
for local causal discoveries, if such probability is lower than
a user-defined threshold δ (i.e., it is very unlikely that such
statistic was observed if the null hypothesis holds), then the
two variables are deemed as dependent, otherwise they are
considered as independent. Each independence test is able to
detect specific types of dependences and a universal indepen-
dence test does not exist [Shah and Peters, 2020]. In our study
we considered the Pearson’s linear correlation coefficient
that, under data normalization, is defined as rx,y =

∑k
i=0 xiyi
(k−1)

where x and y are the vectors of observations for variablesX
and Y 1. Under the null hypothesis, the expected value of rx,y
is 0, and the statistic t = rx,y√

(1−r2x,y)/(k−2)
follows a Student’s

t distribution with and k − 2 degrees of freedom.
Each independence test may return a false positive (i.e., it

may falsely reject the independence between X and Y ) with
probability at most δ, but if a large numberN of tests are per-
formed the expected number of false positives can be as large

1The definition of x and y changes for conditional tests, see de-
tails in [Simionato and Vandin, 2023].
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as δN , thus requiring the application of ad-hoc techniques to
control false positives. In this paper, we focus on the FWER,
that is the probability of returning in output at least one false
positive. A standard approach to bound the FWER is to apply
the Bonferroni correction [Bonferroni, 1936], which requires
performing each independence test with a corrected threshold
δ/N .

3.4 Supremum Deviation and Rademacher
Averages

While Bonferroni correction does control the FWER, it con-
servatively assumes the worst-case scenario (of indepen-
dence) between all null hypotheses. This often leads to
a high number of false negatives (i.e., false null hypothe-
ses that are not rejected). We now describe Rademacher
averages [Bartlett and Mendelson, 2002; Koltchinskii and
Panchenko, 2000], which allow to compute data-dependent
confidence intervals for all hypotheses simultaneously, lead-
ing to improved tests for multiple hypotheses testing scenar-
ios [Pellegrina et al., 2020].

Let F be a family of functions from a domain X to [a, b] ⊂
R and let S be a sample of m i.i.d. observations from an
unknown data generative distribution µ over X . We define
the empirical sample mean ÊS [f ] of a function f ∈ F , and
its expectation E[f ] as

ÊS [f ]=̇
1

m

∑
si∈S

f(si) and E[f ]=̇Eµ

[
1

m

∑
si∈S

f(si)

]
.

A measure of the maximum deviation of the empirical mean
from the (unknown) expectation for every function f ∈
F is given by the supremum deviation (SD) D(F , S) =

supf∈F |ÊS [f ] − E[f ]|. Computing D(F , S) exactly is not
possible given the unknown nature of µ, therefore probabilis-
tic bounds are commonly used. An important quantity to this
aim is the Empirical Rademacher Average (ERA) R̂(F ,S) of
F on S , defined as R̂(F ,S)=̇Eσ

[
supf∈F

1
m

∑m
i=1 σif(si)

]
where σ is a vector ofm i.i.d. Rademacher random variables,
that is, for which each element σi equals 1 or -1 with equal
probability. ERA is an alternative of VC dimension for com-
puting the expressiveness of a set S over class function F ,
whose main advantage is that it provides tight data-dependent
bounds while the VC dimension provides distribution-free
bounds that are usually fairly conservative ([Mitzenmacher
and Upfal, 2017], chap. 14). Computing the exact value of
R̂(F ,S) is often infeasible since the expectation is taken over
2m elements, therefore a common approach is to estimate it
using a Monte-Carlo approach with n samples of σ. The
n-samples Monte-Carlo Empirical Rademacher Average (n-
MCERA) is finally used to derive probabilistic upper bounds
to the SD [Pellegrina et al., 2020] and to obtain confidence in-
tervals around the empirical mean containing the expectation
with probability at least 1 − δ for all functions in F simulta-
neously.

4 Methods
4.1 Algorithms RAveL-PC and RAveL-MB
The algorithms mentioned in Section 2 are correct under the
assumption that the independence tests result in no false posi-
tives and no false negatives [Pena et al., 2007b; Tsamardinos
et al., 2003b]. In [Simionato and Vandin, 2023] we deter-
mine milder sufficient conditions that allow GetPC [Pena et
al., 2007b] to control the FWER for the PC discovery task,
and PCMB [Pena et al., 2007b] and IAMB [Tsamardinos
et al., 2003b] to control the FWER for the MB discovery task.
In all cases, a first requirement is that the independence tests
performed by the algorithms must be corrected for multiple
hypothesis testing in order to bound the FWER. However we
also show that such algorithms also require the infinite power
assumption, which implies that all tests on dependent vari-
ables correctly reject the null hypothesis of independence.

Infinite statistical power is a strong assumption which is
impossible to test and ensure in real-world scenarios. Mo-
tivated by this observation, we developed2 RAveL-PC and
RAveL-MB, two algorithms for the discovery of elements
in PC and MB, respectively, that control the FWER of their
outputs without making any assumption on statistical power.
RAveL-PC implements the definition of PC given in Sec-
tion 3.2 exploiting a function test indep(T,X,Z,δ)
which performs independence testing correcting for multi-
ple hypothesis testing. RAveL-MB instead works in three
steps. At first, it calls RAveL-PC to discover a subset P of
the elements in PC(T ), and then calls RAveL-PC on each
element of P to discover a subset Q of elements at distance
at most 2 from T . Finally, RAveL-MB tests the so called
spouse condition on each element in Q to discard false posi-
tives (i.e., elements at distance at most 2 that are not spouses).
Crucially for this step, we proved a formulation for testing
the spouse condition, equivalent to the one provided in Sec-
tion 3.2, that makes use only of independence tests and there-
fore is amenable to controlling the FWER.
RAveL-PC and RAveL-MB come with the following

guarantees on the FWER for the PC and MB discovery tasks,
respectively. (Proofs are in the full version.)

Theorem 1. RAveL-PC(T,V,δ) outputs a set of elements
in PC(T ) with FWER ≤ δ.

Theorem 2. RAveL-MB outputs a set of elements inMB(T )
with FWER ≤ δ.

4.2 Rademacher Averages for Independence
Testing

Both RAveL-PC and RAveL-MB rely on a function
test indep(X,Y ,Z,δ) which assesses the indepen-
dence between X,Y ∈ V conditioning on Z ⊆ V \ {X,Y }
while controlling the FWER of all testable hypotheses below
the user-defined threshold δ. As discussed in Section 3.3, a
standard approach to implement such function is to perform
each independence test applying the Bonferroni correction,
therefore with a corrected threshold δc = δ/N whereN is the

2Pseudocodes available at [Simionato and Vandin, 2023], and
code at https://github.com/VandinLab/RAveL.
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total number of hypotheses that could be tested. The Bonfer-
roni correction becomes stricter (i.e., it leads to a higher num-
ber of false negatives) the higher N is, which is problematic
in the local causal discovery scenario since N is exponential
on the size of V.

To mitigate this problem, we exploit Rademacher av-
erages to obtain data-dependent confidence intervals for
test indep(X,Y ,Z,δ). The key idea of our solution
is to write the test statistic rx,y as an empirical sample mean,
and to exploit the results presented in Section 3.4 to estimate
confidence intervals around rx,y that hold simultaneously for
all hypotheses with probability 1− δ. In this way, testing for
independence corresponds to check whether the confidence
interval contains 0, that is the expected value of the test statis-
tic under the null hypothesis of independence.

Let us assume the observations x of each variableX to fol-
low a distribution X with mean µX , and to be upper bounded
by a value maxX . Let us further assume the observations
to be centered around 0 and to be scaled such that they take
value in [−1, 1]. Under these assumptions, we can define the
statistic rx,y(si) on a sample si as

rx,y(si) = k
xiyi
k − 1

,

whose empirical sample mean rx,y =
∑k
i=1 rx,y(si) fol-

lows the same structure of the Pearson coefficient presented
in Section 3.3. By considering the family of functions F
of each independence test statistic (both conditional and un-
conditional) between X and Y , we can then compute a n-
MCERA (see Section 3.4) to obtain an upper bound B to the
supremum deviation. Finally, we can use the confidence in-
tervals [rx,y − B, rx,y + B] to perform independence testing.

5 Experimental Evaluation
We assessed the performances of our algorithms both on syn-
thetic and real-world data.

Synthetic data. We used synthetic data to evaluate RAveL
against state-of-the-art algorithms. We sampled data from a
Bayesian network with 30 variables, 15 of which were linked
in the same connected component with no cycles. We tested
multiple sample sizes and sampled 100 datasets for each sam-
ple size. We compared our algorithms and state-of-the-art
ones both in the standard version and in a modified one that
uses Bonferroni correction for multiple hypothesis testing.
For each test, we ran the algorithms on all the variables of the
network, and we counted a false positive for an experiment if
at least one of the calls returned a false discovery.

Figure 1 summarizes the estimated FWER for each sample
size, and shows that RAveL-PC and RAveL-MB consistently
control the FWER below the desired threshold (δ = 0.05).
Moreover, in our tests the GetPC variant that exploits Bon-
ferroni correction (see Figure 1(a)) did not return any false
positive either, but in [Simionato and Vandin, 2023] we show
that such configuration does not provide any guarantee on the
FWER of their results. Such asymmetry is evident in Fig-
ure 1(b), in which PCMB variant with Bonferroni correc-
tion failed to bound the FWER below δ despite the results
provided by GetPC did not contain any false discovery. No-
tably, RAveL-MB and its variant are the only algorithms with

Figure 1: Empirical FWER of various PC discovery (a) and MB
discovery (b) algorithms on synthetic data for different sample sizes.
FWER is the fraction of 100 trials in which at least one false positive
is reported. The dashed line represents the bound δ = 0.05 to the
FWER used in the experiments.

FWER guarantees for the MB discovery task. We finally an-
alyzed the percentage of false negatives (i.e., elements that
should have been returned in output but did not) for our al-
gorithms, that are the only viable solution when the number
of variables is high. Such analyses showed that the percent-
age of false negatives decreases for high sample sizes (25000
samples), but a simple modification of the test statistic (to be
described in the full version) lowers such data requirement to
just 100 samples.

Real-world data. We also run our algorithms on the
Boston housing dataset [Harrison Jr and Rubinfeld, 1978]
with the aim of understanding which of the variables describ-
ing Boston suburbs were related to the median price of homes
in that specific area. Due to the small number of observa-
tions and variables, we ran only the variants of RAveL-PC
and RAveL-MB with Bonferroni correction. Both algorithms
returned in output two variables, one measuring the income
of the suburb residents and a second related to the number
of rooms per house. Both discoveries are sound with prior
knowledge of the housing market, since rooms are a common
indicator for the price of a house, and considering two iden-
tical houses, the one in the wealthier neighborhood is usually
more expensive.
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