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Abstract
Dataset distillation is attracting more attention in
machine learning as training sets continue to grow
and the cost of training state-of-the-art models be-
comes increasingly high. By synthesizing datasets
with high information density, dataset distillation
offers a range of potential applications, includ-
ing support for continual learning, neural architec-
ture search, and privacy protection. Despite re-
cent advances, we lack a holistic understanding
of the approaches and applications. Our survey
aims to bridge this gap by first proposing a taxon-
omy of dataset distillation, characterizing existing
approaches, and then systematically reviewing the
data modalities, and related applications. In addi-
tion, we summarize the challenges and discuss fu-
ture directions for this field of research.

1 Introduction
High-quality and large-scale datasets are crucial for the suc-
cess of deep learning, not only enabling the development of
end-to-end learning systems [Schmidhuber, 2015; Bahdanau
et al., 2015], but also serving as benchmarks to evaluate
different machine learning architectures [Deng et al., 2009;
Koehn, 2005]. However, the explosion of deep learning
dataset sizes has posed considerable challenges concerning
processing, storage, and transfer. Training neural networks
often require thousands of iterations on the entire dataset,
which consumes significant computational resources and
power. Tasks such as hyperparameter optimization [Maclau-
rin et al., 2015] and neural architecture search (NAS) [Such et
al., 2020] are even more resource-intensive. One promising
solution is to use smaller datasets with high information den-
sity to reduce resource consumption while preserving model
performance.

Research in the area of curriculum learning [Graves et al.,
2017], active learning [Konyushkova et al., 2017], and core-
set selection [Sener and Savarese, 2017] has shown that it
is possible to sample a subset of the original data to train

*Corresponding author: zongxiong.chen@fokus.fraunhofer.de

neural networks, resulting in models with competitive perfor-
mance. This also implies that we can train high-performance
models with less effort while downstream tasks like contin-
ual learning (CL) [Castro et al., 2018; Prabhu et al., 2020],
neural architecture search (NAS) will also benefit. Neverthe-
less, creating an algorithm-agnostic, efficient, and unbiased
small dataset to replace the original is still challenging. For
instance, coreset selection is typically an NP-hard problem,
making it computationally intractable and difficult to apply
to large datasets.

An alternative approach to coreset is dataset distillation,
which aims to distill the original data onto a smaller syn-
thetic dataset [Wang et al., 2018]. Dataset distillation tech-
niques have continued to evolve, with various methods such
as gradient matching [Zhao et al., 2021], trajectory match-
ing [Cazenavette et al., 2022], and kernel ridge regres-
sion [Nguyen et al., 2020] being proposed to optimize the
distilled data, resulting in improved distillation performance
in terms of both the accuracy of the trained model on the test
set and the generalization capability across different network
architectures. However, there remain challenges regarding
optimization stability and computational efficiency.

Despite the recent advancements in dataset distillation, a
comprehensive overview summarizing its advances and ap-
plications is currently not available. This paper aims to fill
this gap by presenting a taxonomy of dataset distillation. To
our knowledge, it is the first work that provides a systematic
categorization of the different methods and techniques used
in dataset distillation. The paper mainly makes the following
contributions:

• We propose a novel taxonomy of dataset distillation,
which can help researchers to better understand the re-
search landscape and find their areas of interest.

• We present existing distillation approaches in detail, dis-
cussing their strengths and weaknesses;

• We discuss important challenges in this domain, high-
lighting promising directions for future research.

The paper is organized as follows. In Section 2, we first
present our taxonomy of dataset distillation. Then, we in-
troduce the learning frameworks and common enhancement
methods in Section 3 and Section 4, respectively. Section 5
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Figure 1: Taxonomy of dataset distillation.

summarizes the advances in different data modalities. In Sec-
tion 6, we categorize the related applications according to the
dataset distillation properties. Finally, we conclude this paper
with future directions in Section 7.

2 Taxonomy
2.1 Basics of Dataset Distillation
We begin by introducing the key notations used in this paper.
D represents a general dataset, fθ represents a neural network
with parameters θ, and fθ(x) denotes the model’s prediction
for data point x. The expected loss for dataset D in relation
to θ is defined as

LD(θ) = E(x,y)∼PD [ℓ(fθ(x), y)], (1)

where x and y are the input data and label pair from D,
ℓ(fθ(x), y) is the given loss value between the prediction and
ground truth.

Dataset distillation aims to reduce the size of large-scale
training input and label pairs T = {(xi, yi)}|T |

i=1 by creating
smaller synthetic pairs S = {(x̂j , ŷj)}|S|

j=1, so that models
trained on both T and S can achieve similar performance,
which can be formulated as:

LT (θS) ≃ LT (θT ), (2)

where θS and θT are the parameters of the models trained on
S and T respectively.

2.2 Taxonomy Explanation
The taxonomy of dataset distillation is illustrated in Figure 1.
In this taxonomy, we classify the research about dataset dis-
tillation from three perspectives: approaches, data modali-
ties and applications. The approaches can be decomposed
into two parts. In the learning framework, we explain how
dataset distillation can be modeled, optimized and solved in
different ways, such as using meta-learning [Andrychowicz

backward passforward pass

Figure 2: Back-Propagation Through Time. The gradient ∇SL is
calculated via back-propagation through time (see orange dashed
line).

et al., 2016] or surrogate objectives (see Section 3.2). Meta-
learning can be further divided into using back-propagation
through time and using kernel ridge regression. Surrogate
objective can be subdivided into parameter matching and dis-
tribution matching. We categorize the common enhancement
methods, which can be plugged into a learning framework,
mainly into parameterization (see Section 4.1), augmentation
(see Section 4.2) and label distillation (see Section 4.3). Ex-
isting work can be classified into four types of data: image,
audio, text, and graph, based on data modality. Applications
can be further divided into three categories: computationally
intensive tasks such as continual learning and neural architec-
ture search, privacy protection including dataset construction
and federated learning, and model robustness, encompass-
ing data poisoning attacks and improving robustness. Cor-
responding to our taxonomy, some representative papers, to-
gether with their characteristics, have been listed in Table 1.
It comprehensively compares learning frameworks, enhance-
ment methods, data modality, and applications.

3 Learning Frameworks
According to the learning goals, the current learning frame-
works can mainly be divided into two categories: meta-
learning methods based on inner model performance and
methods using surrogate objectives.

3.1 Meta-Learning
Meta-learning [Andrychowicz et al., 2016] refers to learn-
ing about learning, and often refers to machine learning algo-
rithms that learn from the output of other machine learning
algorithms. In this problem, the distilled data are treated as
hyperparameters and the objective is to optimize the distilled
data in a bi-level optimization problem as follows:

S∗ = argmin
S

LT (θS) s.t. θS = argmin
θ
LS(θ), (3)

where the inner loop, optimizing θS , trains a model on the
synthetic dataset until convergence, and the outer loop, op-
timizing S , subsequently optimizes the synthetic dataset, so
that the model has good generalization capability and can per-
form well on the real dataset. The distillated dataset is opti-
mized using the meta-gradient:

S ← S − α∇SLT (θS), (4)

where α is the learning rate for updating the synthetic dataset.
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Paper
Learning Enhancement

Data Modality Applications

Framework Methods

Im
age

Text

A
udio

G
raph

Computationally
Intensive Tasks

Privacy Robustness

DD [Wang et al., 2018]

Back-
Propagation
Through
Time

✓ Data Poi-
soning

SLDD, TDD [Sucholut-
sky and Schonlau, 2021] LD ✓ ✓

Addressable Mem-
ory [Deng, 2022] Factorization,

LD
✓ CL

KIP [Nguyen et al., 2020;
Nguyen et al., 2021] Kernel

Ridge
Regression

LD ✓ ρ-corruption

FRePo [Zhou et al.,
2022] LD ✓ CL MIA

RFAD [Loo et al., 2022] LD ✓ ρ-corruption
DC [Zhao et al., 2021]

Parameter
Matching

✓ CL, NAS
DSA [Zhao Bo, 2021] DSA ✓ CL, NAS
MTT [Cazenavette et al.,
2022] DSA ✓

IDC [Kim et al., 2022] Factorization,
DSA

✓ ✓ CL

HaBa [Liu et al., 2022b] Factorization ✓ ✓ CL
PSG [Chen et al., 2022] ✓ MIA, DP
GCond [Jin et al., 2021] ✓ NAS
DosCond [Jin et al.,
2022] ✓

DM [Zhao and Bilen,
2021]

Distribution
Matching

DSA ✓ CL, NAS

CAFE [Wang et al.,
2022] ✓

IT-GAN [Zhao and Bilen,
2022] DSA, GAN ✓

GCDM [Liu et al.,
2022a] ✓

KFS [Lee et al., 2022] ✓

Table 1: Summary of existing dataset distillation works. CL – Continual Learning, NAS – Neural Architecture Search, MIA – Membership
Inference Attack, DP – Differential Privacy, and LD – Label Distillation. Note: ✓– if it uses such data modality.

Back-Propagation Through Time
Computing the meta-gradient ∇SLT (θ

S) requires differenti-
ating through inner optimization. When the model is learned
in an iterative way, i.e.,

θt+1 = θt − η∇θtℓ(fθ(x̂), ŷ), (5)

where η is the learning rate for inner loop and meta-gradient
is calculated by back-propagation through time (BPTT):

∇SLT (θS) =
∂L
∂S =

∂L
∂θT

( t=T∑
t=0

∂θT
∂θt
· ∂θt
∂S

)
(6)

which is illustrated in Figure 2. It is evident that the compu-
tation overhead is high due to the recursive calculation of the

meta-gradient using Equation 6.
To make the implementation of Equation 6 feasible, [Wang

et al., 2018] suggest using the Truncated Back-Propagation
Through Time (TBPTT) method, which involves unrolling
the inner-loop optimization steps as a single step of gradient
descent optimization,

x̂, η̂ = argmin
x̂,η̂

ℓ(fθ1(x), y), s.t.θ1 = θ0−η∇θ0ℓ(fθ0(x̂), ŷ), (7)

where x̂, ŷ are synthetic dataset and η̂ the learning rate for the
optimizer.

[Deng, 2022] further improves the learning framework by
incorporating a momentum term and extending the length of
unrolled trajectories. Empirical results show that the mo-
mentum term can consistently improve performance and that

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6612



longer unrolled trajectories can lead to better model parame-
ters that produce more efficient gradients for compressed rep-
resentation learning.

BPTT methods have been criticized for several issues, as
noted in [Zhou et al., 2022]: 1) high computational cost and
memory overhead; 2) bias in short unrolls; 3) gradients ex-
ploding or vanishing in long unrolls; and 4) chaotic condi-
tioned loss landscapes.

Kernel Ridge Regression
[Nguyen et al., 2020] transform dataset distillation into a ker-
nel ridge regression (KRR) problem, where the synthetic set
is used as the support set and the original set as the target
set. Their approach result in a closed-form solution in terms
of convex optimization, simplifying the expensive nested op-
timization into first-order optimization (see Figure 3). They
introduce the Kernel-Inducing Point (KIP) algorithm which
utilizes neural tangent kernel (NTK) [Jacot et al., 2018] ridge
regression to compute the exact outputs of an infinite-width
neural network trained on the synthetic set, bypassing the
need for gradient and back-propagation computation on any
neural network. The KRR loss function for a given kernel
and batch data from synthetic set (XS , yS) evaluated on batch
data from real set (XT , yT ) can be formulated as,

argmin
XS ,yS

1

2
∥yT −KXT XS (KXSXS + λI)−1yS∥2, (8)

where KXT XS is the Gram matrix of XS and XT , and
KXSXS is the Gram matrix of XS .

[Zhou et al., 2022] propose a novel method, neural feature
regression with pooling (FRePo), which utilizes a more flexi-
ble conjugate kernel with neural features to replace the NTK
in KIP [Nguyen et al., 2020]. This approach breaks down
the traditional KRR training pipeline into two components: a
feature broke fθ and a linear classifier. When calculating the
meta-gradient of S , FRePo fixes the feature extractor parame-
ters and updates S T times according to Equation 8, where T
is a hyperparameter that helps prevent the support/synthetic
dataset from memorizing a specific network. Additionally, a
model pool is employed to alleviate overfitting in the distilla-
tion process.

Kθ
XT XS = fθ(XT )fθ(XS)

⊤, (9)

Kθ
XSXS = fθ(XS)fθ(XS)

⊤ (10)
[Loo et al., 2022] propose to use random feature approx-

imation for distillation (RFAD), which utilizes random fea-
ture approximation of the Neural Network Gaussian Pro-
cess (NNGP) kernel to replace the NTK used in KIP. This
approach reduces the computation of the Gram matrix to
O(|S|), which is linear with the size of the synthetic set, com-
pared to O(|S|2), the complexity of accurately calculating the
NTK kernel matrix. They also suggest using cross-entropy
loss with Platt scaling [Platt and others, 1999] to provide
a more accurate probabilistic interpretation for classification
tasks.

3.2 Surrogate Objective
Instead of optimizing directly based on model performance,
surrogate objective approaches optimize a proxy objective,
such as the parameters or gradients of the model. These ap-
proaches assert that the effectiveness of a model trained on a
full dataset and a distilled dataset can be inferred from their
corresponding parameters and gradients.

Figure 3: Kernel Ridge Regression. The figure shows the workflow
of kernel ridge regression. The details refer to Equation 8 and 9. The
key difference is that KIP [Nguyen et al., 2020] uses NTK kernel,
RFAD [Loo et al., 2022] uses Neural Network Gaussian Process
(NNGP) kernel. Feature extractor fθ in FRePo [Zhou et al., 2022]
is parameterized during training.

Parameter Matching
In contrast to optimizing directly based on the loss value cor-
responding to the distilled data, it aims to make the model
approximate the original model in the parameter space, i.e.
θS ≈ θT . Empirically, the trajectory of parameters vary
with its initial state θ0. Therefore, the objective of parame-
ter matching should be agnostic to the initialization. When
distance between the model parameters trained on the syn-
thetic dataset and the real dataset are consistently close, the
distilled dataset can be considered as a good alternative of
original whole dataset. Let θS(θ0), θT (θ0) denote the trained
models from the same initialization θ0, the objective function
can be expressed as:

min
S

Eθ0∼Pθ0
[D(θS(θ0), θ

T (θ0))], (11)

where D(·, ·) is a distance function.
To enable a more guided optimization and apply the incom-

plete training, DC [Zhao et al., 2021] synthesizes images by
minimizing the gradient matching loss at each training step
t:

min
S

Eθ0∼Pθ0
[

T−1∑
t=0

D(∇θLS(θt),∇θLT (θt))] (12)

where T is the hyperparameter for the number of training
iterations.

[Cazenavette et al., 2022] suggest overcoming bias accu-
mulated from one-step gradient by matching training trajec-
tories (MTT). MTT considers the training trajectories θT−1

t=0

on real data as the expert models, the model θ̂ trained on the
synthetic dataset as the student model. It randomly samples
θTt from the expert model to initialize the student model, and
the objective is to make the student model θ̂St+N approximate
the expert model θTt+M after N iterations. The optimization
objective is given by

D =
∥θ̂St+N − θTt+M∥22
∥θTt − θTt+M∥22

, (13)

where M,N are the hyperparameters.
Parameter matching methods are often criticized for: 1)

high bias it introduces [Wang et al., 2022]. The synthetic
set learned by gradient matching is extremely biased towards
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those large gradient samples, which will decrease its gen-
eralization capability on unseen architectures; 2) expensive
bi-level optimization. For example training 50 images/class
using DC [Zhao et al., 2021] requires 500K epochs of up-
dating network parameter θt and 50K updating of S; and
3) fragile hyper-parameters [Zhao and Bilen, 2021] tuning.
e.g. how often to update θt and S in DC, as well as M,N in
MTT [Cazenavette et al., 2022] are critical.

Distribution Matching
The objective of distribution matching is essentially to learn
synthetic samples so that the distribution of the synthetic sam-
ples is similar to that of real samples in the feature space.
They use an empirical estimate of the maximum mean dis-
crepancy (MMD) as a metric to evaluate the distance of spa-
tial distribution. Due to the high computational complexity
and difficulty in optimization caused by high dimensionality,
Zhao [Zhao and Bilen, 2021] use different randomly initial-
ized neural networks as feature extractors to reduce the input
dimension to low-dimensional space.

min
S

Eθ∼Pθ

∥∥∥∥ 1

|S|

|S|∑
i=1

fθ(x̂i)−
1

|T |

|T |∑
i=1

fθ(xi)

∥∥∥∥2

, (14)

where fθ is parameterized by θ, and θ is sampled from a ran-
dom distribution Pθ. |S| and |T | are the cardinality of dataset
S and T , respectively.

To better capture the whole dataset distribution, [Wang
et al., 2022] propose to use layer-wise feature alignment in
CAFE to learn a more comprehensive characteristic of the
distribution. They also introduce a loss function to improve
the discriminative ability of the learned samples. The clas-
sification loss is calculated using the feature centers of real
sample and averaged synthetic samples of each class.

4 Common Enhancement Methods
In this section we introduce some techniques that can be inte-
grated into the learning framework presented in the previous
section to further enhance distillation performance.

4.1 Parameterization
Dataset parameterization aims to utilize the regularity to
guide the synthesis, It helps enhance the interpretability by
learning hidden patterns, and control the diversity of the syn-
thetic data. In [Zhao and Bilen, 2022], the authors propose
IT-GAN, a method that uses a pre-trained GAN decoder to
increase the informativeness distilled data. IT-GAN first ob-
tains latent vectors from training samples using GAN Inver-
sion [Abdal et al., 2019], then it use the distribution matching
algorithm to learn the latent vectors. These vectors can be
fed into a pre-trained GAN decoder to induce synthetic im-
ages of the original size. In addition, most distillation meth-
ods processes each synthetic sample independently, ignoring
mutual consistency and relationships between samples. Fac-
torization are proposed to decompose images into different
parts to better capture the correlation between different sam-
ples and improve the diversity. IDC [Kim et al., 2022] utilizes
a multi-formation function as the decoder as the decoder to
store more information in single sample. [Deng, 2022] pro-
pose to learn matrix-based codes and decodes and use ma-
trix multiplication to generate synthetic datasets. [Lee et

al., 2022] employ the latent code - decoder mode for fac-
torization. The decoder is designed as an upsampling neural
network containing three ConvTranspose2d layers, aiming to
restore latent codes compressed in low dimensions into the
image pixel space. [Liu et al., 2022b] propose HaBa, which
chooses to decompose the image into two parameter spaces
of basis and hallucinator. Where hallucinator is an encoder-
transformation-decoder structure. Specifically, the encoder is
composed of CNN blocks, followed by an affine transforma-
tion with scale σ and a decoder of a symmetric CNN archi-
tecture.

4.2 Augmentation
In [Zhao Bo, 2021], the authors propose using differentiable
siamese augmentation (DSA) when learning synthetic im-
ages, which leads to more informative datasets. DSA is a
pluggable technique that includes operators like scale, flip,
crop, rotate, color jitters, and cutout. It can be easily inte-
grated into various distillation methods and has been widely
used in [Zhao and Bilen, 2021; Wang et al., 2022]. In [Cui
et al., 2022], DSA is found to achieve the best performance
compared to other data augmentation techniques. However,
current augmentation techniques are not suitable for discrete
data such as graphs and text.

4.3 Label Distillation
Label distillation relaxes the restrictions on labels, allowing
them to have richer semantics beyond one-hot vectors. It is
first introduced in SLDD [Sucholutsky and Schonlau, 2021]
and has been shown to improve not only the storage effi-
ciency but also the distillation performance. Their method
only requires to make the label in Equation 7 learnable vari-
ables. [Nguyen et al., 2020] also provide a label learning al-
gorithm based on the closed-form solution in KRR. It is re-
ported that only five distilled images from MNIST would en-
able the model to achieve 92% accuracy [Sucholutsky and
Schonlau, 2021].

5 Data Modalities
Dataset distillation, first proposed for images, has been ap-
plied to various modalities. In this section, we categorize ex-
isting works according to data modality and discuss some of
the challenges.

5.1 Image
Most dataset distillation methods to date have been per-
formed on image datasets [Wang et al., 2018; Nguyen et
al., 2020; Zhou et al., 2022; Zhao et al., 2021; Kim et al.,
2022; Cazenavette et al., 2022]. These works have con-
structed benchmarks to facilitate fair comparisons of novel
approaches. Images have a continuous real-value domain,
which allows direct optimization of synthetic images using
deep learning optimizers. We find that experimental datasets
become increasingly complex, starting from MNIST, CI-
FAR10, and SVHN, to more challenging datasets like Tiny-
ImageNet and ImageNet [Zhou et al., 2022; Cazenavette et
al., 2022; Kim et al., 2022]. Furthermore, parameterization
methods that capture on the regularity of images are becom-
ing increasingly prevalent in the field, as evidenced by recent
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Figure 4: Surrogate Objective. The figure presents the workflow of parameter matching (left) and distribution matching (right). The key
difference between algorithm DC [Zhao et al., 2021] and MTT [Cazenavette et al., 2022] is that DC uses information from one-step opti-
mization (gradient) while MTT using parameters after several steps. Definition of D is given as in Equation 11. In distribution matching, the
embeddings eS and eT in DM [Zhao and Bilen, 2021] are extracted from layer output of ConvNet and the D is maximum mean discrepancy,
whereas, eS and eT in CAFE [Wang et al., 2022] correspond to layer-wise features and D is a mean square error.

research such as [Kim et al., 2022; Zhao and Bilen, 2022;
Liu et al., 2022b].

5.2 Audio
Speech signals also satisfy the regularity condition of a low-
rank data subspace, i.e., temporally adjacent signals haves
similar spectra. Therefore, many parametrization meth-
ods [Liu et al., 2022b; Kim et al., 2022] designed for image
dataset can also be applied in this domain. They both exper-
iment with the Speech Commands [Warden, 2018] dataset.
In detail, they process the waveform data with a short-time
Fourier transform to obtain the magnitude spectrogram and
used log-scale magnitude spectrograms for the experiments.
Their works show that dataset distillation can achieve consis-
tent performance on downstream tasks of speech signals.

5.3 Text
The discrete nature poses challenges to textual distillation.
[Sucholutsky and Schonlau, 2021] first embed the text into a
contiguous space using pre-trained GloVe embedding and fill
or truncate all sentences to a pre-determined length. In this
way, each sentence can be regarded as a single channel image
of size length × embedding dimension. Text distillation also
involves finding the nearest embedding in the dictionary for
each vector in the optimized matrix, and transforming these
embeddings into the corresponding words and finally the sen-
tence.

Current efforts are based on primitive bi-level optimiza-
tion, which is computationally inefficient. There is a lack of
work analyzing factors such as the difficulty of the dataset,
sentence length, or cross-architecture generalization. Dis-
tilled sentences may consist of unrelated words, which makes
it difficult to interpret and further analyze. Exploring ways to
leverage regularity and context in text distillation is a promis-
ing area of research.

5.4 Graph
Graph data is very common in real life, e.g. social networks,
Web relationship analysis, and user-item interaction can all
be modeled as graph data containing nodes and edges. [Jin et
al., 2021; Jin et al., 2022] design a strategy to simultaneously
compress node features and structural information based on
gradient matching. [Liu et al., 2022a] adopt the distribution

matching to boost the performance and show that the dataset
distillation was significantly efficient and in some datasets
they reached 95% of the original performance by compress-
ing 99% of the data. Graph distillation is mainly challenged
by heterogeneous, abstract, high-level graph representations.

6 Applications
Dataset distillation, initially designed for model training ac-
celeration, has shown potential in various applications due to
its properties.

6.1 Computationally Intensive Tasks
Continual Learning
Continual learning (CL) addresses the problem of catas-
trophic forgetting by using strategies such as experience re-
play, which stores representative samples from previous tasks
as a buffer to recall knowledge. Dataset distillation, which
involves highly compressed representations, is an alternative
to traditional sampling methods. There are currently two ex-
perimental settings for using distillation in CL. [Zhao et al.,
2021; Zhao Bo, 2021] use different datasets, SVHN, MNIST,
and USPS, three handwritten digit recognition datasets, and
take EEIL [Castro et al., 2018] as the baseline for continuous
learning. In the study of [Zhao and Bilen, 2021], the experi-
mental settings are changed to incremental class learning on
the CIFAR100 dataset. The researchers establish a baseline
using the GDumb method [Prabhu et al., 2020] and randomly
divided 100 classes into 5 and 10 learning steps, with 20 and
10 classes per step respectively.

Neural Architecture Search
Neural architecture search (NAS) is known to be expensive
as it involves training multiple architectures on the entire
training dataset and selecting the best-performing one on the
validation set. To address this issue, researchers have pro-
posed using a distilled dataset as a proxy of the entire dataset,
which can effectively identify the best network. Related ex-
periments on the CIFAR10 dataset have been reported in
DC [Zhao et al., 2021], DSA [Zhao Bo, 2021], and DM [Zhao
and Bilen, 2021]. These studies construct a search space of
720 ConvNets by varying hyperparameters such as network
depth, width, activation function, normalization, and pooling
layers over a uniform grid. The effectiveness of the distilled
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dataset was evaluated using the Spearman’s rank correlation
coefficient between the validation accuracies obtained by the
proxy dataset and the entire dataset. A higher correlation
value indicates that the proxy dataset is more reliable.

6.2 Privacy
Dataset Construction
Machine learning is vulnerable to a variety of privacy attacks,
such as membership inference attacks [Shokri et al., 2017],
model inversion attacks [Fredrikson et al., 2015; Carlini et
al., 2023], and gradient inversion attacks [Geng et al., 2021;
Geng et al., 2023], where attackers attempt to infer task-
independent private information from the target model, and
even recover the original training data. Additionally, data
collection and publishing raise privacy and copyright con-
cerns. [Dong et al., 2022; Zhou et al., 2022] have shown
that models trained on synthetic data are robust to both loss-
based and likelihood-based membership inference attacks. To
ensure that the distilled samples cannot be inferred from real
ones, [Nguyen et al., 2020] implemented the KIPρ variant,
which randomly initialized ρ proportion of each image and
kept them unchanged during training. This idea was later fol-
lowed by RFADρ [Loo et al., 2022]. [Chen et al., 2022]
added a differential privacy (DP) mechanism [Dwork, 2006]
to the distillation process to provide rigorous privacy guaran-
tees. Medical data often requires strict anonymization before
publication, [Li et al., 2022] propose to dataset distillation to
construct privacy-preserving datasets.

Federated Learning
Federated learning (FL) is an emerging technology that en-
ables different clients to collaboratively train a shared model
without sharing their local data. It faces challenges such as
high bandwidth requirements for uploading large model up-
dates and a lack of strict privacy guarantees. There are several
works that propose to combine dataset distillation in FL. [Hu
et al., 2022; Xiong et al., 2022] suggest sharing lightweight
synthetic datasets instead of sharing model updates, since the
distilled dataset size is generally smaller. However, this may
introduce bias and increase the computational load, which can
negatively impact the performance and efficiency of FL.

6.3 Robustness
Data Poisoning Attacks
Distilled data lose its fidelity and may not be visually dis-
tinguishable from its original contents, making it vulnerable
to data poisoning attacks and difficult to detect. Studies have
shown that a small number of these poisoned samples can sig-
nificantly reduce the accuracy of a model’s predictions on a
specific category. [Wang et al., 2018] propose a study on data
poisoning attacks using dataset distillation. [Liu et al., 2023]
propose two backdoor attacks on distilled data by injecting
triggers into the synthetic data during the distillation process,
either in the initial stage or throughout the entire process.

Improve Model Robustness
Dataset distillation can also be used as a means of improving
its robustness. Researchers have proposed using optimization
techniques to learn a robust distilled dataset, such that a clas-
sifier trained on this dataset will have improved resistance to

adversarial attacks. [Tsilivis et al., 2022] have combined the
KIP method with adversarial training to enhance the robust-
ness of the distilled dataset. [Wu et al., 2022] approached the
problem of dataset learning as a tri-level optimization prob-
lem to obtain a distilled dataset that minimizes robust error
on the data-parameterized classifier.

7 Conclusion and Future Directions
In this paper, we present a systematic review of recent ad-
vances in dataset distillation. We introduce a novel taxon-
omy that categorizes existing works from various perspec-
tives. We find that most existing efforts are geared toward im-
age datasets, whereas the handling of discrete text and graph
data remains a significant challenge. There is a limited ex-
ploration of robustness, and further research is necessary as
the technology gains wider adoption. Our study demonstrates
the research landscape in this field and suggests directions for
future work.

7.1 Computational Efficiency

The computational efficiency of dataset distillation is an im-
portant consideration, as many current methods for dataset
distillation can be computationally expensive, particularly for
larger datasets. The goal of dataset distillation is to reduce the
size of a dataset while preserving its key features and patterns,
but this process often requires complex optimization and clus-
tering algorithms, which can be computationally intensive.
Methods like MTT [Cazenavette et al., 2022], KIP [Nguyen
et al., 2020], and FRePo [Zhou et al., 2022] can cause GPU
memory bottlenecks when the number of images per class
(IPC) increases. While the DM [Zhao and Bilen, 2021] ap-
proach proposes using distribution matching to avoid model
training, and RFAD [Loo et al., 2022] proposes using NNGP
to reduce the computational complexity of kernel ridge re-
gression, the computational efficiency of distillation still re-
quires improvement, particularly for larger datasets.

7.2 Performance Degradation on Larger IPC

According to [Cui et al., 2022], current dataset distillation
methods perform well only when the number of images per
class (IPC) is relatively small. As the IPC increases, the per-
formance of most distillation methods deteriorates and be-
comes similar to that of random sampling. Therefore, it is im-
portant to explore whether dataset distillation can overcome
this limitation and maintain superior performance on larger
datasets.

7.3 Weak Labels

Currently, research on dataset distillation primarily focuses
on classification tasks. However, its potential for more com-
plex tasks, such as image detection and segmentation, named
entity recognition, summarization, and machine translation,
remains untapped. Exploring the technique’s effectiveness on
these tasks could provide deeper insights into data character-
istics and the inner workings of AI.
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