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Abstract
Digraph Representation Learning aims to learn rep-
resentations for directed homogeneous graphs (di-
graphs). Prior work is largely constrained or has
poor generalizability across tasks. Most Graph
Neural Networks exhibit poor performance on di-
graphs due to the neglect of modeling neighbor-
hoods and preserving asymmetry. In this paper,
we address these notable challenges by leverag-
ing hyperbolic collaborative learning from multi-
ordered partitioned neighborhoods and asymmetry-
preserving regularizers. Our resulting formalism,
Digraph Hyperbolic Networks (D-HYPR), is ver-
satile for multiple tasks including node classifica-
tion, link presence prediction, and link property
prediction. The efficacy of D-HYPR was metic-
ulously examined against 21 previous techniques,
using 8 real-world digraph datasets. D-HYPR sta-
tistically significantly outperforms the current state
of the art. We release our code at https://github.
com/hongluzhou/dhypr.

1 Introduction
Directionality is intrinsic to numerous real-world graphs [Ou
et al., 2016]. Digraph Representation Learning (DRL) aims
to learn representations for directed homogeneous graphs (di-
graphs) [Tong et al., 2020a; Zhang et al., 2021a]. Early DRL
techniques include factorization and random walk-based ap-
proaches [Ou et al., 2016; Sun et al., 2019; Zhou et al., 2017;
Khosla et al., 2019]. Yet, these methods face scalability is-
sues or sensitivity to noise. Graph Neural Networks (GNNs)
have seen recent success [Zhou et al., 2020], but they mainly
focus on undirected graphs. There are two notable challenges
that hinder their effectiveness on digraphs.

Challenge 1: Neighborhood Modeling. Node neigh-
borhoods in a graph can carry distinct semantic meanings.
Existing GNN techniques often simplify digraphs to undi-
rected graphs or consider only direct out-neighbors [Kipf and
Welling, 2016b; Veličković et al., 2017; Chami et al., 2019;
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Zhu et al., 2020], which can lead to a loss of original structure
and ultimately subpar results on digraph-specific tasks.

Challenge 2: Asymmetry Preservation. Learning objec-
tives based on symmetrical measures used by popular GNNs
fail to capture asymmetric connections in digraphs [Salha et
al., 2019]. Applications based on link prediction or graph
topology learning are particularly affected when models fail
to preserve digraph structural asymmetry.

Spectral-based DRL GNNs have sought to address the first
challenge but struggle when applying models to graphs with
different structures [Zhang et al., 2021a]. Solutions for the
second challenge, such as viewing edge directions as edge
features [Gong and Cheng, 2019] or parametrizing the node
pair likelihood function by a neural network [Shi et al., 2019],
neglect the first challenge. Moreover, prior DRL techniques
are often constrained to directed acyclic graphs [Thost and
Chen, 2021], are transductive [Sim et al., 2021], or lack
broad applicability and generalizability across tasks [Sim et
al., 2021; Tong et al., 2020b; Ma et al., 2019].

We propose Digraph HYPERbolic Networks (D-HYPR),
which use hyperbolic collaborative learning and asymmetry-
preserving regularizers to tackle these challenges. Our ap-
proach comprises: (1) Modeling node neighborhoods us-
ing collaborative learning from multi-ordered and partitioned
neighborhoods with larger receptive fields, (2) Using hyper-
bolic space to avoid distortion in neighborhood modeling, (3)
Preserving asymmetry with socio-psychology-inspired reg-
ularizers, and (4) Ensuring flexibility through a message-
passing-based GNN formalism for general digraphs.

Our contributions are three-fold: (1) D-HYPR that consid-
ers unique node neighborhoods and asymmetric relationships
in digraphs, (2) Benchmarking across 8 real-world digraphs
and 21 prior methods, revealing D-HYPR’s superiority, and
(3) Capability of generating meaningful low-dimensional em-
beddings, an efficiency boon for large-scale applications.

2 Preliminaries
Let G = (V , E) be a homogeneous graph with vertex set V
and edge set E ; e ∈ E is an ordered pair e = (i, j) between
vertices i and j. The adjacency matrix of G can be denoted as
A = {0, 1}|V|×|V|. G is a digraph when ∃(i, j), Ai,j ̸= Aj,i.
Nodes are described by a feature matrix X0,E ∈ R|V|×d, i.e.,
each node i ∈ V has a d-dimensional Euclidean feature x0,E

i .
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The superscript E indicates that the vector lies in a Euclidean
space, while H denotes a hyperbolic vector. 0 denotes the
input layer. The goal of DRL is to learn a mapping

f :

(
V, E ,

(
x0,E
i

)
i∈V

)
→ Z ∈ R|V|×d′ (1)

that maps nodes to low-dimensional (d′ ≪ |V|) vectors.
The Poincaré ball model [Ganea et al., 2018] is defined by

the n-dimensional manifold Dn
c = {x ∈ Rn : c ∥x∥ < 1}

equipped with the Riemannian metric: gcx = λ2
xg

E , where
λx := 2

1−c∥x∥2 , gE = In is the Euclidean metric tensor, and
c > 0 (we refer to −c as the curvature). Dn

c is the open ball of
radius 1/

√
c. The connections between hyperbolic space and

tangent space are established by the exponential map expcx :
TxDn

c → Dn
c and logarithmic map logcx : Dn

c → TxDn
c :

expc
x(v) = x⊕c

(
tanh

(√
c
λc
x ∥v∥
2

)
v√
c ∥v∥

)
(2)

logcx(y) =
2√
cλc

x
tanh−1 (√c ∥−x⊕c y∥

) −x⊕c y

∥−x⊕c y∥
(3)

where x,y ∈ Dn
c , v ∈ TxDn

c , and ⊕c denotes Möbius addi-
tion, and

x⊕c y :=

(
1 + 2c⟨x,y⟩+ c ∥y∥2

)
x+

(
1− c ∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2 ∥x∥2 ∥y∥2
. (4)

The Möbius scalar multiplication (Eq. 5) and Möbius matrix
multiplication of x ∈ Dn

c \{0} (Eq. 6) are

r ⊗c x :=
1√
c
tanh

(
r tanh−1(

√
c ∥x∥)

) x

∥x∥ (5)

M ⊗c x := (1/
√
c) tanh

(
∥Mx∥
∥x∥

tanh−1(
√
c ∥x∥)

)
Mx

∥Mx∥
(6)

where r ∈ R and M ∈ Rm×n. The induced distance function
on (Dn

c , g
c) is given by

dDn
c
(x,y) = (2/

√
c) tanh−1 (√c ∥−x⊕c y∥

)
(7)

3 Methodology
Hyperbolic Embedding Learning. D-HYPR utilizes hy-
perbolic GNNs over Euclidean counterparts as the backbone
for DRL. Given G and x0,E

i , we obtain x0,H
i by applying

expc
0

0 (·), where c0 is learned in training. Hyperbolic message
passing (Eqs. 8 to 10) is then performed by multiple layers,
forming the Hyperbolic Graph Embedding Layers. The layer
is indexed by ℓ, ranging from 1 to a pre-defined integer l.
(1) Hyperbolic Feature Transformation is performed by

mℓ,H
i = W ℓ ⊗cℓ−1 xℓ−1,H

i ⊕cℓ−1 b (8)

where W ℓ ∈ RF ℓ×F ℓ−1

is the weight matrix, and b ∈ DF ℓ

cℓ−1

denotes the bias (both are learned).
(2) Hyperbolic Neighbor Aggregation results in hℓ,H

i ,

hℓ,H
i = expcℓ−1

0

 ∑
j∈{i}∪N (i)

eij log
cℓ−1

0

(
mℓ,H

j

) (9)

where N (i) = {j : (i, j) ∈ E} denotes the set of neighbors
of i ∈ V . We apply out-degree normalization of the adjacency
matrix to obtain the aggregation weights eij .
(3) Non-Linear Activation with Trainable Curvatures. The
output hyperbolic representation of node i in layer ℓ is set as

xℓ,H
i = expcℓ

0

(
σ
(
logc

ℓ−1

0

(
hℓ,H
i

)))
(10)

where σ(·) represents the ReLU non-linearity function.

Neighborhood Collaborative Learning. D-HYPR consid-
ers four primary neighborhood types. To achieve this, four
types of k-order proximity matrix are defined:
(1) diffusion in Ak

din
,

A
k
din

(i, j) = 1

∑
p∈V

A
k−1
din

(i, p) · A1
din

(p, j)

 (11)

where A1
din

= A⊺, · is the inner product and 1 is the indicator
function. Ak

din
(i, j) = 1 if there is a directed path from node

j to node i of length exactly k.
(2) diffusion out Ak

dout
,

A
k
dout

(i, j) = 1

∑
p∈V

A
k−1
dout

(i, p) · A1
dout

(p, j)

 (12)

where A1
dout

= A. Ak
dout

(i, j) = 1 if there is a directed path
from node i to node j of length exactly k.
(3) common in Ak

cin ,

A
k
cin

(i, j) = 1

∑
p∈V

A
k
din

(i, p) · Ak
dout

(p, j)

 (13)

where i ̸= j ̸= p. Ak
cin(i, j) = 1 if node i and node j have a

common in-neighbor k hops away.
(4) common out Ak

cout
,

A
k
cout

(i, j) = 1

∑
p∈V

A
k
dout

(i, p) · Ak
din

(p, j)

 (14)

where i ̸= j ̸= p. Ak
cout

(i, j) = 1 if node i and node j have a
common out-neighbor k hops away.

We compute these matrices for k = 1 to K (K is a hyper-
parameter) which replace the adjacency matrix as input to
Hyperbolic Graph Embedding Layers that output 4K hyper-
bolic vectors. Subsequently, the hyperbolic average of the 4K
vectors yields zfuse

i . We then apply Eq. (9) with the learned
curvature −cl and equal aggregation weights. The resulting
output, zl,Hi , is the final hyperbolic embedding of node i.

Asymmetry-Preserving Regularizers. We adopt the hy-
perbolic Fermi-Dirac decoder [Krioukov et al., 2010] to ac-
count for homophily [McPherson et al., 2001]. The decoder
defines the likelihood of a node pair (i, j) as

p(i, j)f =
1

e

d
Dd′
cl

(
z
l,H
i

,z
l,H
j

)2
−r

/t

+ 1

, (15)

where r=2 and t=1 (default), and dDd′
cl
(·, ·) is defined in Eq. 7.

We then preserve the individual asymmetric node connec-
tivity to account for preferential attachment [Mitzenmacher,
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Figure 1: Neighborhood analyses. The common in/out neighborhood consists of more neighbors than diffusion in/out neighbor-
hood that traditional methods typically use. The 8 digraph datasets demonstrate a clear scale-free characteristic for most neighborhoods.

Figure 2: Accuracy on the Semi-supervised Node Classification task.
The embedding dimensionality is 32.

2004] by learning a mass for each node. This design [Salha
et al., 2019] is derived from Newton’s theory of universal
gravitation. To incorporate this design into D-HYPR based
in hyperbolic space instead of Euclidean, we first perform
zl,Ei = logc

l

0

(
zl,Hi

)
, and then employ a Euclidean linear

layer to learn mi ∈ R (mass of node i). The likelihood of
node pair (i, j) is computed by

p(i, j)g = γ

(
mj − λ log

(
d

Dd′
cl

(z
l,H
i , z

l,H
j )

2

))
, (16)

where γ(·) denotes the sigmoid function, and λ ∈ R is a
hyper-parameter. p(i, j)g ̸= p(j, i)g . Eqs. (16) and (15)
both serve as self-supervised regularizers by minimizing the
binary cross-entropy loss with negative sampling to esti-
mate the likelihood of each node pair. However, Eq. (16)
is employed one layer after where Eq. (15) is used. Thus,
even though dDd′

cl
(·, ·) also appears in Eq. (16), we find that

4-Dim

GCN [Kipf and Welling, 2016a] 78.96±0.4
GAT [Veličković et al., 2017] 79.38±0.2
HGCN [Chami et al., 2019] 78.72± 0.0
D-HYPR (ours) ∗79.83±0.0

8-Dim

GCN [Kipf and Welling, 2016a] 78.76± 0.1
GAT [Veličković et al., 2017] 79.41±0.2
HGCN [Chami et al., 2019] 79.23±0.2
D-HYPR (ours) ∗79.47±0.3

32-Dim

GCN [Kipf and Welling, 2016a] 79.39± 0.1
GAT [Veličković et al., 2017] 79.66± 0.1
HGCN [Chami et al., 2019] 79.21± 0.2
D-HYPR (ours) ∗79.73 ± 0.2

Table 1: Results of Link Sign Prediction on the Wiki dataset.

Eq. (15) provides auxiliary guidance for the model to better
construct the final hyperbolic embedding space.

4 Experiments
In all tables, the best score is bolded, the second best is un-
derlined, and the third best is in italic. Relative gains are
computed as (BEST − SECOND)/SECOND. ∗ indicates sta-
tistically superior performance of the best to the second best
at a significance level of 0.001 using a standard paired t-test.
Values after ± are standard deviations.

Neighborhood Analyses. We provide neighborhood analy-
ses of datasets in Fig. 1, where pie charts show the ratio of the
4 types of neighborhoods in each dataset (K=1). Unlike the
diffusion in/out neighborhood that traditional GNNs
typically use, common in/out neighborhood consists of
more neighbors, which suggests that neighborhood collabora-
tive learning benefits from encoding additional context. For
each neighborhood type, we also plot a histogram showing
the distribution of the number of neighbors a node has over
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Model (Dataset: Cora) 4-Dim 8-Dim
AUC AP AUC AP

GCN [Kipf and Welling, 2016a] 65.92 (61.00) 65.92 (59.97) 70.89 (65.67) 71.26 (65.28)
VGAE [Kipf and Welling, 2016b] 63.86 (56.90) 63.86 (55.39) 66.60 (60.33) 66.60 (58.75)
GAT [Veličković et al., 2017] 68.18 (64.73) 68.18 64.31) 72.70 (68.70) 73.93 (69.08)
Gravity GCN † [Salha et al., 2019] 70.37 (65.80) 70.37 (64.65) 75.29 (71.85) 77.17 (72.50)
Gravity VGAE † [Salha et al., 2019] 66.74 (61.79) 66.74 (60.61) 71.04 (65.45) 71.04 (64.15)
DGCN † [Tong et al., 2020b] 75.33 (71.88) 71.95 (68.58) 79.01 (75.30) 79.01 (74.28)
DiGCN † [Tong et al., 2020a] 70.61 (65.81) 67.11 (61.57) 74.63 (70.65) 74.88 (69.86)
MagNet † [Zhang et al., 2021a] 77.45 (55.93) 79.32 (56.84) 77.46 (66.82) 76.59 (63.96)
HAT § [Zhang et al., 2021b] 76.25 (72.84) 74.38 (70.27) 82.58 (77.82) 82.05 (77.39)
HGCN § [Chami et al., 2019] 80.02 (67.37) 82.16 (66.66) 85.05 (83.07) 88.04 (84.63)

D-HYPR (ours) †§ 86.08 (∗83.99) 88.74 (∗85.33) 88.88 (∗86.31) 91.13 (∗87.76)
Relative Gains (%) 7.57 (15.31) 8.01 (21.43) 4.5 (3.9) 3.51 (3.7)

Table 2: Results of Link Prediction on Digraphs with low-dimensional node embeddings. † denotes the method was designed for homoge-
neous digraphs (i.e., DRL), and § denotes the use of hyperbolic space. Results on each dataset of each method are from 100 experiments (10
unique train/test splits and 10 runs using different random seeds per split). We list the best and average results (average in brackets).

Model (Metric: AUC) Air Cora Blog Survey DBLP
MLP 81.29 (76.52) 84.47 (81.67) 93.31 (92.48) 91.21 (89.98) 51.22 (49.98)
NERD † [Khosla et al., 2019] 60.62 (56.39) 65.62 (62.02) 95.03 (94.00) 77.12 (69.30) 95.78 (95.37)
ATP † [Sun et al., 2019] 68.99 (66.40) 88.47 (86.44) 85.05 (83.46) 73.53 (71.47) 60.43 (59.21)
APP † [Zhou et al., 2017] 85.08 (82.72) 86.65 (85.50) 92.33 (91.65) 91.16 (90.34) 95.58 (95.33)
GCN [Kipf and Welling, 2016a] 76.71 (72.27) 80.77 (78.73) 91.87 (90.18) 89.29 (87.98) 92.98 (92.34)
VGAE [Kipf and Welling, 2016b] 77.79 (73.75) 80.80 (79.24) 92.25 (91.39) 90.07 (88.78) 93.36 (92.64)
GAT [Veličković et al., 2017] 84.21 (80.24) 85.40 (82.58) 92.69 (89.95) 92.01 (91.05 ) 95.94 (95.62)
Gravity GCN † [Salha et al., 2019] 85.16 (82.22) 85.62 (83.87) 95.11 (94.46) 91.63 (90.86) 96.89 (96.78)
Gravity VGAE † [Salha et al., 2019] 83.98 (80.06) 87.17 (84.46) 96.15 (95.59) 91.64 (90.96) 95.98 (95.57)
DGCN † [Tong et al., 2020b] 77.83 (73.68) 83.57 (81.34) 87.74 (86.74) 90.47 (89.49) 92.26 (91.83)
DiGCN† [Tong et al., 2020a] 75.35 (71.27) 81.80 (78.90) 91.98 (90.50) 89.85 (88.17) 89.99 (89.72)
MagNet † [Zhang et al., 2021a] 79.32 (75.58) 82.77 (71.90) 91.83 (90.81) 86.65 (84.81) 81.89 (80.57)
HNN § [Ganea et al., 2018] 88.42 (85.79) 88.75 (86.33) 95.80 (95.39) 92.07 (91.39) 97.43 (97.14)
HGCN § [Chami et al., 2019] 88.26 (86.12) 89.24 (87.68) 95.64 (95.23) 92.15 (91.50) 97.54 (97.33)

D-HYPR (ours) †§ 89.07 (86.33) 89.50 (∗88.22) 96.19 (95.62) 92.56 (∗91.96) 97.66 (∗97.38)

Relative Gains (%) 0.74 (0.24) 0.29 (0.62) 0.04 (0.03) 0.44 (0.50) 0.12 (0.05)

Table 3: Results of Link Prediction with 32-dimensional node embeddings on more digraphs. Every result is from 100 experiments.

the entire graph. We observe asymptotical power-law node-
degree distributions (i.e., scale-free) for most neighborhoods.
Link Prediction (LP). We list the results in Table 2 and
Table 3. One advantage of hyperbolic digraph embedding is
low data distortion even with a low-dimensional embedding
space. The superior performance of D-HYPR is evident—
the highest relative gain of D-HYPR is 21.43% on AP over
the Cora dataset. As the dimensionality increases, the gap
from D-HYPR to the other methods decreases, but D-HYPR
remains the best-performing method.
Semi-supervised Node Classification (NC). We follow
prior work [Grover and Leskovec, 2016] in reporting the re-
sults when the number of nodes labeled for training is varied
between 1% and 10%. According to Fig. 2, D-HYPR consis-
tently outperforms the baselines, and tends to perform well at
fairly low label rates. D-HYPR statistical significantly out-
performs the state-of-the-art (SOTA) methods.

Link Sign Prediction (SP). Table 1 reports the results
which show D-HYPR is the most effective GNN model. Sim-
ilar to LP and NC tasks, the effectiveness of D-HYPR is the
most striking using a 4 dimensional embedding space.

Please refer to [Zhou et al., 2022] for additional details re-
garding the datasets and experimental setup, as well as addi-
tional analyses and comparisons with more SOTA techniques.

5 Conclusion
We propose D-HYPR: the Digraph HYPERbolic Network,
as a novel GNN-based formalism for Digraph Representa-
tion Learning (DRL) by addressing Neighborhood Model-
ing and Asymmetry Preservation. Through rigorous evalua-
tion, we empirically demonstrate the superiority of D-HYPR.
D-HYPR retains effectiveness given a low budget of embed-
ding dimensionality or labeled training samples, which is de-
sirable for real-world applications.
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