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Abstract
Adversarial robustness, domain generalization and
dataset biases are three active lines of research con-
tributing to out-of-distribution (OOD) evaluation
on neural NLP models. However, a comprehensive,
integrated discussion of the three research lines is
still lacking in the literature. In this survey, we
1) compare the three lines of research under a uni-
fying definition; 2) summarize the data-generating
processes and evaluation protocols for each line of
research; and 3) emphasize the challenges and op-
portunities for future work.

1 Introduction
Neural NLP models have been reported for their superhu-
man performance on many language understanding and gen-
eration tasks, such as sentiment analysis and machine read-
ing comprehension (MRC). Recent studies show that these
models lack human-level understanding of language since
they are vulnerable beyond in-distribution (ID) test data and
fail to generalize on out-of-distribution (OOD) data, such as
perturbed examples under adversarial attacks [Ebrahimi et
al., 2018], text from different domains [Hendrycks et al.,
2020] and examples against dataset biases [Gururangan et al.,
2018], which lie in the three mainstream lines of research:
adversarial robustness, domain generalization and dataset bi-
ases.

Despite recent progress in each of the three research lines,
there has not been a survey that comprehensively reviews
and investigates the connections between these lines. We
have the following motivations for such an investigation:
1) explaining some phenomena across the three lines of re-
search. For example, methods designed to improve model
generalization on one OOD type can defend against other
types of OOD data [Yi et al., 2021] but sometimes degrade
model performance on other OOD types [Bras et al., 2020;
Gokhale et al., 2022]; 2) encouraging future researchers to
perform a comprehensive OOD evaluation while proposing
their new methods; 3) suggesting that all the OOD types be
addressed thoroughly in future research.

In this survey, we first unify the three research lines as the
study of distribution shift, which gives us a starting point to
find connections between them in terms of shifted features

(§2). Furthermore, we summarize their differences in OOD
data generation and evaluation protocols (§3). In particu-
lar, we categorize different methods to generate OOD data,
including data with natural domain shift (NDS) for domain
generalization, debiased data for evaluating dataset biases
and adversarial examples for adversarial robustness. We then
categorize evaluation protocols for the OOD data into two
classes: data-based and method-based evaluation. Finally,
we identify opportunities based on the discussion of connec-
tions and differences between the three OOD types, includ-
ing developing a comprehensive benchmark for OOD eval-
uation, advising caution about breaking the assumptions of
covariate shift, improving general OOD performance and us-
ing the detection methods across different OOD types. Also,
we demonstrate the gap in adversarial robustness for future
work (§4).

2 Definition
This section first introduces a comprehensive definition of
distribution shift across the three research lines and then
shows how the definition aids in elucidating the interconnec-
tions regarding the shifted features.

2.1 Distribution Shift
Deep Neural Network (DNN) f(θ) can achieve remarkable or
even superhuman performance on NLP benchmarks, such as
GLUE with in-distribution (ID) test data Dtest ∼ P0, when
f(θ) is trained on data sampled from the data-generating dis-
tribution (an unknown distribution under a data-generating
process) Dtrain ∼ P0. However, the well-trained model often
fails to generalize to various unforeseen examples. Formally,
the unforeseen data (or OOD data) D̃ can be characterized by
a shifted distribution P̃. The distribution shift includes covari-
ate shifts (input distribution shifts) P0(X ) ̸= P̃(X ) and label
distribution shifts P0(Y) ̸= P̃(Y), where X is the input space,
and Y is the ground-truth output space. We unify the three
lines of research as a study of covariate shifts. For brevity,
the input notation X is sometimes omitted when referring to
it, as exemplified by the use of P0 to represent P0(X ).
Domain generalization and dataset biases. Real-life doc-
uments in different domains, e.g., news and fiction text
[Hendrycks et al., 2020], are typically characterized by sys-
tematically distinct properties and originate in different data-
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generating distributions. Domain generalization investigates
such natural domain shifts, and relevant literature often uses
domain shift and distribution shift interchangeably. Some lit-
erature [Arora et al., 2021; Gokhale et al., 2022] also defines
that data with particular biases and those without such biases
come from different domains. Therefore, the studies of do-
main generalization and dataset biases can be intuitively de-
fined in the framework of distribution shifts.

Adversarial robustness: from robustness to distribution
shift. Initially, adversarial methods evaluate model robust-
ness against small perturbations in the worst-case scenarios,
especially for continuous data like images [Goodfellow et al.,
2015]. Hence, prior studies typically separate adversarial ro-
bustness from the study of domain generalization and distri-
bution shift. We can unify adversarial robustness as a study
of distribution/domain shift. Conceptually, we can define the
shifted distribution in the adversarial setting as a distribution
around the original distribution P0. We perform a pertur-
bation on text x ∈ P0(X ) to simulate OOD data from the
shifted distribution. In other words, adversarial perturbations
encode subtle domain shifts, as discussed in §2.3, and the
shifted domains are characterized by the adversarial methods
summarized in §3.3.

2.2 Shifted Features
To concretize the shifted features, we first define task-relevant
features srel and task-irrelevant features sir, which satisfy
P(srel|y) ̸= P(srel) and P(sir|y) = P(sir), respectively. P
is an arbitrary distribution.

Background features and semantic features. When P is
the ground-truth distribution Ptrue, Arora et al., [2021] name
srel as semantic features since most realistic NLP tasks ad-
dress the semantics of text, and sir as background features,
which can be the syntax, writing style or task-irrelevant text.

Biased features are task-irrelevant features under Ptrue
despite being learned as task-relevant features from P0.
P0(X ) can be factorized into the conditional distributions of
generalized features g(X ) and biased features b(X ).

P0(X ) =
∑
y

P0(g(X )|y)P0(b(X )|y)P0(y), (1)

assuming conditional independence between b(X ) and g(X )
given y. By definition, g(X ) should always be task-relevant
features in the true distribution Ptrue, i.e., g(X ) ∈ srel, while
biased features b(X ) are only predictive for ID dataset D ∼
P0. We can express b(X ) as {s|s ∈ P0 and s /∈ P̃}.

2.3 Shifted Features in Three OOD Types
This section shows how each OOD type can potentially shift
the three kinds of features.

Shifted features on adversarial examples. Shifted fea-
tures of adversarial examples depend on the attack meth-
ods. White-box and grey-box methods compute gradients
or output logits, respectively, while black-box methods can
only query final predictions. With the guidance of gradients,
white-box methods tend to shift the biased features since the

input gradients can help identify the biased features for per-
turbations [Ilyas et al., 2019; Wallace et al., 2019a]. Per-
turbation types largely affect whether it is a semantic shift
or background shift (See §3.3). For example, character edit-
ing may lead to unseen words, e.g., “wonderful” to “wonder-
ful”, which belongs to semantic shift. In contrast, black-box
methods explicitly change background features at the sen-
tence level. For example, Qi et al., [2021] paraphrase with
different writing styles.
Shifted features on debiased data. Debiased data, by def-
inition, is generated by removing biased features. However,
the generation process often encodes either background fea-
tures sir or semantic features srel. For example, debiased data
generated by syntactic templates [McCoy et al., 2019] en-
code background shift, while MRC data requiring numerical
reasoning to avoid dataset biases [Naik et al., 2018] change
semantic features.
Shifted features on NDS data. We classify natural domain
shift into two categories, namely genres and sub-populations.
Both background and semantic shifts can occur in both cat-
egories, such as different vocabularies associated with sub-
populations or genres [Barrett et al., 2019]. For example,
for sentiment analysis, Tweets tend to express sentiments
with emotions compared to the genre of movie reviews, and
sub-populations can differ in the way to express emotions
[Oprea and Magdy, 2020]. Furthermore, DNNs can easily
learn background features for each sub-population or genre
as biased features. Writing styles can also serve as another
background feature that changes across genres [Arora et al.,
2021], e.g., text from fiction books to Wikipedia content.

3 OOD Performance Evaluation
This section compares the concrete methodologies of OOD
data generation and evaluation protocols for each line of re-
search. Their differences are summarized in Table 1.

3.1 NDS Data Generation
NDS data can be generated from different genres or sub-
populations. The former can be acquired from various data
sources, whereas the latter involves partitioning data into sub-
populations based on attributes of entities or individuals. Di-
verse sets of data genres may display a fusion of unique tex-
tual styles, syntactic structures, and lexicons.
Genres. Different genres refer to text written by different
authors or annotators or for different audiences, or come from
different data sources. For example, academic papers are
written in formal language while online reviews on Yelp con-
tain non-standard orthography. Since a training dataset typ-
ically comes from a specific data source and contains only
one genre, even well-trained models generalize poorly to dif-
ferent genres. Although some datasets are created to include
multiple genres of text, models still perform worse beyond
the coverage of these genres. For example, MultiNLI for NLI
consists of text from ten distinct genres. However, even the
large pretrained language models cannot generalize well to a
different genre [Arora et al., 2021], such as SNLI from image
captions or WNLI from fiction books. Take text classifica-
tion as another example. Classifiers cannot perform well on
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OOD Data Generation Evaluation
Generated by Required Knowledge Types Metrics

Adversarial robustness Auto Model Method-based ASR; query #
Adversarial transferability Auto/human Base model Data-based ID metrics

Domain generalization Existing Domain Data-based ID metrics
Dataset biases Auto/human Biases/NA Data-based ID metrics

Table 1: Comparison of OOD data generation and evaluation. ASR: attack success rate; query #: number of queries; ID metrics: the same
aggregate metrics for ID test data, e.g., accuracy for classifiers.

Biases Tasks Related Works

Lexical correlations

TC Geva et al., [2019]

NLI Hypothesis-only bias [Gururangan et al., 2018]

MRC Question word matching [Sugawara et al., 2018]

Fact checking Claim-only bias [Schuster et al., 2019]

Machine Translation Word disambiguation bias [Emelin et al., 2020]

Lexical overlap NLI Premise-hypothesis overlap [McCoy et al., 2019]

MRC Context matching [Sugawara et al., 2018]

Paraphrase Zhang et al., [2019]
Positional bias Summarization Kedzie et al., [2018]

Table 2: Dataset biases for various NLP tasks. TC: Text Classification; NLI: Natural Language Inference; MRC: Machine Reading Compre-
hension; Paraphrase: Paraphrase Identification.

Methods Tasks Debiased Datasets

Biased inspired

TC c-IMDB [Kaushik et al., 2020]

NLI HANS [McCoy et al., 2019], Stress Text [Naik et al., 2018]

MRC Para-SQUAD [Lai et al., 2021] Adv-SQUAD [Jia and Liang, 2017]

Paraphrase PAWS [Zhang et al., 2019]

Fact Checking FEVER-Symmetric [Schuster et al., 2019]

Systematic
NLI SNLI-AFLITE [Bras et al., 2020]

Reasoning Winogrande [Sakaguchi et al., 2020]

CGI Swag [Zellers et al., 2018]

Table 3: Debiased datasets for various NLP tasks. TC: Text Classification; NLI: Natural Language Inference; MRC: Machine Reading
Comprehension; Paraphrase: Paraphrase Identification; Reasoning: Commonsense Reasoning; CGI: Commonsense Grounded Inference.

text from disjoint annotators, e.g., SST data from experts v.s.
lengthy IMDB reviews from laymen [Hendrycks et al., 2020;
Arora et al., 2021]. Also, MRC models trained on Wikipedia
hardly generalize on data from New York Times articles, Red-
dit posts, and Amazon product reviews.

Sub-populations. Multiple studies identify NDS data by
dividing data into sub-populations according to different at-
tributes of objects or individuals obtained from metadata.
Arora et al., [2021] select reviews from different businesses,
e.g., restaurant reviews v.s. movie reviews. For the same
business, Hendrycks et al., [2020] split them according to
different types of products (e.g., women’s clothing, shoes)
or restaurants (e.g., American v.s. Chinese restaurants). Fur-
thermore, model performance can vary on data with different
demographics, which is closely connected to another line of

research about fairness. For example, Borkan et al., [2019]
find the worst test accuracy on non-toxic comments from the
black population.

3.2 Debiased Data Generation
In this section, we first divide dataset biases into two cate-
gories and introduce a text summarization dataset bias that
does not fall under either one. We then classify data-
generating methods into two categories according to the
knowledge of dataset biases. Table 2 and 3 summarize dataset
biases and debiased datasets for various NLP tasks, respec-
tively.

Dataset Biases
Lexical correlations. Words frequently appearing in the
training examples of a particular class can be predictive bi-
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ases for that class. For example, when NLI annotators create
a majority of contradictory hypotheses by negating premises,
models learn the spurious correlation between negation words
(‘no’, ‘never’) and labels (hypothesis-only reliance [Gururan-
gan et al., 2018]). The success of class-wise adversarial at-
tacks comes from exploring these predictive words to some
extent [Wallace et al., 2019a]. Similarly, claim-only models
can perform well on ID test data without the context of evi-
dence for fact-checking due to predictive words [Schuster et
al., 2019]. MRC models can find the answer in a given para-
graph by matching the question type, e.g., “November 2014”
for a “when” question (question word matching [Lai et al.,
2021] or entity type matching [Sugawara et al., 2018]), and
hence they are easily distracted to the wrong answers on OOD
data [Jia and Liang, 2017]. Emelin et al., [2020] observe that
machine translation systems have a tendency to disambiguate
words based on the sense that occurs most frequently in the
training data.

Lexical overlap. Lexical overlap is another predictive indi-
cator for sentence-pair classification. For example, the high
overlap between the premise and hypothesis leads to the “en-
tailment” prediction from NLI models (premise-hypothesis
overlap [McCoy et al., 2019]). The classifiers for paraphrase
identification also tend to predict highly overlapping sen-
tences as paraphrases [Zhang et al., 2019]. Besides, MRC
models can locate the sentence with maximum overlap words
in the paragraph (context matching [Sugawara et al., 2018])
and then use question word matching to extract the correct
answer.

Positional biases for text summarization. News or jour-
nal articles tend to summarize content in the lead paragraphs
(positional bias or layout bias). Specifically, Kedzie et al.,
[2018] show that 88.6% reference summaries from the train-
ing examples of NYT come from the first half of documents
(69% for DUC, 71.7% for CNN/DM).

Methodologies
There are two types of methods to generate debiased data: 1)
breaking the spurious correlations; 2) filtering the examples
containing superficial patterns automatically without recog-
nizing any specific dataset biases.

Bias-informed approaches. Many studies generate debi-
ased data by reversing the correlations between dataset bi-
ases and labels for text classification. For natural language
inference (NLI), Mccoy et al., [2019] specify linguistic phe-
nomena (constituent and subsequent heuristics) behind lexi-
cal overlap. They devise heuristics-based syntactic templates
to create sentence pairs that have high lexical overlap but con-
tradict each other. Kaushik et al., [2020] construct counter-
factual examples by breaking spurious correlations in senti-
ment analysis datasets (i.e., IMDB) and NLI datasets. They
annotate the text into the targeted label by largely keeping the
original text. In this way, the dataset biases of the original la-
bel are kept. To break the lexical overlap between paraphrase
pairs, Zhang et al., [2019] create non-paraphrase sentences
via word scrambling. This method changes the meanings of
paraphrases but keeps the overlapping words. For MRC, Jia
and Liang [2017] add a sentence containing words overlap-

ping with the question into paragraphs and find that models
tend to select answers from the sentence. They also combine
the bias-inspired approach with a grey-box attack to generate
adversarial examples. Gardner et al., [2020] rely entirely on
experts who have the knowledge of dataset biases to generate
debiased data.
Systematic approaches. Debiased data can also be gener-
ated by bias mitigation techniques without knowing dataset
biases. For example, Bras et al., [2020] use a simple classifier
to identify biased examples and generate debiased datasets for
NLI, commonsense reasoning and grounded commonsense
inference, respectively. Although some works try to train ro-
bust models with such filtered data, filtering always leads to
significant drops on ID data and even OOD data [Gokhale et
al., 2022]. Therefore, it can be more practical to use them for
OOD evaluation.

3.3 Adversarial Example Generation
Given a well-trained model, adversarial examples are gen-
erated by modifying the given text (or reference data) to
make the model output wrong predictions. Typically, the
generation process satisfies semantics-preserving and label-
preserving assumptions. Mostly, semantics preservation can
guarantee the same label for a perturbed text. Thus, a ro-
bust model should generate invariant outputs argmax

y∗
f(x) =

argmax
y∗

f(x̃) = y under semantics-preserving perturbations,

where y is the ground-truth label and x̃ is the perturbed text.
Adversarial attacks have been widely studied to automati-
cally generate adversarial examples. We categorize the attack
methods according to their perturbation types, perturbation
space and adversary’s knowledge. Table 4 exemplifies typi-
cal methods for each category.

Perturbation Types
There are four common perturbation types that exhibit dif-
ferent granularities, namely, character editing, word substi-
tution, paraphrasing and universal adversarial perturbation
(UAP).

Character editing mimics real-life accidental typos or
spelling variants in social media via character swapping (e.g.,
“place” ⇒ “plcae”, deletion (e.g., “artist” ⇒ “arlist”), inser-
tion (e.g., “computer” ⇒ “comnputer”) and substitution (e.g.,
“computer” ⇒ “computor”) [Gao et al., 2018]. Humans are
robust to spelling errors maintaining certain morphological or
phonological characteristics, e.g., “computer”. Hence, a few
edits on a word would not affect the human perception of the
word but may lead to completely opposite predictions by the
models. In contrast, word substitutions require semantics-
preserving constraints on substitute words or rely on a vo-
cabulary of synonyms for substitutions [Zang et al., 2020].
Paraphrasing is seldom considered in adversarial attacks due
to the difficulty of generating high-precision paraphrases.

The last type of adversaries follows the work to generate
UAPs for images, which perturb any images of a particular
class [Moosavi-Dezfooli et al., 2017]. Behjati et al., [2019]
generate the UAPs for NLP models in the form of n-grams
(i.e., non-sensical phrases), which lead to misclassification
when appended to text of a class. Wallace et al., [2019a;
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Knowledge Perturbation Space Perturbation Types

White-box Continuous Word substitution [Gong et al., 2018], UAP [Song et al., 2021], Character edit-
ing [Liu et al., 2022]

Discrete Word substitution [Liang et al., 2018; Ebrahimi et al., 2018], UAP [Wallace et
al., 2019a; Behjati et al., 2019]

Grey-box Discrete Word substitution [Alzantot et al., 2018; Zang et al., 2020; Jin et al., 2020;
Li et al., 2020], Character editing [Gao et al., 2018]

Black-box Continuous Paraphrasing [Zhao et al., 2018]

(Only generation model) Paraphrasing [Iyyer et al., 2018; Ribeiro et al., 2018; Qi et al., 2021]

Table 4: Classification of Attack Methods Based on Adversaries’ Knowledge, Perturbation Space, and Perturbation Types. UAP refers to
Universal Adversarial Perturbation (UAP). Several studies employ generation models to produce paraphrases without adding any noise for
perturbations.

2020] even extend the idea of UAPs for MRC, language mod-
eling and machine translation. These studies assume that in-
serting non-sensical phrases does not change the semantics of
text and ground-truth labels. Song et al., [2021] generate nat-
ural phrases (e.g., “natural energy efficiency”) as UAPs via
Adversarially Regularized Auto Encoder (ARAE). However,
it can only maintain the coherence of UAPs rather than the
whole perturbed text.

Perturbation Space
A text consists of a sequence of tokens (e.g., words or sub-
words), denoted as x = w1, w2, . . . , wT , where T is the num-
ber of tokens in the vocabulary V = {w1, w2, . . . , wK} (K
is the size of the vocabulary). Note that the vocabulary can
differ from the ones of the victim models, especially under
black-box attacks.

All types of perturbations, except for paraphrasing, can be
perturbed in a discrete space. When perturbing via word sub-
stitutions or UAPs, the objective is to identify significant to-
kens in x and substitute them with tokens from the vocabu-
lary V in order to generate incorrect model predictions. This
is a combinatorial optimization problem, where the size of
the search space is KT . The search space is intractable and is
typically addressed using heuristic-based approaches [Alzan-
tot et al., 2018; Zang et al., 2020] or approximation methods
[Ebrahimi et al., 2018; Wallace et al., 2019a]. Character edit-
ing also requires identifying significant tokens, but it involves
a subsequent manipulation of characters within the identified
tokens [Gao et al., 2018]. Assuming the average token length
is l, the search space becomes lT , leading to combinatorial
explosion of modifications.

There are two types of methods to perturb text in
the continuous space: 1) perturbing tokens (charac-
ters/subwords/words) in the embedding space. Gong et al.,
[2018] add continuous perturbations directly to the continu-
ous representation ew of token w via element-wise addition
between the perturbation η and ew, similar to pixel-wise ad-
dition for images [Goodfellow et al., 2015]. To transform
η+ ew back to the text, they search for the nearest token w̃ in
the embedding space where ew̃ + η ∈ V . However, it proba-
bly generates a semantically variant token, because the clos-
est and most legible token can be far away from the original
one in projection space. Note that they still require searching

for important tokens. 2) reparameterization for paraphrasing
or UAPs. Zhao et al., [2018] reparameterize the text x into
z in a continuous space and then perturb z into z̃. They also
train a text generator (e.g., LSTM) to decode z̃ back to text.
Song et al., [2020] apply the reparameterization trick for UAP
generation.

Moreover, generation models are commonly used to cre-
ate paraphrases such as machine translation models for back-
translation [Ribeiro et al., 2018], a syntactically controlled
paraphrase network [Iyyer et al., 2018] or a text style transfer
model [Qi et al., 2021]. The latter two specifically change
task-irrelevant features.

Adversary’s Knowledge
We can categorize the attack methods into three types (white-
box, grey-box and black-box) according to the three levels
of model knowledge: model parameters, output logits (i.e.,
estimated probability distribution) and final predictions.

The white-box methods require model parameters to prop-
agate gradients back to the input (e.g., the gradient of an
adversarial loss with respect to the input word embedding
∇ewL). They need ∇ewL to find important tokens and gen-
erate perturbations, e.g., the noise in the embedding space or
substitute tokes. Liang et al., [2018] adapt the gradient mag-
nitude to find important words for perturbations and search
for substitute words for each targeted label since the magni-
tude in each dimension of the word embedding indicates the
sensitiveness of the prediction to the change. Gong et al.,
[2018] directly use gradients to perform perturbations on the
embedding space. Ebrahimi et al., [2018] and Wallace et al.,
[2019a; 2020] use the gradients and word embeddings to ap-
proximate the loss for word substitutions. Specifically, they
approximate the loss change of substituting a word w with
another word s in the vocabulary by the inner product of the
word embedding es and ∇ewL, where L is the adversarial
loss. The selected word s is expected to minimize the adver-
sarial loss on the perturbed text x̃.

argmin
s

L(x̃, y)

≈ eTs ∇ewL(x, y)
(2)

Under the grey-box setting, an adversary only has access
to the probability distribution (or logits) over the output vari-
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able Pr(y|x) = f(x), where Pr(yi|x) is the probability
of the outcome yi given the text x. Grey-box methods em-
ploy the probabilistic information to measure how impor-
tant each token wi ∈ x is to the prediction. For wi, its
importance score Ii is commonly calculated as the differ-
ence of the probabilities of the correct class Pr(ytrue|x) −
Pr(ytrue|x\wi

) [Li et al., 2020], where x\wi
can either be

{w1, . . . , wi−1, wi+1, . . . , wT } (delete wi) [Li et al., 2019;
Jin et al., 2020] or {w1, . . . ,UNK, . . . , wT } (replace wi with
the unknown token UNK) [Gao et al., 2018; Li et al., 2020].
Jin et al., [2020] also add the change to the misclassified class
fỹ(x̃) − fỹ(x) if argmax

y∗
f(x̃) ̸= argmax

y∗
f(x), where ỹ is

the misclassified class, and fỹ(x̃) is the probability of the
misclassified class for the perturbed sample. Afterward, grey-
box methods apply heuristics to search for substitute words or
evaluate noisy words from character editing via Pr(ytrue|x̃).

The black-box attacks require no information about the
victim model and commonly generate paraphrases. We have
discussed the concrete methods in the previous paragraphs for
perturbation types and space.

3.4 Evaluation Protocols
Data-based evaluation. There are different evaluation pro-
tocols for the three data types. NDS data and debiased data
are evaluated on the same aggregate metrics for ID data (e.g.,
accuracy for text classification and F1 scores for MRC). The
drops of these metrics from ID data to OOD data reveal the
model’s ability of OOD generalization.

Method-based evaluation. It is meaningless to apply the
ID metrics to adversarial examples unless used for adversar-
ial transferability, since adversarial robustness only concerns
the misclassified examples for the victim model. Instead, ad-
versarial robustness is evaluated by the effectiveness of an at-
tack method generating adversarial examples. The common
evaluation metrics are attack success rate and the number of
queries. Specifically, given a test sample Dtest, attack suc-
cess rate measures the proportion of the data points in Dtest
which can be perturbed to fool a victim model. It is calculated
by dividing the number of adversarial examples that success-
fully achieve attack goals, e.g., misclassification, by the size
of Dtest. The number of model queries during an attack mea-
sures how many perturbed examples have been evaluated be-
fore a valid adversarial example appears. Besides the query
for predictions, white-box and grey-box methods also query
victim models to get gradients or output logits. These two
metrics can be used to compare the adversarial robustness be-
tween models (with fixed attack methods) [Gokhale et al.,
2022] and the performance of different attack methods [Li et
al., 2020] (with fixed victim models).

Adversarial transferability. Adversarial transferability is
another evaluation type for adversarial robustness but uses the
data-based evaluation method. It generates adversarial exam-
ples from a base model and then uses them to evaluate other
models. The vulnerability can transfer across different model
architectures and datasets [Wallace et al., 2020]. Liang et al.,
[2021] show that transferability can even occur across tasks
as long as the source data distribution and the target one are

close. Adversarial transferability encourages the generation
of costly human-made adversarial examples since they can
be helpful in evaluating and improving the robustness of var-
ious models. For example, Nie et al., [2020] and Wallace et
al., [2019b] show model predictions or interpretations (e.g.,
highlighting words that are important for model predictions)
to crowdworkers to assist in the generation of adversarial ex-
amples.

4 Opportunities and Challenges
This section provides insights for future work based on the
above OOD discussions. The opportunities and challenges
related to adversarial robustness are also investigated.

4.1 General Challenges and Opportunities
Our study provides insights into OOD evaluation, OOD gen-
eralization and OOD detection.

A benchmark for all the OOD types. Developing a com-
prehensive benchmark for all the OOD types can help evalu-
ate the model’s actual ability of language understanding and
identify potential incapacity. Although there are open-source
tools developed for OOD evaluation, most of them can only
evaluate one perspective of the distribution shift. It is chal-
lenging to develop such a benchmark due to the idiomatic
lock-in in each line of research, different data-generating pro-
cesses and evaluation protocols. The disclosure of their con-
nections and differences in this survey can provide insights
into developing such a comprehensive benchmark for OOD
evaluation. For example, adversarial robustness can be eval-
uated via adversarial transferability to unify evaluation met-
rics.

Data-generating processes may break the assumptions of
covariate shift. Although all the three research lines aim
to evaluate data with covariate shifts, some processes may
break the assumptions of covariate shifts, i.e., fixed P0(Y|X )
and P0(Y). These two assumptions also indicate P0(X|Y)
as a special case of covariate shift due to P0(X|Y) =
P0(Y|X )P0(X )

P0(Y) . For example, although P0(Y|X ) is always as-
sumed the same for most NLP tasks since humans usually
annotate each sentence with the same label, gradient-based
methods may generate adversarial examples with labels mis-
matching with humans’ perceptions. In addition, some meth-
ods for generating debiased data may change P0(Y). For ex-
ample, Zhang et al., [2019] balance examples with high lex-
ical overlap for all kinds of labels in their debiased dataset
to prevent the feature of lexical overlap from being a predic-
tive indicator for paraphrase identification. Future work that
evaluates covariate shifts (i.e., the changes of input domains)
may better consider the two assumptions for data-generating
processes and analyze their effects.

Enhance general OOD performance. The three types of
out-of-distribution (OOD) data can be created by altering
task-irrelevant features, as explained in Section 2. Our
first argument suggests that OOD generalization techniques
should aim to improve the acquisition of general linguistic
or semantic knowledge to perform well on all three types of
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OOD evaluation. This accounts for the observation that un-
supervised pretraining and data augmentation strategies for
learning general linguistic or semantic knowledge can en-
hance generalization on different domains and adversarial
robustness [Gururangan et al., 2020; Gokhale et al., 2022].
Notably, such augmentation techniques [Wei and Zou, 2019]
may solely modify the background features of training sam-
ples without any adversarial process. Our second argument
is that even though dataset filtering for bias mitigation may
improve model performance on biased datasets, it may lead
to inferior performance on NDS data and decreased adver-
sarial robustness , as biased data still contains knowledge of
semantic and background features that can enhance general
OOD performance. Supporting evidence for this argument
is provided by Bras et al., [2020] and Gokhale et al., [2022]
across various NLP tasks.

Utilizing detection methods across different research
lines. The connections between OOD types regarding the
shifted features also motivate future researchers to apply
OOD detection methods across the three research lines. For
example, since density estimation methods can effectively de-
tect NDS data with background shift [Arora et al., 2021], they
may defend against black-box attacks, which always generate
adversarial examples by shifting background features.

4.2 Challenges and Opportunities for Adversarial
Robustness

Beyond semantics preservation. Adversarial examples
can be generated beyond the assumption of semantics preser-
vation. Chen et al., [2022] define obstinate adversarial ex-
amples, which satisfy two conditions: 1) their ground-truth
labels after the perturbation are changed, but 2) the victim
model maintains the original predictions. Similarly, Kaushik
et al., [2020] minimally perturb test examples to change the
labels of test examples. There are many reasons to explore
obstinate adversarial examples. Gardner et al., [2020] argue
that such examples characterize the correct decision boundary
for the task. Chen et al., [2022] find that models with adver-
sarial training on these examples reveal vulnerability to ob-
stinate adversarial examples. Also, breaking the assumption
of semantics preservation allows more adversarial behaviours
for tasks beyond single-sentence classification. For example,
Song et al., [2020] generate nonsensical or natural sentences,
leading to invariant model outputs for sentence-pair classifi-
cation. Wallace et al., [2020] change malicious content into
nonsensical text which still makes machine translation mod-
els translate it into bad language.

Developing realistically harmful adversarial behaviours.
There are different model behaviours designed for malicious
intents during adversarial attacks. For classification tasks, we
can either specify the expected prediction (targeted attack) or
accept any prediction different from the correct label (non-
targeted attack). The harm of attack depends on the specific
task or labels. For example, it is harmful to generate adversar-
ial examples to evade the detection of misinformation or toxic
content. In contrast, there are many possibilities of adversar-
ial behaviours for generation tasks due to various combina-
tions of input and output text. Cheng et al., [2020] define an

attack where all the words in the output text are different from
the original output sequence while the input is similar. This
kind of attack can lower the standard evaluation metrics based
on n-grams, like BLEU scores. Wallace et al., [2020] develop
UAPs to make MT models hardly generate any translation or
output random words. Targeted keyword attacks [Cheng et
al., 2020] can make models generate targeted words. Future
researchers can define more realistically harmful behaviours,
such as the generation of malicious nonsense or racial mate-
rials.

Adversarial robustness may not be a good proxy for re-
alistic scenarios. Adversarial perturbations may make text
deviate from their real-world distribution and generate rarely
occurred examples. Particularly, pure gradient-based meth-
ods only pursue worst-case perturbations without considering
the naturalness of adversarial examples. Hence, to alleviate
this problem, adversarial candidates are commonly validated
by some metrics such as language model perplexity [Alzantot
et al., 2018], and part-of-speech matching [Ebrahimi et al.,
2018]. However, attack processes become computationally
expensive by including these separate modules and rejecting
most of the perturbed examples. Another type of approach is
to use limited search space for adversarial perturbations, e.g.,
using synonyms for word substitutions with the compromise
of worst-case performance [Zang et al., 2020]. It is worth
exploring the attack methods that can inherently ensure the
naturalness of perturbed text. There are some scenarios, as
summarized below, where adversarial robustness against rare
and unnatural text is undoubtedly critical. 1) When models’
behaviours can cause devastating outcomes, e.g., astronautics
or legal services. 2) When models are deployed in ubiquitous,
unforeseeable scenarios. For example, Facebook translation
once made the mistake of translating the simple phrase “good
morning” in Arabic into “attack it” in English. Such a mys-
terious translation convinced the police that the user posting
this message might launch a vehicle attack, resulting in the ar-
rest of the user. 3) When attackers have sufficient malicious
intent to explore rare cases, such as fact verification and secu-
rity tasks where attackers would like to evade the model’s de-
tection to get unqualified access, e.g., propagating anti-social
content or fake news on social media.

5 Conclusion
In this paper, we characterized and summarized the three
mainstream lines of research on dataset biases, domain gen-
eralization and adversarial robustness. We encouraged future
researchers to think comprehensively about OOD evaluation
and improve the OOD generalization of NLP models on all
the three types of OOD data. We also highlighted the gap
between adversarial robustness and realistic OOD evaluation.
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Marasović, Swabha Swayamdipta, Kyle Lo, Iz Belt-
agy, Doug Downey, and Noah A. Smith. Don’t stop
pretraining: Adapt language models to domains and tasks.
In ACL, pages 8342–8360, July 2020.

[Hendrycks et al., 2020] Dan Hendrycks, Xiaoyuan Liu,
Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and
Dawn Song. Pretrained transformers improve out-of-
distribution robustness. In ACL, pages 2744–2751, 2020.

[Ilyas et al., 2019] Andrew Ilyas, Shibani Santurkar, Dim-
itris Tsipras, Logan Engstrom, Brandon Tran, and Alek-
sander Madry. Adversarial examples are not bugs, they
are features. In Advances in NIPS, 2019.

[Iyyer et al., 2018] Mohit Iyyer, John Wieting, Kevin Gim-
pel, and Luke Zettlemoyer. Adversarial example genera-
tion with syntactically controlled paraphrase networks. In
NAACL-HLT, pages 1875–1885, 2018.

[Jia and Liang, 2017] Robin Jia and Percy Liang. Adversar-
ial examples for evaluating reading comprehension sys-
tems. In EMNLP, pages 2021–2031, 2017.

[Jin et al., 2020] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and
Peter Szolovits. Is bert really robust? a strong baseline
for natural language attack on text classification and en-
tailment. In AAAI, pages 8018–8025, 2020.

[Kaushik et al., 2020] Divyansh Kaushik, Eduard Hovy, and
Zachary Lipton. Learning the difference that makes a dif-
ference with counterfactually-augmented data. In ICLR,
2020.

[Kedzie et al., 2018] Chris Kedzie, Kathleen McKeown, and
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