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Abstract

Diffusion models, as a novel generative paradigm,
have achieved remarkable success in various image
generation tasks such as image inpainting, image-
to-text translation, and video generation. Graph
generation is a crucial computational task on graphs
with numerous real-world applications. It aims
to learn the distribution of given graphs and then
generate new graphs. Given the great success
of diffusion models in image generation, increas-
ing efforts have been made to leverage these tech-
niques to advance graph generation in recent years.
In this paper, we first provide a comprehensive
overview of generative diffusion models on graphs,
In particular, we review representative algorithms
for three variants of graph diffusion models, i.e.,
Score Matching with Langevin Dynamics (SMLD),
Denoising Diffusion Probabilistic Model (DDPM),
and Score-based Generative Model (SGM). Then,
we summarize the major applications of generative
diffusion models on graphs with a specific focus on
molecule and protein modeling. Finally, we discuss
promising directions in generative diffusion models
on graph-structured data.

1 Introduction
Graphs can represent the rich variety of relationships (i.e.,
edges) between real-world entities (i.e., nodes). They have
been widely used in a diversity of domains [Xia et al., 2021],
such as social networks [Derr et al., 2020; Fan et al., 2019a],
molecular graph structure [Wu et al., 2022b], and recom-
mender systems [Fan et al., 2022a; Fan et al., 2020], aim-
ing to model association information and structural patterns
among various real-world objects [Barabási, 2013]. Due to
the prevalence of graphs, graph generative models, with the
goal of learning the given graph distributions and generat-
ing novel graphs, have attracted significant attention in vari-
ous applications [Zhang et al., 2020], such as drug discovery
and semantic parsing in NLP. Typically, most existing graph
generative methods can be classified into two groups: autore-
gressive generation and one-shot generation [Jo et al., 2022].
Particularly, autoregressive generation methods are designed

∗Wenqi Fan is the corresponding author.

to generate desired graphs in a sequential process, while one-
shot generation methods generate the entire graph with topol-
ogy structure and node/edge feature in one single step. In
general, graph generation faces three fundamental challenges
- (1) Discreteness: The graph structure is naturally discrete,
resulting in calculation difficulties of models’ gradients [Guo
and Zhao, 2022; Zhang et al., 2020]. To this end, the most
widely used optimization approaches cannot be directly ap-
plied to perform back-propagation training for graph genera-
tion in an end-to-end fashion. (2) Complex Intrinsic Depen-
dencies: Unlike image data, nodes are not independent and
identically distributed (or i.i.d.). In other words, these com-
plex graph structural dependencies are inherent relationships
among instances (e.g., nodes and edges) [Niu et al., 2020;
Guo and Zhao, 2022]. Such complexity of graph structure in-
troduces tremendous challenges in generating desired graphs.
(3) Permutation Invariant: Since nodes are naturally un-
ordered in most graphs, there are at most N ! different equiv-
alent adjacency matrices representing the same graph with N
nodes [Niu et al., 2020].

Traditional graph generation methods rely on leveraging
hand-crafted graph statistics (e.g., degrees and clustering co-
efficients properties), and learning kernel functions or engi-
neered features to model the structural information [Xia et
al., 2021]. Driven by recent advances in Deep Neural Net-
works (DNNs) techniques, deep generative models, such as
variational autoencoder (VAE) [Simonovsky and Komodakis,
2018], Generative Adversarial Networks (GAN) [De Cao
and Kipf, 2018], and normalizing flows [Luo et al., 2021b],
have largely improved the generation performance for graph-
structured data. For example, GraphVAE trains two graph
neural networks (GNNs) as an encoder and a decoder to es-
timate the graph distribution [Simonovsky and Komodakis,
2018], and MolGAN introduces a GAN-based framework for
molecular generation [De Cao and Kipf, 2018]. Although
these deep generative methods have achieved promising re-
sults, most of them still have several limitations. For exam-
ple, VAE approaches struggle with the estimation of poste-
rior to generate realistic large-scale graphs and require ex-
pensive computation to achieve permutation invariance be-
cause of the likelihood-based method [Bond-Taylor et al.,
2021]. GAN methods are more prone to mode collapse
with graph-structured data and require additional compu-
tation to train a discriminator [De Cao and Kipf, 2018;
Wang et al., 2018]. The flow-based generative models are
hard to fully learn the structural information of graphs be-
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cause of the constraints on the specialized architectures [Cor-
nish et al., 2020]. Thus, it is desirable to have a novel gener-
ative paradigm for deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et
al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model
to perturb the original input data by adding noise (i.e., gener-
ally Gaussian noise) and then train a learnable reverse process
to recover the original input data from the noise. Enhanced
by the solid theoretical foundation, the probabilistic param-
eters of the diffusion models are easy-to-tractable, making
tremendous success in a wide range of tasks [Cao et al., 2022;
Yang et al., 2022].

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2023]. Therefore, in this survey, we provide a
comprehensive overview of the advanced techniques of deep
graph diffusion models. More specifically, we first briefly
introduce the basic ideas of the deep generative models on
graphs along with three main paradigms in diffusion mod-
els and their key applications i.e., molecule generation and
protein modeling. At last, we discuss the future research di-
rections for diffusion models on graphs. To the best of our
knowledge, this survey is the very first to summarize the lit-
erature in this novel and fast-developing research area.

2 Preliminaries
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. In general, a graph is repre-
sented as G= (X,A), consisting of N nodes. A∈RN×N is
the adjacency matrix, where Aij = 1 when node vi and vj
are connected, and 0 otherwise. X∈RN×d denotes the node
feature with dimension d. Under diffusion context, G0 refers
to the original input graph, while Gt refers to the noise graph
at the t time step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder qϕ(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder pθ(G|z) to reconstruct new data given the sampling
from z [Simonovsky and Komodakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Wang et al., 2018] with two neural net-
works: generator and discriminator. Specifically, the gen-
erator attempts to learn the graph distribution and generate
new graphs, while the discriminator tries to distinguish the
real graph from the generated graph. Due to the discrete na-
ture of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
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Figure 1: Deep Generative Models on Graphs.

ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019].
The inverse function f−1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Cornish et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of
f−1(z) by maximizing log-likelihoods with gradient descent.
Limitations. Despite the great success, most existing deep
generative models are still facing challenges in graph gen-
eration. For instance, VAE models generate graphs based
on likelihood, which requires a massive graph-matching pro-
cess or an explicit estimation of the likelihood of each pos-
sible node alignment when achieving permutation invariant
[Simonovsky and Komodakis, 2018]. In practice, GAN-
based generative models on graphs easily fall into mode col-
lapse, which can limit both the scale and novelty of gener-
ated graphs [De Cao and Kipf, 2018]. As for normalizing
flow, the bijective model structure limits its ability to capture
large-scale node-edge dependencies [Cornish et al., 2020].

2.2 Diffusion Models
In general, there are three paradigms of diffusion models:
Score Matching with Langevin Dynamics (SMLD), Denois-
ing Diffusion Probabilistic Model (DDPM) and Score-based
Generative Model (SGM). SMLD and DDPM leverage the
score matching idea and nonequilibrium thermodynamics re-
spectively to learn different reverse functions of the diffusion
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process. SGM generalizes the discrete diffusion steps into the
continuous scenario and further models the diffusion process
with the Stochastic Differential Equations (SDE).
SMLD. As the first representative version of the diffusion
model, SMLD [Song and Ermon, 2019] proposes a novel
generative model mechanism that first progressively adds ran-
dom noise to the data distribution to a predefined prior (usu-
ally Gaussian noise), and then reverses the diffusion process
by learning the gradient of the data distribution ∇x log p(x).
The SMLD perturbs the original distribution with a sequence
of random Gaussian noises of incremental scales that can
be modelled as qσ(x̃|x) := N

(
x̃|x, σ2I

)
. This noise

scheme facilitates an accurate score matching by preventing
the noised distribution from a low-dimensional manifold and
providing sufficient training data in low data density regions
with large-scale noise. In the gradual denoising process,
SMLD proposes a Noise Conditional Score Network (NCSN)
sθ(xt, σ) to approximate the score jointly. With the annealed
Langevin dynamics, NCSN is able to yield new samples from
the Gaussian distribution as follows:

xt = xt−1 +
ϵ
2∇x log p(xt−1) +

√
ϵzt,

where zt ∼ N (0, I).
DDPM. Enhanced by the variational inference, the denoising
diffusion probabilistic model (DDPM) [Ho et al., 2020] con-
structs two parameterized Markov chains to diffuse the data
with predefined noise and reconstruct the desired samples
from the noise. In the forward chain, the DDPM gradually
perturbs the raw data distribution x0 ∼ q (x0) to converge
to the standard Gaussian distribution zt under a pre-designed
mechanism. Meanwhile, the reverse chain seeks to train a pa-
rameterized Gaussian transition kernel to recover the unper-
turbed data distribution. Mathematically, the forward process
q can be defined as follows:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
,

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),
(1)

where βt ∈ (0, 1) represents the variance of the Gaussian

noise added at time step t. With αt = 1−βt,
−
αt =

∏t
i=1 αi,

the marginal can be written as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ,

(2)

where ϵ denotes the Gaussian noise. These equations enable
the DDPM to sample the noised latent xt at an arbitrary step
conditioned on x0 [Vignac et al., 2023]. The reverse Gaus-
sian transitions pθ parameterized by θ can be defined as:

pθ(x0:T ) = p(xT

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

(3)

The neural network will be trained to optimize the vari-
ational upper bound on negative log-likelihood, which can
be estimated by the Monte-Carol algorithm [Vignac et al.,
2023]. As a result, the DDPM would sample from the limit
distribution, and then recursively generate samples xt using
the learned reverse chain.
SGM. The score SDE formula describes the diffusion pro-
cess in continuous time steps with a standard Wiener process.

The forward diffusion process in infinitesimal time can be for-
mally represented as [Song et al., 2021]:

dx = f(x, t)dt+ g(t)dw, (4)
where w denotes a standard Wiener process (a.k.a., Brown-
ian motion), and g(·) denotes the diffusion coefficient, which
is assumed to be a scalar independent of x. The reverse-
time SDE describes the diffusion process running backwards
in time to generate new samples from the known prior xT ,
which is shown as follows:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄. (5)
The only unknown information in reverse-time SDE is the
score function ∇x log p(x), which can be approximated by
a time-dependent score-based model sθ(x, t) by optimizing
denoising score-matching objective:

Et,x0,xt

[
λ(t) ||sθ (xt, t)−∇ xt

log p0t (xt|x0)||2
]
, (6)

where p0t(xt|x0) denotes the probability distribution of xt

conditioned on x0, t is uniformly sampled over [0, T ], x0 ∼
p0(x) and xt ∼ p0t(xt|x0). The score-based diffusion model
through SDE unifies the SMLD and DDPM into a continuous
version.

Furthermore, the probability flow ODE [Song et al., 2021]
designs a deterministic reverse-time diffusion process, whose
marginal probability density is identical to the SDE formula.
This method largely accelerates the sampling process consid-
ering that it allows to perform Gaussian sampling at adap-
tive time intervals with discretization strategy rather than at
successive time steps, and thus the number of estimations of
score function is reduced. The reverse-time ODE is defined
as below:

dx = [f(x, t)− 1
2g(t)

2∇x log pt(x)]dt.

3 Generative Diffusion Models on Graphs
3.1 SMLD on Graphs
EDP-GNN [Niu et al., 2020] is the very first score match-
ing based diffusion method for undirected graph generation.
Through fitting a neural network to estimate the different
scales of Gaussian noise added to the upper triangular seg-
ment of the symmetric adjacency matrices, EDP-GNN learns
the score function of the adjacency matrices distributions of
the graphs. By using a similar annealed Langevin dynam-
ics implementation as SMLD [Song and Ermon, 2019], the
adjacency matrices are generated from the sampled Gaus-
sian noise. Inspired by the GIN method [Xu et al., 2019],
EDP-GNN also introduces a multi-channel GNN layer to ob-
tain node features with the message-passing mechanism and
an MLP output layer including a noise-conditioned term to
prevent separately training the score network at each noise
scale. ConfGF [Shi et al., 2021] is the first work adapting
the SMLD-based diffusion work to the molecular confirma-
tion generation problem. Unlike EDP-GNN, whose target is
to generate adjacency matrices, ConfGF focuses on generat-
ing atomic coordinates (node feature) R given the molecu-
lar graph G. Due to the roto-translation equivalent property,
ConfGF maps a set of atomic coordinates to a set of inter-
atomic distances l. By injecting the Gaussian noise over l,
ConfGF learns the score function of interatomic distance dis-
tributions. Similar to EDP-GNN, the score function is later
combined with the annealed Langevin dynamics to generate
new atomic coordinate samples.
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3.2 DDPM on Graphs
The adaption of denoising diffusion probabilistic models on
graphs is mainly focusing on designing the appropriate tran-
sition kernel of the Markov chain. The previous diffusion
models usually embed the graphs in continuous space, which
might lead to structural information loss. Haefeli et al. pro-
pose a denoising diffusion kernel to discretely perturb the
data distribution. At each diffusion step, each row of the
graphs’ adjacency matrices is encoded in a one-hot manner
and multiplied with a double stochastic matrix Qt. In the re-
verse process, the model includes a re-weighted ELBO as the
loss function to obtain stable training. With discrete noise,
the sampling process is largely accelerated. Furthermore, Di-
Gress [Vignac et al., 2023] extends the DDPM algorithm to
generate graphs with categorical node and edge attributes.
The conditional probabilities for the noisy graphs can be de-
fined as follows:

q(Gt|Gt−1) = (Xt−1Q
X
t ,Et−1Q

E
t ),

q(Gt|G) = (XQ̄X
t ,EQ̄E

t ),
(7)

where Gt = (Xt,Et) refers to the noisy graph composed of
a node attribute matrix Xt and an edge attribute tensor Et.
QX

t and QE
t refer to the noise added to the node and edge,

respectively. This Markov formulation allows sampling di-
rectly at an arbitrary time step without computing the pre-
vious steps. In the denoising process, DiGress incorporates
the cross-entropy to measure the distance between the pre-
dicted distribution and the input graph distribution with re-
spect to node and edge, so as to train the parameterized graph
transformer network ϕθ. Thus, the modeling of graph distri-
bution is simplified to a sequence of classification. In addi-
tion, operating on discrete steps allows DiGress to leverage
various graph descriptors, such as spectral features, to guide
the diffusion process. Overall, DiGress is capable of yielding
realistic large-scale graphs depending on the overall or par-
tial graph. Moreover, the E(3) Equivariant Diffusion Model
(EDMs) is able to operate on both continuous and categor-
ical features of the graph by training an equivariant network
[Hoogeboom et al., 2022]. The EDMs jointly inject the Gaus-
sian noise to the latent variables zt = [zxt , z

h
t ] of nodes co-

ordinates (continuous) xi and the other features h (categori-
cal). As an extension of EDMs, Equivariant Energy-Guided
SDE (EEGSDE) [Bao et al., 2023] introduces a novel prop-
erty prediction network that serves as a guiding mechanism in
the generative process. This network is concurrently trained
alongside the reverse diffusion process, with its gradient serv-
ing as an additional force to enhance the overall performance.
Current generative models struggle to effectively capture the
complexities of interatomic forces and the presence of nu-
merous local constraints. To address this issue, the proposed
approach in MDM [Huang et al., 2022b] utilizes augmented
potential interatomic forces and incorporates dual equivari-
ant encoders to effectively encode the varying strengths of
interatomic forces. Additionally, a distributional controlling
variable is introduced to ensure thorough exploration and en-
hance generation diversity during each diffusion/reverse step.
Although the diffusion method is initially designed for a one-
shot generative manner, the GRAPHARM model proposes an
autoregressive diffusion model to generate graphs by sequen-
tially predicting each row in the adjacency matrix [Kong et
al., 2023]. The GRAPHARM masks nodes and correspond-
ing edges in forward diffusion whose order is determined by a

diffusion ordering network qϕ(σ|G0). In the reverse process,
the GRAPHARM denoises only one node at each step (i.e.,
sequentially generates one row in the adjacency matrix) with
the help of the graph attention network [Liao et al., 2019].

3.3 SGM on Graphs
Although EDP-GNN develops a score-based generative
model to derive the adjacency matrix of the graph, the estima-
tion for the score function depends on the noise scales at the
discrete steps, which restricts its capacity to produce large-
scale graphs. GraphGDP [Huang et al., 2022a] leverages
the variance-preserving SDE to disturb the adjacency matrix
to random graphs. In the reverse process, Position-enhanced
Graph Score Network (PGSN) incorporates the features of
both nodes and edges and graph position information for per-
mutation equivariant score estimation. Notably, GraphGDP
defines a transformation in the forward process to associate
continuous distribution with discrete graphs, which allows the
model to learn additional graph information of intermediate
diffusion steps. Moreover, GDSS [Jo et al., 2022] proposes a
continuous-time SDE system to model the diffusion process
over nodes and edges simultaneously, where Gaussian noise
is directly added to the adjacency matrix and node features.
The forward diffusion process on the weighted graph G at
each infinitesimal time step can be modelled as:

dGt = ft(Gt)dt+ gt(Gt)dw, G0 ∼ pdata, (8)

where ft represents the linear drift coefficient. To reduce the
computation in the reverse diffusion process, GDSS intro-
duces a reverse-time SDE system with respect to nodes and
edges as:{

dXt=
[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt+ g1,tdw̄1,

dAt =
[
f2,t(At)− g22,t∇At log pt(Xt,At)

]
dt+ g2,tdw̄2,

(9)

where ∇Xt
log pt(Xt,At) and ∇At

log pt(Xt,At) are the
partial score functions, indicating the gradients of the joint
log-density connecting the adjacency matrix A and node fea-
ture matrix X. A corresponding object function is proposed
to jointly estimate the log density of nodes and edges:minθ Et

{
λ1(t)EG0

EGt|G0

∥∥sθ,t(Gt)−∇Xt log p0t(Xt|X0)
∥∥2
2

}
minϕ Et

{
λ2(t)EG0

EGt|G0

∥∥sϕ,t(Gt)−∇At log p0t(At|A0)
∥∥2
2

}(10)

where sθ,t(Gt) and sϕ,t(Gt) are the MLP advanced by the
graph multi-head attention blocks [Baek et al., 2021a] to
learn the long-term relationship. The GDSS approximates the
expectation in Eq.(10) with Monte Carlo estimation, which
requires fewer computation and sampling steps compared to
the Langevin dynamics [Jo et al., 2022]. To further improve
the generation quality, GDSS proposes an integrator to cor-
rect the estimated partial score by the score-based MCMC
estimation. Note that GDSS is the very first diffusion frame-
work that enables the generation of a whole graph based
on node-edge dependency. However, the standard diffusion
process would eliminate the features of the sparse graphs
in a few steps, which may cause the score estimation un-
informative in the reverse process. To address such limita-
tion, a Graph Spectral Diffusion Model (GSDM) [Luo et
al., 2022b] is introduced to perform the low-rank Gaussian
noise insertion, which can gradually perturb the data distri-
bution with less computation consumption while achieving
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Figure 2: An illustration of diffusion models on molecular and pro-
tein modeling. The forward diffusion process involves the gradual
addition of noise from the fixed posterior distribution q(Gt|Gt−1)
to the input graph G0 (representing a molecule or protein) over a
period of time T steps, ultimately resulting in the destruction of the
molecule or protein structure. In contrast, the reverse diffusion pro-
cess samples an initial graph GT from a standard Gaussian distri-
bution and gradually refines the graph’s structure by using Markov
kernels pθ(Gt−1|GT ).

higher generation quality. To be specific, in the diffusion
process, GSDM performs spectral decomposition on the ad-
jacency matrix A to obtain diagonal eigenvalue matrix Λ
and eigenvectors U (i.e., A = UΛU⊤). Meanwhile, since
the top-k diagonal entries in Λ can maintain most of the
graph information, GSDM conducts the diffusion on the cor-
responding top-k largest eigenvalues in A for efficient com-
putation. In addition, SGGM introduces a latent-based gen-
erative framework on the graph [Yang et al., 2023], which
first encodes the high-dimensional discrete space to low-
dimensional topology-injected latent space via a pre-trained
variational graph autoencoder and then adopts score-based
generative model for the graph generation.

4 Applications
In this section, we aim to review key applications for diffu-
sion models on graphs, such as molecule and protein genera-
tions in chemistry and biology domains. The Figure 2 illus-
trates diffusion models on molecule and protein generation
tasks. In Table 1, we summarize these applications.

4.1 Molecule Modeling
The goal of molecule modeling is to employ graph learning
techniques for the purpose of representing to better perform
downstream tasks, such as molecule generation [Hoogeboom
et al., 2022]. In general, molecules can be naturally repre-
sented as graphs (e.g., atom-bond graphs), in which atoms
are represented as nodes and chemical bonds are represented
as edges. As such, graph learning techniques can be ap-
plied to analyze and manipulate molecular structures for var-
ious downstream tasks, such as drug discovery, computa-
tional chemistry, materials science, bioinformatics, etc. Fur-
thermore, molecular graph modeling can be used to gener-
ate new molecules with desired properties by using advanced
graph learning techniques such as VAE [Ma and Zhang,
2021], GNNs [Han et al., 2022], and reinforcement learning
(RL) [Zhou et al., 2019]. Particularly, molecule modeling can
be further classified into two tasks, namely, molecule confor-
mation generation and molecular docking.

Tasks Applications Frame Representative Methods

M
olecule

M
odeling

Molecule

Conformation

Generation

SMLD MDM [Huang et al., 2022b]

DDPM

GeoDiff [Xu et al., 2022],
EDMs [Hoogeboom et al., 2022],

EEGSDE [Bao et al., 2023],
DiGress [Vignac et al., 2023]

SGM

Torsional Diffusion [Jing et al., 2022],
MOOD [Lee et al., 2022],

GDSS [Jo et al., 2022],
DGSM [Luo et al., 2021a],

DiffBridges [Wu et al., 2022b]

Molecular

Docking

DDPM

FragDiff [Peng et al., 2023],
DiffLink [Igashov et al., 2022],
TargetDiff [Guan et al., 2023],

DiffBP [Lin et al., 2022]
SGM DiffDock [Corso et al., 2022]

Protein
M

odeling

Protein

Generation

DDPM

SMCDiff [Trippe et al., 2023],
SiamDiff [Zhang et al., 2022],
DiffFold [Wu et al., 2022a],

ProSSDG [Anand and Achim, 2022],
DiffAntigen [Luo et al., 2022a],

RFdiffusion [Watson et al., 2022]
SGM ProteinSGM [Luo et al., 2022a]

Protein-ligand Complex
Structure Prediction

DDPM DiffEE [Nakata et al., 2022]
SGM NeuralPLexer [Qiao et al., 2022]

Table 1: A summary of representative applications for generative
diffusion method on graphs.

Molecule Conformation Generation
A molecule can be represented by three-dimensional geome-
try or conformation, in which atoms can be denoted as their
Cartesian coordinates. The biological and physical character-
istics of the molecule are significantly influenced by its three-
dimensional structure. Meanwhile, molecular conformations
possess roto-translational invariance. As a result, several
techniques avoid directly modeling atomic coordinates by
using intermediary geometric variables, such as atomic dis-
tances, bond angles, and torsion angles, which also have roto-
translational invariance [Shi et al., 2021]. However, as they
seek to indirectly model these intermediate geometric vari-
ables, they may be subject to limitations in either the training
or inference process. To address this issue, GeoDiff [Xu et
al., 2022] treats atoms as particles in a thermodynamic sys-
tem and simulates the diffusion process in nonequilibrium
thermodynamics. By learning to reverse the diffusion pro-
cess, the sampled molecules gradually diffuse backwards into
the target conformation. Dynamic Graph Score Matching
(DGSM) [Luo et al., 2021a] uses score matching based on
a 2D molecular graph to generate the conformation structure
of a molecule by modeling the local and long-range interac-
tions of atoms.

Torsional Diffusion [Jing et al., 2022] defines the diffu-
sion over a torus to represent torsion angles, providing a
more natural parameterization of conformers. Besides, Tor-
sional Diffusion leverages the torus as a representation of tor-
sion angles for conformations generation. By incorporating
a probabilistic analysis that enables probability calculations
and atom classification, E(3) Equivariant Diffusion Model
(EDMs) [Hoogeboom et al., 2022] enables the model to learn
the denoising process in continuous coordinates and improve
the generation of molecular conformations. As an extension
of EDMs, equivariant energy-guided stochastic differential
equations (EEGSDE) [Bao et al., 2023] adds energy func-
tions to the model as a guide to fully learn the geometric sym-
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metry of molecules to generate 3D molecular conformations.
In addition to adding energy guidance and learning the

atomic coordinates of molecules and torsion angles, other do-
main knowledge can be introduced into the model for en-
hancing the molecular representation learning. For exam-
ple, to model interatomic interactions in molecular repre-
sentation, MDM [Huang et al., 2022b] considers the role
of atomic spacing in iteratomic forces for molecular repre-
sentation. More specifically, MDM treats atomic pairs with
atomic spacing below a certain threshold as covalent bonds,
as chemical bonds govern interatomic forces when atoms are
close enough to each other. For atomic pairs with atomic
spacing above a certain threshold, the van der Waals force
is proposed to govern the interatomic forces. Additionally, to
enhance the diversity of molecule generation, they introduce
latent variables that are interpreted as control representations
in each diffusion/reverse step of the diffusion model. Diff-
Bridges [Wu et al., 2022b] designs an energy function with
physical information and a statistical prior for molecule gen-
eration. It differs from other methods in its incorporation of
physical prior into bridges, as opposed to learning diffusions
as a combination of forward-time diffusion bridges.

Transformer architectures have achieved notable success
in the fields of computer vision (CV) and natural language
processing (NLP), such as ViT [Dosovitskiy et al., 2020],
BERT [Kenton and Toutanova, 2019], GPT [Brown et al.,
2020]. Similarly, graph transformer [Dwivedi and Bresson,
2021] is incorporated into discrete diffusion model with dis-
crete diffusion [Austin et al., 2021] for graph generation. In
particular, DiGress uses graph-based architectures and a noise
model that preserves the marginal distribution of node and
edge types [Vignac et al., 2023], rather than using uniform
noise as a starting point. A denoising network is then aug-
mented with structural features, enabling conditional genera-
tion through guidance procedures.

Since most existing molecular generation approaches gen-
erate graphs that are likely similar to training samples, Molec-
ular Out-of-distribution Diffusion (MOOD) [Lee et al., 2022]
incorporates out-of-distribution (OOD) control in the genera-
tive stochastic differential equation (SDE), to generate a new
molecule graph that is distinct from those in the training set.
GDSS [Jo et al., 2022] learns the underlying distribution of
graphs by deriving score matching objectives tailored for the
proposed diffusion process, enabling the estimation of the
gradient of the joint logdensity w.r.t. each component.

Molecular Docking
Molecular docking is a computational method for predict-
ing the preferred orientation of one molecule to a second
molecule (typically a protein) when binding to each other. It’s
used in drug discovery to find the best fit of a small molecule
into the active site of a target protein.

Autoregressive models are widely adopted to generate 3D
molecules for the protein binding pocket [Shin et al., 2021].
However, autoregressive models might struggle with captur-
ing complex relationships and interactions between residues
in the pocket. To address these challenges, DiffBP [Lin
et al., 2022] generates 3D molecular structures in a non-
autoregressive manner while satisfying the physical proper-
ties of the molecule, based on the protein target as a con-
straint. Using diffusion models and SE(3)-equivariant net-
works, TargetDiff [Guan et al., 2023] learns atomic types and

atomic coordinates to generate protein target molecules with
satisfying geometric properties.

Fragment-based drug discovery is also a widely adopted
paradigm in drug development, which can provide promising
solutions for molecular docking by generating 3D molecules
fragment-by-fragment and incorporating diffusion models.
For instance, FragDiff [Peng et al., 2023] generates 3D
molecules fragment-by-fragment for pockets. In each gen-
eration step, FragDiff generates a molecular fragment around
the pocket. The atom types, atom coordinates and bonds on
this fragment are predicted. Then the fragments are gradu-
ally joined together to produce the complete molecule. Given
some fragments, DiffLink [Igashov et al., 2022] generates the
rest of a molecule in 3D. The generator of DiffLink is an E(3)
equivariant denoising diffusion model to generate fragments.
It is conditioned on the positions of the fragment atoms, and
optionally also on the protein pocket that the molecule should
fit into. Finally, DiffLink splices these fragments into a com-
plete drug candidate molecule. Similar to the transformation
of sentiment classification tasks into generative tasks in the
NLP field [Liu et al., 2023], DiffDock [Corso et al., 2022]
uses diffusion model to form docking pose prediction prob-
lem as a generation problem and executes a reverse diffusion
process using separate ligands and proteins as inputs by ran-
domly selecting the initial states and ranking them.

4.2 Protein Modeling
Protein modeling is to generate and predict the structure of
proteins. This task is instrumental in comprehending the
function and interactions of proteins, and is widely used in
the fields of drug discovery and the design of novel proteins
with specific characteristics. Previously, proteins have been
represented as sequences of amino acids, leading to successes
in modeling proteins using language models [Ferruz et al.,
2022]. With the advent of diffusion models in image genera-
tion [Ramesh et al., 2021], a growing number of applications
using diffusion models in protein modeling have emerged.

Protein Generation
The objective of computational protein design is to automate
the generation of proteins with specific structural and func-
tional properties. This field has experienced significant ad-
vancements in recent decades, including the design of novel
3D folds [Jumper et al., 2021], enzymes [Giessel et al., 2022]
and complexes [Réau et al., 2023].

Pre-training protein representations on enormous unla-
beled protein structures have drawn more and more inter-
est from researchers. Siamese Diffusion Trajectory Predic-
tion (SiamDiff) [Zhang et al., 2022] obtains counterparts by
adding random structural perturbations to natural proteins and
diffuses them structurally and sequence-wise through the pre-
training process. The diffusion process of the original pro-
tein and its counterpart is referred to as two related views. In
this process, SiamDiff uses the noise of one view to predict
the noise of the other view to better learn the mutual infor-
mation between the two views. In contrast to pre-training
techniques, ProteinSGM [Lee and Kim, 2022] applies con-
ditional generation, paint credible backbones and functional
sites into structures of predetermined length to generate pro-
teins. ProSSDG [Anand and Achim, 2022] combines the pro-
tein’s structure and sequence to generate proteins with the de-
sired 3D structures and chemical properties. Based on a brief
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description of the protein’s topology, ProSSDG generates a
complete protein configuration.

Despite recent developments in protein structure predic-
tion, it is still difficult to directly generate a variety of unique
protein structures using DNNs techniques. DiffFold [Wu et
al., 2022a] generates protein backbone stuctures by imitating
natural folding progress. DiffFold develops new structures
by denoising from a chaotic, unfolded state towards a stable
folded shape. In addition, DiffFold represents protein back-
bone structure as a sequence of sequential angles representing
the relative orientation of the component amino acid residues.

A stable protein backbone that has the motif is referred
to as a scaffold. It can greatly benefit from building a scaf-
fold that supports a functional motif. SMCDiff [Trippe et al.,
2023] uses a particle filtering algorithm for conditional sam-
pling of protein backbone structures, where priority is given
to backbone structures more consistent with the motif.

Immune system proteins (called antibodies) attach to par-
ticular antigens like germs and viruses to defend the host. The
complementarity-determining regions (CDRs) of the antibod-
ies play a major role in regulating the interaction between an-
tibodies and antigens. DiffAntigen [Luo et al., 2022a] jointly
generates the sequence and structure of the CDRs of an an-
tibody, based on the framework region of antibody and the
target antigen. DiffAntigen is able to regulate the generation
at the antigen structure, not just in the framework region. Ad-
ditionally, it can also predict the side-chain orientation. RFd-
iffusion [Watson et al., 2022] combines a diffusion model
with a protein prediction model, RoseTTAFold [Baek et al.,
2021b]. During the forward diffusion progress, RFdiffusion
perturbs the 3D structural coordinates locally to enhance the
model’s representational capacity.

Protein-ligand Complex Structure Prediction
The prevalence of protein-ligand complexes makes predict-
ing their 3D structure valuable for generating new enzymes
and drug compounds. NeuralPLexer [Qiao et al., 2022] pre-
dicts the structure of protein-ligand complexes by combin-
ing multi-scale induced bias in biomolecular complexes with
diffusion models. It takes molecular graphs as ligand input
and samples 3D structures from a learned statistical distribu-
tion. To overcome the difficulties of high-dimensional mod-
eling and to extend the range of protein-ligand complexes,
DiffEE [Nakata et al., 2022] proposes an end-to-end diffu-
sion generative model, which is based on pre-trained protein
language model. DiffEE is able to generate a variety of struc-
tures for protein-ligand complexes with correct binding pose.

5 Future Challenges and Opportunities
There are increasing efforts to develop diffusion models on
graphs. Next we discuss potential future research directions.
Conditional Generation for Graph Diffusion Models. In-
corporating conditions into generative models is critical to
guide desired generation. In graph domain, to generate
molecules and proteins with specified properties, it is signif-
icant to set certain constraints on the design of graph gen-
erative models. Thus, introducing extra information as con-
ditions into graph diffusion models has become an impera-
tive research direction. One type of extra knowledge can be
formed by a knowledge graph [Chen et al., 2022], which can
assist in controlling the generation process to obtain desired
graphs, and enhancing the diversity of graph generation.

Trustworthiness for Graph Diffusion Models. Recent
years have witnessed growing concerns about AI models’
trustworthiness [Liu et al., 2022; Dai et al., 2022; Chen et
al., 2023]. As one of the most representative AI-powered ap-
plications, graph generation might cause unintentional harm
to users and society in various real-world tasks, especially
those in safety-critical fields such as drug discovery. There-
fore, how to build trustworthy graph diffusion models has be-
come critical in both academia and industry
Evaluation Metrics. The evaluation of graph generation re-
mains a challenge. Most existing metrics are usually based on
graph statistics and properties (e.g., node’ degree and spar-
sity) [O’Bray et al., 2022], which are not fully trustable.
Meanwhile, validity and diversity for graph generation are
important in different applications. Thus, efforts are desired
to quantitatively measure the quality of generated graphs.
Graph Diffusion Applications. Most existing graph diffu-
sion techniques are used for molecule and protein genera-
tion, while many applications on graphs are rarely explored,
such as Recommender Systems, Graph Anomaly Detection,
and Causal Graph Generation For example, graph learning
techniques have been successfully used for recommendations
(i.e., distributions) [Fan et al., 2019b; Fan et al., 2022b].
Thus, diffusion models on graphs have the potential to better
generate recommendation lists for users. Anomalies refer to
graph objects such as nodes, edges, and sub-graphs. Recent
works have shown that diffusion models can be leveraged to
purify image data for better adversarial robustness [Xiao et
al., 2022]. Thus, graph diffusion models provide great op-
portunities to improve graph anomaly detection.

6 Conclusion
As one of the most advanced generative techniques, diffu-
sion models have achieved great success in advancing various
generative tasks, particularly in the image domain. Similarly,
many efforts have been devoted to studying graph generation
based on diffusion model techniques. However, it lacks a sys-
tematic overview and discussion of the state-of-the-art diffu-
sion models on graphs. To bridge this gap, we provided a
comprehensive overview of deep diffusion models on graphs
including representative models and applications. We also
discussed some promising future research directions.
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gustin Žı́dek, Anna Potapenko, et al. Highly accurate pro-
tein structure prediction with alphafold. Nature, 2021.

[Kenton and Toutanova, 2019] Jacob Devlin Ming-
Wei Chang Kenton and Lee Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In NAACL-HLT, 2019.

[Kong et al., 2023] Lingkai Kong, Jiaming Cui, Haotian
Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao
Zhang. Autoregressive diffusion model for graph gen-
eration. https://openreview.net/forum?id=98J48HZXxd5,
2023. Accessed: 2023-06-05.

[Lee and Kim, 2022] Jin Sub Lee and Philip M Kim. Pro-
teinsgm: Score-based generative modeling for de novo
protein design. bioRxiv, 2022.

[Lee et al., 2022] Seul Lee, Jaehyeong Jo, and Sung Ju
Hwang. Exploring chemical space with score-based out-
of-distribution generation. arXiv:2206.07632, 2022.

[Liao et al., 2019] Renjie Liao, Yujia Li, Yang Song, Shen-
long Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation
with graph recurrent attention networks. NeurIPS, 2019.

[Lin et al., 2022] Haitao Lin, Yufei Huang, Meng Liu, Xu-
anjing Li, Shuiwang Ji, and Stan Z Li. Diffbp: Genera-
tive diffusion of 3d molecules for target protein binding.
arXiv:2211.11214, 2022.

[Liu et al., 2019] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie
Kiros, and Kevin Swersky. Graph normalizing flows.
NeurIPS, 2019.

[Liu et al., 2022] Haochen Liu, Yiqi Wang, Wenqi Fan, Xi-
aorui Liu, Yaxin Li, Shaili Jain, Yunhao Liu, Anil Jain,
and Jiliang Tang. Trustworthy ai: A computational per-
spective. ACM Trans Intell Syst Technol, 2022.

[Liu et al., 2023] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
CSUR, 2023.

[Luo et al., 2021a] Shitong Luo, Chence Shi, Minkai Xu,
and Jian Tang. Predicting molecular conformation via dy-
namic graph score matching. In NeurIPS, 2021.

[Luo et al., 2021b] Youzhi Luo, Keqiang Yan, and Shuiwang
Ji. Graphdf: A discrete flow model for molecular graph
generation. In ICML, 2021.

[Luo et al., 2022a] Shitong Luo, Yufeng Su, Xingang Peng,
Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based
generative models for protein structures. In NeurIPS,
2022.

[Luo et al., 2022b] Tianze Luo, Zhanfeng Mo, and
Sinno Jialin Pan. Fast graph generative model via
spectral diffusion. arXiv:2211.08892, 2022.

[Ma and Zhang, 2021] Changsheng Ma and Xiangliang
Zhang. Gf-vae: a flow-based variational autoencoder for
molecule generation. In CIKM, 2021.

[Nakata et al., 2022] Shuya Nakata, Yoshiharu Mori, and
Shigenori Tanaka. End-to-end protein-ligand complex
structure generation with diffusion-based generative mod-
els. bioRxiv, 2022.

[Niu et al., 2020] Chenhao Niu, Yang Song, Jiaming Song,
Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based gen-
erative modeling. In AISTATS, 2020.

[O’Bray et al., 2022] Leslie O’Bray, Max Horn, Bastian
Rieck, and Karsten Borgwardt. Evaluation metrics for
graph generative models: Problems, pitfalls, and practical
solutions. In ICLR, 2022.

[Peng et al., 2023] Xingang Peng, Jiaqi Guan, Jian Peng, and
Jianzhu Ma. Pocket-specific 3d molecule generation by
fragment-based autoregressive diffusion models. https:
//openreview.net/forum?id=HGsoe1wmRW5, 2023. Ac-
cessed: 2023-06-05.

[Qiao et al., 2022] Zhuoran Qiao, Weili Nie, Arash Vahdat,
Thomas F Miller III, and Anima Anandkumar. Dynamic-
backbone protein-ligand structure prediction with mul-
tiscale generative diffusion models. arXiv:2209.15171,
2022.

[Ramesh et al., 2021] Aditya Ramesh, Mikhail Pavlov,
Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image
generation. In ICML, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6710

https://openreview.net/forum?id=98J48HZXxd5
https://openreview.net/forum?id=HGsoe1wmRW5
https://openreview.net/forum?id=HGsoe1wmRW5
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