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Abstract

Reaction and retrosynthesis prediction are funda-
mental tasks in computational chemistry that have
recently garnered attention from both the machine
learning and drug discovery communities. Various
deep learning approaches have been proposed to
tackle these problems, and some have achieved ini-
tial success. In this survey, we conduct a compre-
hensive investigation of advanced deep learning-
based models for reaction and retrosynthesis pre-
diction. We summarize the design mechanisms,
strengths, and weaknesses of state-of-the-art ap-
proaches. Then, we discuss the limitations of cur-
rent solutions and open challenges in the problem
itself. Finally, we present promising directions to
facilitate future research. To our knowledge, this
paper is the first comprehensive and systematic sur-
vey that seeks to provide a unified understanding of
reaction and retrosynthesis prediction.

1 Introduction
Drug discovery is crucial to human healthcare, but the process
is notoriously labor-intensive and costly. As Eroom’s law
suggests [Scannell et al., 2012], the exploration of new drugs
becomes increasingly slower and more expensive over time.
Therefore, it is natural and significant to leverage machine
learning techniques to accelerate the drug discovery process.
In recent years, the use of deep learning approaches to en-
hance different stages of drug discovery has become prevalent
due to the rise of deep learning. Among these stages, reaction
prediction and retrosynthesis prediction are two fundamental
steps that can benefit from deep learning tools.

In actual production environments, chemists often aim to
design synthesis routes that can lead to target molecules
through a series of chemical reactions. One common strat-
egy is to decompose target molecules into simpler precur-
sor structures that can be synthesized more easily, a process
known as retrosynthetic analysis. Automating this planning
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Figure 1: This figure illustrates the problem formulation of reaction
and retrosynthesis prediction

process using deep learning is crucial for discovering and op-
timizing synthesis routes. Retrosynthetic planning involves
two subtasks: multi-step retrosynthetic planning and single-
step retrosynthesis prediction. In this survey, we focus on
the latter, as multi-step planning is usually approached as a
searching problem, which is fundamentally different from the
conditional structured prediction problem posed by reaction
prediction and single-step retrosynthesis prediction. For the
remainder of this survey, we will refer to single-step retrosyn-
thesis prediction as simply retrosynthesis prediction. Reac-
tion prediction is another key task in organic synthesis anal-
ysis. A robust reaction prediction model can provide insight
into the underlying mechanisms of biochemical reactions, as
well as generate virtual reactions to expand the database for
retrosynthetic planning. In summary, reaction and retrosyn-
thesis prediction are interrelated and can enhance one another.

Several surveys exist on reaction and retrosynthesis predic-
tion. Engkvist [Engkvist et al., 2018] provides an overview
of various computational approaches for reaction prediction,
ranging from quantum computation to deep learning tools.
However, this survey lacks detail for each approach and
provides limited coverage of deep learning-based methods.
On the other hand, [Dong et al., 2021] reviews some deep
learning-based retrosynthetic planning methods and datasets,
but it falls behind the state-of-the-art research on retrosyn-
thesis prediction. It is worth noting that DualTF [Sun et al.,
2021] provides a unified framework for retrosynthesis predic-
tion from the perspective of energy-based models, but it does
not offer a unified understanding of reaction and retrosynthe-
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sis, nor does it provide specific discussions on the limitations
and major challenges of each approach. Overall, the existing
literature lacks a comprehensive and unified understanding of
advanced reaction and retrosynthesis prediction models.

Compared to previously mentioned surveys and works, our
survey unifies the formulation of reaction and retrosynthe-
sis prediction for the first time. We systematically discuss
the strengths and weaknesses of each approach from differ-
ent perspectives for both problems. Additionally, our survey
presents novel challenges and limitations that were not ex-
plicitly stated in previous works. Finally, based on the current
status, we list several future directions for further enhance-
ment, along with detailed analysis.

2 Preliminary and Problem Formulation
Reaction prediction and retrosynthesis prediction are dual
tasks of each other. They are also known as forward reaction
prediction and backward reaction prediction, respectively. To
apply deep learning, both tasks are formulated as conditional
generation tasks. In this section, we first introduce the prob-
lem formulation for both tasks. Then, we provide an intro-
duction to the basic background knowledge required for un-
derstanding different methods.
Molecular Formulation. A chemical molecule M can be
represented in two major data formats: the SMILES string
and the molecular graph. (1) For the SMILES format, a
molecular structure M is described as a sequence of char-
acters mi such that M := m1m2...mL, where L denotes
the total length of the string. The sequence represents a
spanning tree of the 2D molecular structure, and each char-
acter mi denotes a structural element such as an atom el-
ement, chemical bond, branching notation, and so on. (2)
A molecule can also be abstracted as an undirected graph
G = {V, E}, where V = {v1, .., vn} denotes the set of n
atoms and E = {e1, .., em} denotes the set of m edges. Each
node is associated with a feature vector hi ∈ Rd containing
atomic information such as aromaticity and electric charge.
Then, we have a feature matrix H ∈ Rn×d containing all-
atom information. An adjacency matrix A ∈ Rn×n×c de-
scribes the topological structures of M, where Aijk indicat-
ing the presence or absence of a chemical bond of type k be-
tween atom i and atom j. Multiple molecules can be easily
represented by the above two formats. For SMILES format,
multiple SMILES strings can be concatenated by a full stop
“.” into one single SMILES sequence. For molecular graph,
a set of molecules is regarded as a single disconnected graph
with each molecule as an independent connected component.
Definition 1 (Reaction Prediction) Given a set of N reactant
molecules {MR

i }Ni=1, the target is to predict the set of M
possible product molecules {MP

i }Mi=1.

Definition 2 (Retrosynthesis Prediction) Given a set of M
product molecules {MP

i }Mi=1, the target is to predict a set of
N reactant molecules {MR

i }Ni=1 that can lead to {MP
i }Mi=1.

Note that in real implementations, M = 1 because only the
main product is recorded in public benchmark datasets. Un-
fortunately, this issue makes retrosynthesis prediction more
difficult than reaction prediction because M < N requires

retrosynthesis to attach newly appeared atoms, leading to a
much larger combinatorial search space. In general, reac-
tion prediction aims to model the conditional probability dis-
tribution P(MP |{MR

i }Ni=1), while retrosynthesis prediction
aims to model the distribution P({MR

i }Ni=1|MP ).

Reaction Center & Reaction Template. In reaction pre-
diction, a reaction center C is a subset of atom pairs C =
{(vi, vj)} ⊆ V × V that change bond types when a chemical
reaction occurs. In retrosynthesis prediction, a reaction center
C is defined as a subset of existing bonds C = {ei} ⊆ E that
can be modified to obtain simpler structures. A reaction tem-
plate pool T is a set of reaction subgraph rules derived from a
large chemical reaction database. A reaction template T ∈ T
is an extracted subgraph pattern from the corresponding re-
action center C. Specifically, T := tR1 + tR2 + ...tRN → tP ,
where tRi denotes the subgraph pattern inside the ith reactant,
and tP denotes the subgraph pattern inside the product.

Atom-mapping. Both reaction and retrosynthesis predic-
tion follow the atom-mapping principle. This principle states
that each atom in the reactants/products has exactly one cor-
responding atom in the products/reactants. This fundamen-
tal one-to-one mapping relation physically constrains reac-
tion space and determines that chemical reactions are mainly
about bond breaking and bond formation.

Synthon and Leaving Group. A target molecule can be
decomposed into a set of synthons S = {GS

i }Ni=1, which are
simpler precursor substructures that can constitute the target
molecule with few additional bond connections. Note that
the atom set V covered by S is exactly the same as the target
molecule. Leaving group L = {GL

i }Ni=1 is a group of atoms
or substructures in original reactants that do not appear in the
target molecule after a reaction occurs. In short, synthon S
and leaving group L can form reactants {GR

i }Ni=1.

Evaluation Metrics. Both reaction and retrosynthesis pre-
diction adopt top-k accuracies to evaluate the model perfor-
mance. Top-k accuracy is the percentage of reactions that
have the ground-truth product in the top-k predicted sets of
molecules. As long as the top-k predicted products include
the ground-truth main product, it would be counted as a cor-
rect prediction. Usually, the k is in range {1, 2, 3, 5, 10}.

3 Deep Learning on Reaction and
Retrosynthesis Prediction

In this section, we discuss different approaches by classify-
ing them into four categories which are template-based meth-
ods, sequence-based and graph-based autoregressive mod-
els, graph-based two-stage models, and graph-based non-
autoregressive models. Specifically, we introduce their learn-
ing mechanism design decisions, weaknesses, and strengths.

3.1 Template-based Methods
Template-based (TB) methods are mainly leveraging a pool
of reaction templates to deduce possible reaction centers. TB
methods are mimicking how human experts conduct chemical
reasoning. Assume we have a pool of reaction templates T =
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Figure 2: This figure illustrates template-based models, sequence-based autoregressive models, and graph-based autoregressive models.

{T1, T2, ...}, then the inference process of TB methods aims
at picking the best template as follows:

T ∗ = argmax
Ti∈T

P(T = Ti|{MR
i }Ni=1),

M̂P = argmax
MP

i ∈MP

P(MP = MP
i |T ∗),

(1)

where MP is a pool of candidate product molecules. Eq. (1)
describes the steps of choosing the best template T ∗ and de-
ducing the possible product M̂P according to the given T ∗.
The critical part is matching molecules with templates based
on some similarity measure. Specifically, P(Ti|{MR

i }Ni=1)
and P(MP

i |T ∗) are evaluated in the following way:

P(Ti|{MR
i }Ni=1) =

exp(sim(Ti, {MR
i }Ni=1))∑

Tj∈T exp(sim(Tj , {MR
i }Ni=1)))

,

P(MP
i |T ∗) =

exp(sim(T ∗,MP
i ))∑

MP
j ∈MP exp(sim(T ∗,MP

j )))
,

(2)
where sim(·, ·) denotes a similarity measure function. It can
be a simple inner product between molecular embedding and
template embedding obtained from deep neural networks, or a
more complicated similarity function evaluated by some sub-
graph matching algorithms. TB retrosynthesis has the same
learning mechanism but in a reverse direction:

T ∗ = argmax
Ti∈T

P(T = Ti|MP ),

P(MR|T ∗) =

N∏
i=1

P(MR
i |tRi ),

M̂R
i = argmax

MR
j ∈MR

P(MR = MR
j |tRi ),

(3)

where MR denotes the pool of candidate reactant molecules,
T ∗ := tR1 + tR2 + ...tRN → tP . The second and third equation
in Eq. (3) indicates that each predicted reactant molecule M̂R

i

matches with the subgraph template tRi with highest score.

Advantages. (1) TB methods are reliable since they are us-
ing extracted human knowledge, which can always provide
good interpretations for predictions. (2) The training and in-
ference process of TB methods are relatively simple, which
is easy for domain experts to manipulate.
Disadvantages. (1) The performance of TB methods highly
relies on the scale of template database. Therefore, the tem-
plate database must be updated frequently, which is appar-
ently very expensive. (2) TB methods have poor generaliza-
tion to out-of-domain unseen reactions. (3) Templates are
extracted local subgraph rules while ignoring global infor-
mation over the reaction. Consequently, TB methods fail to
capture global information interactions and easily make false
predictions based on local rules. The illustration of TB meth-
ods is shown in Figure 2.

3.2 Sequence-based and Graph-based
Autoregressive Models

Sequence-based autoregressive (SAR) models are widely
adopted in both forward and backward prediction. It regards
both problems as the neural machine translation problem. For
reaction prediction, the input is SMILES strings of reactants
MR := mR

1 m
R
2 ...m

R
L1

with length L1 and output is SMILES
strings of products MP := mP

1 m
P
2 ...m

P
L2

with length L2.
The input source and output target are flipped for retrosyn-
thesis prediction. Specifically, SAR models are estimating
the following conditional probability distribution:

P(MP ) =

L2∏
i=1

P(mP
i |mP

<i,MR),

P(MR) =

L1∏
i=1

P(mR
i |mR

<i,MP ),

(4)

where P(mP
i |mP

<i,MR) and P(mR
i |mR

<i,MP ) are approx-
imated by the transformer [Vaswani et al., 2017] model. Each
generation step does a greedy search over token space and se-
lect the optimal token. To generate top-k candidates, we only
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Figure 3: This figure illustrates graph-based two-stage models and graph-based non-autoregressive models.

need to conduct beam search over greedy results. Graph-
based autoregressive (GAR) models have similar learning
mechanisms but with different generation sequence defini-
tions. GAR models first define an action space π including
several edit actions like atom addition/deletion, bond addi-
tion/deletion, and termination. A sequence of these actions
would transform reactants/products into their corresponding
products/reactants. Thus, they are estimating the following
probability distribution:

P(GP ) =

L2∏
i=1

P(πi|π<i,GR,<i),

P(GR) =

L1∏
i=1

P(πi|π<i,GP,<i),

(5)

where GR,<i and GP,<i denote the states of edited reactants
and products in previous i − 1 steps respectively. The sam-
pling process is exactly the same as that of SAR models.
Each step i selects the optimal action π∗

i and applies the opti-
mal action to transform reactants GR,i−1 and products GP,i−1

to next state GR,i and GP,i respectively. The optimal action
would be “terminate” when all generation steps are predicted
to be over. Note that both Eq. (4) and Eq. (5) can be simplified
by Markov assumptions.
Advantages. (1) Autoregressive models do not need atom-
mapping information. (2) Autoregressive modeling has very
natural sampling process, such as beam search. (3) Sequence-
based modeling can directly utilize some mature techniques
from natural language processing.
Disadvantages. (1) Autoregressive modeling can only gen-
erate predictions step-by-step, which is very inefficient. (2)
Autoregressive modeling requires pre-defined generation or-
ders. However, the molecular generation order is ambigu-
ous. (3) Sequence-based modeling requires data augmenta-
tion techniques to improve performance. The illustration of
both SAR models and GAR models are shown in Figure 2.

3.3 Graph-based Two-Stage Models
Reaction. For graph-based two-stage models in reaction
prediction, they split reaction prediction into two stages
which are reaction center identification stage and candidate
ranking stage. For reaction center identification, it aims at
selecting atom pairs assigned with high reactivity scores:

Ĉ = top-k({s(vi, vj |{GR
i }Ni=1)}ij), (6)

where s(·) denotes any function that outputs a score in range
(0, 1). Based on identified reaction centers Ĉ, a set of can-
didate products ĜP = {ĜP

1 , ĜP
2 , ...} will be enumerated in

a combinatorial way through hand-written rules or reaction
templates. Then the second stage is learning to rank candi-
date products in ĜP . To rank generated products, each pair
({GR

i }Ni=1, ĜP
i ) should have a score evaluated as follows:

s({GR
i }Ni=1, ĜP

i ) = σ(f({GR
i }Ni=1, ĜP

i )), (7)

where f(·, ·) can be complex neural networks and σ(·) de-
notes the sigmoid function.

Retrosynthesis. For graph-based two-stage models in ret-
rosynthesis prediction, they split retrosynthesis into two
stages which are edit prediction stage and synthon comple-
tion stage. For edit prediction, they select some existing edges
with high predicted reactivity scores to decompose:

Ĉ = top-k({s(ePi )}mi=1), (8)

After obtaining predicted edit centers Ĉ, we decompose the
target molecule by breaking the predicted edit centers, which
will results in a set of synthons Ŝ = {ĜS

i }Ni=1, (N = k + 1).
A basic assumption for this approach is that the number of
synthons is the same as the number of reactants. For synthon
completion stage, it models the following distribution:

P(GR
i |ĜS

i ) = P(GL
i |ĜS

i ). (9)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6726



The above Eq. (9) indicates that the synthon completion is
equivalent to attaching the leaving group GL

i to the corre-
sponding synthon GS

i . Leaving group attachment can be ei-
ther formulated as an autoregressive conditional generation
problem or a classification problem with a predefined dictio-
nary. With predicted leaving group ĜL

i , each predicted reac-
tant ĜR

i can be recovered by attaching ĜL
i to the correspond-

ing synthon ĜS
i .

Advantages. (1) The inference process of graph-based two-
stage models is very similar to the deduction process of
chemists. (2) Graph-based two-stage models split a hard task
into two simpler tasks that are easier to tackle.

Disadvantages. (1) Some two-stage models like WLDN
[Jin et al., 2017] require costly hand-crafted combinatorial
enumerations. (2) The overall performance of two-stage
models is restricted by the bottleneck of each stage. The il-
lustration of the above methods are shown in Figure 3.

3.4 Graph-based Non-autoregressive Models
Only reaction prediction has a graph-based non-
autoregressive model achieved by NERF [Bi et al., 2021] and
currently no non-autoregressive models for retrosynthesis.
NERF reformulates the problem into electron redistribution
modeling. Previous approaches adopt three dimensional
adjacency matrix A ∈ Rn×n×c while NERF adopts two-
dimensional adjacency matrix by converting one-hot type
encoding to scalar values such that A ∈ Rn×n. Formally,
Aij is a scalar value in range [0, 3], representing the number
of shared electrons (number of bonds) between atom i and
atom j. Note that aromatic bond is represented as Aij = 1
and atoms i, j will be marked as aromatic atoms. The key
idea of NERF is predicting ∆Â by combining self-attention
mappings. NERF adopts the conditional variational autoen-
coder [Sohn et al., 2015] (CVAE) architecture to approximate
P(GP |GR) by introducing a latent variable z. Instead of
directly maximizing the log-likelihood logP(GP |GR),
CVAE maximize its evidence-lower bound (ELBO):

logP(GP |GR) ≥Eq(z|GP ,GR)[logP(GP |GR, z)]−
KL(q(z|GP ,GR)||P(z|GR)),

(10)

where q(z|GP ,GR) is the reaction encoder with reaction
(GR,GP ) as input and low-dimensional representation hz

as output, P(GP |GR, z) is product decoder with reactants
GR and latent embedding hz as input, P(z|GR) denotes the
prior distribution of latent variable z. KL term is minimiz-
ing the gap between q(z|GP ,GR) and P(z|GR). The back-
bone network architectures of q(z|GP ,GR) are combinations
of GNNs and transformers. With this architecture, GR and
GP will be projected to reactants embedding hR and prod-
ucts embedding hP respectively. A cross attention layer is
used for mapping hR to latent hz with hP as teacher forcing
during training. The conditional latent embedding is derived
such that ĥz = hR + hz . Then apply self-attention mecha-
nism on ĥz to derive two electron redistribution matrix W+

and W− for bond increase and bond decrease respectively.
Then ∆Â = W+ −W− and ÂP = AR +∆Â.

Advantages. (1) Non-autoregressive models enable paral-
lel sampling, which result in much faster sampling speed
compared to autoregressive ones. (2) Non-autoregressive
models have already achieved the best class of top-1 accuracy,
which demonstrates that the non-autoregressive decoder is
very powerful for reaction modeling. (3) Non-autoregressive
models do not need pre-defined generation order.

Disadvantages. (1) The uncertainty modeling of non-
autoregressive models is very tricky. The top-k sampling
process is not as natural as beam search in autoregressive
modeling. (2) Non-autoregressive models rely on the atom-
mapping information while this also requires additional al-
gorithms for alignment. The illustration of NERF learning
mechanism is shown in Figure 3.

4 Limitations and Challenges
In this section, we discuss some important limitations and
challenges existing in current solutions.

4.1 Side Products
Reaction. Side products are missing in public USPTO
benchmark datasets, which results in incomplete supervision
signals. Particularly for non-autoregressive modeling, miss-
ing side products makes electron redistribution matrix violate
the conservation rule and thereby the reaction space is not
fully constrained. How to complete and infer this missing in-
formation is a fundamental challenge for reaction prediction.

Retrosynthesis. Retrosynthesis directly use reaction data
in USPTO and thereby all single-step analysis only contains
one single outcome. Missing side products in the outcome
side may not affect the general process of retrosynthesis pre-
diction. However, side products still provide important infor-
mation about leaving groups.

4.2 Limitations in Dataset
Reaction. The USPTO-479K dataset has two major issues.
First, reaction types are very imbalanced. Indicated by Bi [Bi
et al., 2021], reactions with linear topology dominate reac-
tion types while few reactions with cyclic topology exist in
dataset. How to learn transferable knowledge from rare reac-
tions is an important lesson for reaction modeling. Second,
in real applications, same set of reactants can result in dif-
ferent products under different physical conditions, which is
called multi-modality in reaction prediction. Multi-modality
can provide rich information for conditional generative mod-
els to generate valid and diverse candidate products. How-
ever, most reactions in UPSTO-MIT are one-to-one mapping,
which means that same set of reactants can only result in a
unique major product.

Retrosynthesis. The USPTO-50K dataset has two major
limitations. First, the size of USPTO-50K is not large enough,
which only contains 50k backward reactions. Considering
many recent approaches only have slight numerical differ-
ences in top-k accuracies, the current small-scale dataset is
not adequate for testing model capability. Second, the cur-
rent dataset will bias edit predictions and leaving group se-
lections. Most backward reactions only have one single edit
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Template Usage Approaches End-to-End Generation Graph/Sequence Top-1 Top-5

Reaction
Prediction
(Forward)

Template-
based

NN-reaction [Wei et al., 2016] × NA Sequence NR NR
NeuralSym [Segler and Waller, 2017] × NA Sequence NR NR

Symbolic [Qian et al., 2020] × NA Sequence 90.4 95.0
LocalTransform [Chen and Jung, 2022] × NA Graph 90.8 96.3

Template-
free

WLDN [Jin et al., 2017] × NA Graph 79.6 89.2
GTPN [Do et al., 2019] ✓ A Graph 83.2 86.5

MEGAN [Sacha et al., 2020] ✓ A Graph 89.3 95.6
ELECTRO [Bradshaw et al., 2019] ✓ A Graph 77.8 94.7
Motif-Reaction [Zhao et al., 2022] ✓ A Sequence 91.0 95.7
MT-base [Schwaller et al., 2019] ✓ A Sequence 88.8 94.4

MT [Schwaller et al., 2019] ✓ A Sequence 90.4 95.3
Graph2SMILES [Tu and Coley, 2021] ✓ A Sequence 90.3 94.8

Chemformer [Irwin et al., 2022] ✓ A Sequence 91.3 93.7
Stransformer [Lee et al., 2019] × A Graph NR NR

ReactionT5 [Lu and Zhang, 2022] ✓ A Sequence 88.9 95.2
Aug-Transformer [Tetko et al., 2020] ✓ A Sequence 90.6 96.1

NERF [Bi et al., 2021] ✓ NA Graph 90.7 93.7
ReactionSink [Meng et al., 2023] ✓ NA Graph 91.3 94.0

Retrosynthesis
Prediction
(Backward)

Template-
based

RetroSim [Coley et al., 2017] × NA Sequence 52.9/37.3 81.2/63.3
RetroComposer [Yan et al., 2022] × A Graph 65.9/54.5 89.5/83.2

NeuralSym [Segler and Waller, 2017] × NA Graph 55.3/44.4 81.4/72.4
GLN [Dai et al., 2020] × NA Graph 64.2/52.5 85.2/75.6

LocalRetro [Chen and Jung, 2021] × A Graph 63.9/53.4 92.4/85.9
DualTB [Sun et al., 2021] × NA Sequence 67.7/55.2 88.9/80.5

Template-
free

MEGAN [Sacha et al., 2020] ✓ A Graph 60.7/48.1 87.5/78.4
AutoSynRoute [Lin et al., 2020] ✓ A Sequence 54.6/43.1 80.2/71.8

SCROP [Zheng et al., 2020] ✓ A Sequence 59.0/43.7 78.1/65.2
LV-Transformer [Chen et al., 2019] ✓ A Sequence NR/40.5 NR/72.8

DualTF [Sun et al., 2021] ✓ A Sequence 65.7/53.6 84.7/74.6
GET [Mao et al., 2021] ✓ A Graph 57.4/44.9 74.8/62.4

Retroprime [Wang et al., 2021] ✓ NA Sequence 64.8/51.4 85.0/74.0
GTA [Seo et al., 2021] ✓ A Graph NR/51.1 NR/74.8
G2Gs [Shi et al., 2020] × A Graph 61.0/48.9 86.0/72.5

RetroXPERT [Yan et al., 2020] × A Graph 62.1/50.4 78.5/62.3
Retroformer [Wan et al., 2022] ✓ A Sequence 64.0/53.2 86.7/76.6

Tied-transformer [Kim et al., 2021] ✓ A Sequence NR/47.1 NR/73.1
RetroLSTM [Liu et al., 2017] ✓ A Sequence NR/37.4 NR/57.0

G2GT [Lin et al., 2022] ✓ A Graph NR/54.1 NR/74.5
Stransformer [Lee et al., 2019] ✓ A Graph NR/43.8 NR/NR

GraphRetro [Somnath et al., 2021] × A Graph 63.9/53.7 85.2/72.2
MARS [Liu et al., 2022] ✓ A Sequence 66.2/54.6 90.2/83.3

Table 1: A table of recent approaches on forward and backward prediction. “End-to-end” indicates whether the model inference process is in
an end-to-end manner. “Generation” indicates whether the predicted product is generated in an autoregressive or non-autoregressive manner.
“Graph/Sequence” denotes the molecular representation format used in modeling. “NA” and “A” denote non-autoregressive generation and
autoregressive generation respectively. We report reaction prediction results on USPTO-MIT dataset and retrosynthesis prediction results on
USPTO-50K dataset. For retrosynthesis prediction model, we report both results with reaction class known and unknown. “NR” means not
reported. Note that we do not put “Semi-Template-based” as an independent category.

while very few have multiple edits, which results in poor pre-
diction accuracy in multiple-edit cases. Additionally, leaving
group distribution is very imbalanced, which makes graph-
based models tend to select a few frequently occurring atoms.

4.3 Limitations in Evaluation
Reaction. [Kovacs et al., 2021] points out that the random
split of USPTO-MIT is not sufficient enough for evaluations
since most of the reaction types in the testing set are already
covered in the training set. Therefore, harder dataset split
like scaffold splits and time splits should be taken into ac-
count for future evaluations of reaction predictions. Scaffold
split is testing whether the model can generalize well under
out-of-distribution settings, in which the training data distri-
bution is very different from testing data distribution. Time
split is splitting reactions in the order of discovery time. This
split aims at testing whether the model can truly discover new
chemical reactions or not.

Retrosynthesis. Current evaluation metrics are not suffi-
cient to evaluate retrosynthesis predictions since they require
exact matching between predicted reactants and ground-truth

reactants. This will lead to low diversity of generations.
Although some predicted reactants are distinct from given
ground-truth reactants, they are acceptable solutions for syn-
thesis choices. Since the single-step retrosynthesis model is
finally served for multi-step retrosynthetic planning purposes,
low diversity for each step would make the whole planning
monotonous and inflexible.

4.4 Challenges in Non-autoregressive Modeling
Reaction. Non-autoregressive models [Bi et al., 2021;
Meng et al., 2023] achieve the state-of-the-art top-1 accu-
racy among template-free approaches, which demonstrates
its high potential in reaction modeling. However, the top-k
accuracies of these models are not comparable to that of au-
toregressive ones. These experimental results indicate that
NERF has a powerful encoder-decoder architecture while its
uncertainty modeling is not successful. They adopt the CVAE
framework to inject uncertainty modeling. However, training
CVAE will easily encounter the posterior collapse issue. In
fact, the KL divergence loss term gets close to zero with few
iterations during training. Also, imposing uncertainty on la-
tent can lead to the uncontrollable generation of the follow-
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ing electron redistribution prediction, which will lower the
validity of predicted products. To sum up, uncertainty esti-
mation is an important challenge for non-autoregressive mod-
els. Non-autoregressive modeling with correct uncertainty es-
timation will revolutionize reaction prediction research.
Retrosynthesis. Non-autoregressive retrosynthesis model
is very tricky since the total number of atoms in reactants
must be pre-determined before attaching leaving groups.
However, the distribution over the total number of reactant
atoms is biased by the benchmark dataset. Therefore, to gen-
erate reactants in a non-autoregressive manner, enough blank
entries should be reserved for predicted leaving groups. Un-
fortunately, if there are too many blank entries in the 3D adja-
cency matrix and atom feature matrix, the task would become
a very tough imbalanced classification task since only a few
blank entries will be filled up with predicted atoms and bonds.

4.5 Challenges in Generalization
There are two common challenges in generalization for reac-
tion and retrosynthesis prediction. The first challenge is out-
of-distribution prediction. Out-of-distribution mainly evalu-
ates whether the model trained on main reaction types can
generalize to rare reaction types. This imbalance issue nat-
urally exists in chemical reactions since we can expect that
some reactions easily occur while some reactions rarely oc-
cur. Therefore, it is important to design stable reaction and
retrosynthesis prediction models under different distribution
splits. The second challenge comes from the low-level repre-
sentation quality. Both problems require low-level molecular
and reaction representation learning techniques. Therefore, it
is significant to derive powerful molecular and reaction rep-
resentations with strong generalization to related tasks.

5 Conclusion and Future Directions
From the above discussions, we know that current approaches
still have some major shortcomings although they have
achieved promising results. Therefore, we list several future
directions for further refinement of current solutions.

5.1 3D Molecular Information
A chemical molecule is inherently a point cloud consisting
of a set of 3D points with Cartesian coordinates. However,
3D molecular information has not been used in the literature
while sequence and graph representation of molecules have
been widely explored. 3D position vectors provide important
complementary distance information for each pair of atoms.
The relative pairwise distance can be very different in 3D Eu-
clidean geometry compared to 2D molecular graphs. For ex-
ample, atom v1 and atom v2 may be distant from each other in
a non-euclidean molecular graph while they might be close to
each other in 3D Euclidean space. This is particularly useful
for reaction center ranking. Therefore, effectively incorporat-
ing 3D molecular information into modeling can facilitate the
more accurate reaction and retrosynthesis predictions.

5.2 Diverse Benchmark Dataset and New
Evaluation Metrics

For reaction prediction, the size of the current USPTO-479K
dataset is large enough. However, its modality and diversity

are still not sufficient. New benchmark datasets should in-
clude more reaction types and more complex reactions. Also,
different dataset splits, such as scaffold split and time split,
should be included for cross-validation. For retrosynthesis
prediction, the USPTO-50K dataset is at small-scale. A new
benchmark dataset should be a large-scale dataset contain-
ing at least 100K samples. Furthermore, future benchmark
datasets should contain more target molecules with multiple
edits. In addition, a new evaluation metric for retrosynthe-
sis is necessary and urgent. FusionRetro [Liu et al., 2023]
attempts to evaluate single-step retrosynthesis models in the
context of multi-step planning. More diverse evaluation met-
rics can be designed in the future.

5.3 Non-autoregressive Modeling

Just as mentioned in the previous section, the uncertainty esti-
mation of non-autoregressive models is still inaccurate. Thus,
it is crucial to explore more effective uncertainty modeling
solutions for non-autoregressive models. We believe it will
be a ground-breaking moment if the top-k accuracies of non-
autoregressive models can be comparable to that of autore-
gressive ones. Non-autoregressive retrosynthesis prediction
has not even been explored in current works. Due to the small
size of leaving group in dataset, the significance of inference
speed have been neglected in current research. We expect that
the inference efficiency will be emphasized when analyzing
complicated synthesis routes.

5.4 Self-supervised Learning

As previously discussed in limitations, reaction and retrosyn-
thesis prediction are suffering from some issues brought by
the dataset itself. Leveraging self-supervised learning (SSL)
strategies on unlabeled datasets to overcome these limitations
is a naturally motivated direction to explore. Although var-
ious SSL strategies have been presented for general molec-
ular representation learning, currently seldom specific SSL
strategies are designed for reaction and retrosynthesis pre-
diction. PMSR [Jiang et al., 2021] explores SSL strategies
for retrosynthesis but it fails to achieve a strong performance.
Therefore, exploring more powerful SSL strategies for both
problems is a feasible direction.

5.5 Multi-task Learning

Combining both tasks with other related tasks is a promising
direction. DualTF [Sun et al., 2021] gives a first attempt by
presenting a dual model to show that reaction and retrosyn-
thesis prediction model can reinforce each other. Fusion-
Retro [Liu et al., 2023] and GNN-Retro [Han et al., 2022]
leverages reaction contexts and molecular contexts respec-
tively to improve retrosynthetic analysis. Lu and Zhang [Lu
and Zhang, 2022] show that multi-task learning can further
improve reaction prediction accuracy. Intuitively, reaction
classification, reaction yield prediction, and many other tasks
have close connections with reaction and retrosynthesis pre-
dictions. How to leverage these tasks together is crucial for
further improvements on both problems.
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