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Abstract

Digraph Representation Learning aims to learn rep-
resentations for directed homogeneous graphs (di-
graphs). Prior work is largely constrained or has
poor generalizability across tasks. Most Graph
Neural Networks exhibit poor performance on di-
graphs due to the neglect of modeling neighbor-
hoods and preserving asymmetry. In this paper,
we address these notable challenges by leverag-
ing hyperbolic collaborative learning from multi-
ordered partitioned neighborhoods and asymmetry-
preserving regularizers. Our resulting formalism,
Digraph Hyperbolic Networks (D-HYPR), is ver-
satile for multiple tasks including node classifica-
tion, link presence prediction, and link property
prediction. The efficacy of D-HYPR was metic-
ulously examined against 21 previous techniques,
using 8 real-world digraph datasets. D-HYPR sta-
tistically significantly outperforms the current state
of the art. We release our code at https://github.
com/hongluzhou/dhypr.

1 Introduction

Directionality is intrinsic to numerous real-world graphs [Ou
et al., 2016]. Digraph Representation Learning (DRL) aims
to learn representations for directed homogeneous graphs (di-
graphs) [Tong et al., 2020a; Zhang et al., 2021a]. Early DRL
techniques include factorization and random walk-based ap-
proaches [Ou et al., 2016; Sun et al., 2019; Zhou et al., 2017,
Khosla et al., 2019]. Yet, these methods face scalability is-
sues or sensitivity to noise. Graph Neural Networks (GNN5s)
have seen recent success [Zhou et al., 2020], but they mainly
focus on undirected graphs. There are two notable challenges
that hinder their effectiveness on digraphs.

Challenge 1: Neighborhood Modeling. Node neigh-
borhoods in a graph can carry distinct semantic meanings.
Existing GNN techniques often simplify digraphs to undi-
rected graphs or consider only direct out-neighbors [Kipf and
Welling, 2016b; Velickovié et al., 2017; Chami et al., 2019;
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Zhu et al., 2020], which can lead to a loss of original structure
and ultimately subpar results on digraph-specific tasks.

Challenge 2: Asymmetry Preservation. Learning objec-
tives based on symmetrical measures used by popular GNNs
fail to capture asymmetric connections in digraphs [Salha et
al., 2019]. Applications based on link prediction or graph
topology learning are particularly affected when models fail
to preserve digraph structural asymmetry.

Spectral-based DRL GNNs have sought to address the first
challenge but struggle when applying models to graphs with
different structures [Zhang er al., 2021a]. Solutions for the
second challenge, such as viewing edge directions as edge
features [Gong and Cheng, 2019] or parametrizing the node
pair likelihood function by a neural network [Shi ez al., 2019],
neglect the first challenge. Moreover, prior DRL techniques
are often constrained to directed acyclic graphs [Thost and
Chen, 2021], are transductive [Sim ef al., 2021], or lack
broad applicability and generalizability across tasks [Sim et
al., 2021; Tong et al., 2020b; Ma et al., 2019].

We propose Digraph HYPERbDolic Networks (D-HYPR),
which use hyperbolic collaborative learning and asymmetry-
preserving regularizers to tackle these challenges. Our ap-
proach comprises: (1) Modeling node neighborhoods us-
ing collaborative learning from multi-ordered and partitioned
neighborhoods with larger receptive fields, (2) Using hyper-
bolic space to avoid distortion in neighborhood modeling, (3)
Preserving asymmetry with socio-psychology-inspired reg-
ularizers, and (4) Ensuring flexibility through a message-
passing-based GNN formalism for general digraphs.

Our contributions are three-fold: (1) D-HYPR that consid-
ers unique node neighborhoods and asymmetric relationships
in digraphs, (2) Benchmarking across 8 real-world digraphs
and 21 prior methods, revealing D-HYPR’s superiority, and
(3) Capability of generating meaningful low-dimensional em-
beddings, an efficiency boon for large-scale applications.

2 Preliminaries

Let G = (V, &) be a homogeneous graph with vertex set V
and edge set £; e € & is an ordered pair e = (3, j) between
vertices ¢ and j. The adjacency matrix of G can be denoted as
A = {0,1}VI¥IVI_ G is a digraph when 3(3, j), A; j # Aj..
Nodes are described by a feature matrix X0-E ¢ RIVI xd je.,
eachnode i € V has a d-dimensional Euclidean feature x*~ .

()
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The superscript © indicates that the vector lies in a Euclidean
space, while 7 denotes a hyperbolic vector. 0 denotes the
input layer. The goal of DRL is to learn a mapping

e (v,s, (XE’E)A V) - Z e RVIX? )
1€

that maps nodes to low-dimensional (d’ < |V|) vectors.

The Poincaré ball model [Ganea et al., 2018] is defined by
the n-dimensional manifold D? = {z € R" : ¢|jx|| < 1}
equipped with the Riemannian metric: g¢ = A2g%, where
Ax 1= ij, gF =1, is the Euclidean metric tensor, and
¢ > 0 (we refer to —c as the curvature). D7 is the open ball of
radius 1/+/c. The connections between hyperbolic space and
tangent space are established by the exponential map exps, :

TxD" — D and logarithmic map log, : D7 — T, D"
c A vl v
expy (V) = x Be (tanh (ﬁ )
) 2 ) VeIV
c 2 —1 —X 69Cy
log,, = tanh cll—x Pe — (3
2w (¥) NG (Vel yll) x 0.yl
where x,y € D?, v € TxDZ, and @, denotes Mobius addi-
tion, and
1+ 2¢(x,y) + Hx+(1- ?
cony o (L 2b0y) belyl)x s (L-clxl)y

e 1|1 Iy I*
The Mobius scalar multiplication (Eq. 5) and Mobius matrix
multiplication of x € DJ\{0} (Eq. 6) are

L+ 2e(x,y) +

r®cx::%tanh(rtanh (\foH)) Tl Q)
X = c) tan [BES H
M sex = (1/vaanh (L e ) S ©

where » € R and M € R™*". The induced distance function
n (D7, g¢) is given by
(2/+/c) tanh ™"

dop (x,y) = (Vell-x@cyl) )

3 Methodology

Hyperbolic Embedding Learning. D-HYPR utilizes hy-
perbolic GNNs over Euclidean counterparts as the backbone
for DRL Given g and xO B we obtain x by applying
expg ( ), where c” is learned in training. Hyperbolic message
passing (Eqgs. 8 to 10) is then performed by multiple layers,
forming the Hyperbolic Graph Embedding Layers. The layer
is indexed by ¢, ranging from 1 to a pre-defined integer [.

(1) Hyperbolic Feature Transformation is performed by

m”f—W @p-1 X "H @i b 8)

where W¢ € RF XF" is the weight matrix, and b € Ifo, .

denotes the bias (both are learned).
(2) Hyperbolic Neighbor Aggregation results in hf’H,

RO —expy | >) eijlogy (mij) )
JE{I}UN(4)
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where N (i) = {j : (¢,j) € £} denotes the set of neighbors
of i € V. We apply out-degree normalization of the adjacency
matrix to obtain the aggregation weights e;;.

(3) Non-Linear Activation with Trainable Curvatures. The
output hyperbolic representation of node ¢ in layer £ is set as

xp = expge (U (Ingf—l (hf’H))) 1o

where o (-) represents the ReLU non-linearity function.

Neighborhood Collaborative Learning. D-HYPR consid-
ers four primary neighborhood types. To achieve this, four
types of k-order proximity matrix are defined:
(I)diffusion in Akm,

Al () =1 >0 AL ,p) - Ay, () (an
PEV
where A<11m = AT, - is the inner product and 1 is the indicator

function. A’;m (i,4) = 1if there is a directed path from node
7 to node i of length exactly k.
(2) diffusion out A

ut’

Al (g =1 (Z At (i) - Adm@,j)) (12)
PEV

where A} = A. A% (i,j) = Lif there is a directed path

from node ¢ to node j of length exactly k.

(3) common in A’gm,

AL (i,5) =1 (Z Al (ip) - Agm(p,j)> (13)

PEV
where ¢ 7é j #p. Ak (i, j) = 1if node i and node j have a
common in- nelghbor k hops away.
(4) common out AF

Cout’

A’iomlﬂ)ﬂ(ZvAdW ip) A'Jm(P:J’)) (4
PE

where i # j # p. A% (i, j) = 1if node i and node j have a
common out-neighbor £ hops away.

We compute these matrices for k = 1 to K (K is a hyper-
parameter) which replace the adjacency matrix as input to
Hyperbolic Graph Embedding Layers that output 4K hyper-
bolic vectors. Subsequently, the hyperbolic average of the 4 K
vectors yields z"*°. We then apply Eq. (9) with the learned
curvature —c! and equal aggregation weights. The resulting

output, zi’H , is the final hyperbolic embedding of node i.
Asymmetry-Preserving Regularizers. We adopt the hy-
perbolic Fermi-Dirac decoder [Krioukov et al., 2010] to ac-

count for homophily [McPherson et al., 2001]. The decoder
defines the likelihood of a node pair (3, j) as

1

p(i,7)s = . )
<dIDd/ (zli’H,z;’H) 7':”) /t
e +1

ol

s)

where r=2 and ¢=1 (default), and dn)d’ (+,-) is defined in Eq. 7.

We then preserve the individual asymmetrlc node connec-
tivity to account for preferential attachment [Mitzenmacher,
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Figure 1: Neighborhood analyses. The common in/out neighborhood consists of more neighbors than diffusion in/out neighbor-
hood that traditional methods typically use. The 8 digraph datasets demonstrate a clear scale-free characteristic for most neighborhoods.
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GCN [Kipf and Welling, 2016a] 78.96+0.4
GAT [Velickovi€ et al., 2017] 79.38+0.2
4-Dim HGCN [Chami et al., 2019] 78.72+ 0.0
D—HYPR (ours) *79.831£0.0
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GAT [Veli¢kovi¢ et al., 2017] 79.414+0.2
8-Dim HGCN [Chami et al., 2019] 79.23+0.2
D-HYPR (ours) *79.47+0.3
GCN [Kipf and Welling, 2016a] 79.39+ 0.1
GAT [Velickovi¢ et al., 2017] 79.66+ 0.1
32-Dim  HGCN [Chami et al., 2019] 79.21 +0.2
D—HYPR (ours) 7973 £0.2

Figure 2: Accuracy on the Semi-supervised Node Classification task.
The embedding dimensionality is 32.

2004] by learning a mass for each node. This design [Salha
et al., 2019] is derived from Newton’s theory of universal
gravitation. To incorporate this design into D-HYPR based
in hyperbolic space instead of Euclidean, we first perform
zi’E = logf,l (zé’H), and then employ a Euclidean linear
layer to learn m; € R (mass of node 7). The likelihood of

node pair (4, j) is computed by

p(i,5)g = <mj — Alog (dDdl’ (ZE’H’Z;’H)2>) ,

where () denotes the sigmoid function, and A € R is a
hyper-parameter. p(i,j), # p(j,i)g. Eqs. (16) and (15)
both serve as self-supervised regularizers by minimizing the
binary cross-entropy loss with negative sampling to esti-
mate the likelihood of each node pair. However, Eq. (16)
is employed one layer after where Eq. (15) is used. Thus,
even though dDer (+,-) also appears in Eq. (16), we find that

16)
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Table 1: Results of Link Sign Prediction on the Wiki dataset.

Eq. (15) provides auxiliary guidance for the model to better
construct the final hyperbolic embedding space.

4 Experiments

In all tables, the best score is bolded, the second best is un-
derlined, and the third best is in italic. Relative gains are

computed as (BEST — SECOND)/SECOND. * indicates sta-

tistically superior performance of the best to the second best
at a significance level of 0.001 using a standard paired t-test.
Values after + are standard deviations.

Neighborhood Analyses. We provide neighborhood analy-
ses of datasets in Fig. 1, where pie charts show the ratio of the
4 types of neighborhoods in each dataset (/{=1). Unlike the
diffusion in/out neighborhood that traditional GNNs
typically use, common in/out neighborhood consists of
more neighbors, which suggests that neighborhood collabora-
tive learning benefits from encoding additional context. For
each neighborhood type, we also plot a histogram showing
the distribution of the number of neighbors a node has over
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Model (Dataset: Cora) AUC

4-Dim

AP

8-Dim

AUC

AP

GCN [Kipf and Welling, 2016al
VGAE [Kipf and Welling, 2016b]
GAT [Veli¢kovié et al., 2017]
Gravity GCN ' [Salha et al., 2019]
Gravity VGAE ' [Salha et al., 2019]
DGCN 7 [Tong et al., 2020b]
DiGCN " [Tong et al., 2020a]
MagNet * [Zhang et al., 2021a]
HAT ¥ [Zhang et al., 2021b]

65.92 (61.00)
63.86 (56.90)
68.18 (64.73)
70.37 (65.80)
66.74 (61.79)
75.33 (71.88)
70.61 (65.81)
77.45 (55.93)
76.25 (72.84)

65.92 (59.97)
63.86 (55.39)
68.18 64.31)
70.37 (64.65)
66.74 (60.61)
71.95 (68.58)
67.11 (61.57)
79.32 (56.84)
74.38 (70.27)

70.89 (65.67)
66.60 (60.33)
72.70 (68.70)
75.29 (71.85)
71.04 (65.45)
79.01 (75.30)
74.63 (70.65)
77.46 (66.82)
82.58 (77.82)

71.26 (65.28)
66.60 (58.75)
73.93 (69.08)
77.17 (72.50)
71.04 (64.15)
79.01 (74.28)
74.88 (69.86)
76.59 (63.96)
82.05(77.39)

HGCN ¥ [Chami e al., 2019] 80.02 (67.37)  82.16(66.66)  85.05(83.07)  88.04 (84.63)
D-HYPR (ours) ' 86.08 (*83.99) 88.74 (*85.33) 88.88 (*86.31) 91.13 (*87.76)
Relative Gains (%) 7.57 (15.31) 8.01 (21.43) 4.5(3.9) 3.51(3.7)

Table 2: Results of Link Prediction on Digraphs with low-dimensional node embeddings. ¥ denotes the method was designed for homoge-
neous digraphs (i.e., DRL), and ¥ denotes the use of hyperbolic space. Results on each dataset of each method are from 100 experiments (10

unique train/test splits and 10 runs using different random seeds per split). We list the best and average results (average in brackets).

Model (Metric: AUC)

Air

Cora

Blog

Survey

DBLP

MLP
NERD ' [Khosla et al., 2019]

ATP " [Sun et al., 2019]

APP  [Zhou er al., 2017]

GCN [Kipf and Welling, 2016a]
VGAE [Kipf and Welling, 2016b]
GAT [Veligkovié et al., 2017]
Gravity GCN ' [Salha et al., 2019]
Gravity VGAE 7 [Salha et al., 2019]
DGCN T [Tong et al., 2020b]
DiGCN' [Tong et al., 2020a]
MagNet * [Zhang et al., 2021a]
HNN * [Ganea et al., 2018]

HGCN ¥ [Chami et al., 2019]

81.29 (76.52)
60.62 (56.39)
68.99 (66.40)
85.08 (82.72)
76.71 (72.27)
77.79 (73.75)
84.21 (80.24)
85.16 (82.22)
83.98 (80.06)
77.83 (73.68)
75.35 (71.27)
79.32 (75.58)
88.42 (85.79)
88.26 (86.12)

84.47 (81.67)
65.62 (62.02)
88.47 (86.44)
86.65 (85.50)
80.77 (78.73)
80.80 (79.24)
85.40 (82.58)
85.62 (83.87)
87.17 (84.46)
83.57 (81.34)
81.80 (78.90)
82.77 (71.90)
88.75 (86.33)
89.24 (87.68)

93.31 (92.48)
95.03 (94.00)
85.05 (83.46)
92.33 (91.65)
91.87 (90.18)
92.25 (91.39)
92.69 (89.95)
95.11 (94.46)
96.15 (95.59)
87.74 (86.74)
91.98 (90.50)
91.83 (90.81)
95.80 (95.39)
95.64 (95.23)

91.21 (89.98)
77.12 (69.30)
73.53 (71.47)
91.16 (90.34)
89.29 (87.98)
90.07 (88.78)
92.01 (91.05)
91.63 (90.86)
91.64 (90.96)
90.47 (89.49)
89.85 (88.17)
86.65 (84.81)
92.07 (91.39)
92.15 (91.50)

51.22 (49.98)
95.78 (95.37)
60.43 (59.21)
95.58 (95.33)
92.98 (92.34)
93.36 (92.64)
95.94 (95.62)
96.89 (96.78)
95.98 (95.57)
92.26 (91.83)
89.99 (89.72)
81.89 (80.57)
97.43 (97.14)
97.54 (97.33)

D-HYPR (ours) ®

89.07 (86.33)

89.50 (*88.22)

96.19 (95.62)

92.56 (*91.96)

97.66 (*97.38)

Relative Gains (%)

0.74 (0.24)

0.29 (0.62)

0.04 (0.03)

0.44 (0.50)

0.12 (0.05)

Table 3: Results of Link Prediction with 32-dimensional node embeddings on more digraphs. Every result is from 100 experiments.

the entire graph. We observe asymptotical power-law node-
degree distributions (i.e., scale-free) for most neighborhoods.

Link Prediction (LP). We list the results in Table 2 and
Table 3. One advantage of hyperbolic digraph embedding is
low data distortion even with a low-dimensional embedding
space. The superior performance of D-HYPR is evident—
the highest relative gain of D-HYPR is 21.43% on AP over
the Cora dataset. As the dimensionality increases, the gap
from D-HYPR to the other methods decreases, but D-HYPR
remains the best-performing method.

Semi-supervised Node Classification (NC). We follow
prior work [Grover and Leskovec, 2016] in reporting the re-
sults when the number of nodes labeled for training is varied
between 1% and 10%. According to Fig. 2, D-HYPR consis-
tently outperforms the baselines, and tends to perform well at
fairly low label rates. D—HYPR statistical significantly out-
performs the state-of-the-art (SOTA) methods.
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Link Sign Prediction (SP). Table 1 reports the results
which show D-HYPR is the most effective GNN model. Sim-
ilar to LP and NC tasks, the effectiveness of D-HYPR is the
most striking using a 4 dimensional embedding space.
Please refer to [Zhou et al., 2022] for additional details re-
garding the datasets and experimental setup, as well as addi-
tional analyses and comparisons with more SOTA techniques.

5 Conclusion

We propose D-HYPR: the Digraph HYPERDbolic Network,
as a novel GNN-based formalism for Digraph Representa-
tion Learning (DRL) by addressing Neighborhood Model-
ing and Asymmetry Preservation. Through rigorous evalua-
tion, we empirically demonstrate the superiority of D-HYPR.
D-HYPR retains effectiveness given a low budget of embed-
ding dimensionality or labeled training samples, which is de-
sirable for real-world applications.
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