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Abstract
Recent advances in Transformers have come with
a huge requirement on computing resources, high-
lighting the importance of developing efficient
training techniques to make Transformer training
faster, at lower cost, and to higher accuracy by
the efficient use of computation and memory re-
sources. This survey provides the first systematic
overview of the efficient training of Transformers,
covering the recent progress in acceleration arith-
metic and hardware, with a focus on the former.
We analyze and compare methods that save com-
putation and memory costs for intermediate tensors
during training, together with techniques on hard-
ware/algorithm co-design. We finally discuss chal-
lenges and promising areas for future research.

1 Introduction
Deep learning is a recent most profound approach which has
revolutionised machine learning (ML) and artificial intelli-
gence and is leading the fourth industrial revolution. At its
core, the success of deep learning depends on the vast compu-
tational resources available and an extremely large amounts
of labeled data. Despite the huge excitement generated by the
recent developments, deep learning models, especially Trans-
formers [Vaswani et al., 2017], have become formidably large
and computationally intensive, resulting in two pressing chal-
lenges at the fundamental level.

The first issue concerns the intensive computation of train-
ing large Transformer-based models. A widely discussed en-
ergy study of deep learning models [Strubell et al., 2019] es-
timates that training a Transformer base model with neural
architecture search (NAS) [So et al., 2019] produces about
626,155 pounds of planet-warming carbon dioxide, equal
to the lifetime emissions of five cars; as models grow big-
ger, their demand for computing is outpacing improvements
in hardware efficiency. For example, GPT-3 [Brown et al.,
2020] (the precursor to ChatGPT) was trained on half a tril-
lion words and equips with 175 billion parameters. Notably,
according to the technical overview of GPT-31, it would take

†Correspondence should be addressed to BZ.
1https://lambdalabs.com/blog/demystifying-gpt-3/

355 GPU-years and cost at least $4.6M for a single train-
ing run, estimated with theoretical 28 TFLOPS for V100 and
lowest 3-year reserved cloud pricing. Therefore, the true
groundbreaking success of deep learning, such as ChatGPT,
is exclusively dominated by large and rich enterprises such
as Google or Microsoft. It becomes extremely important to
make deep learning tenable in computation and energy effi-
ciency for Green AI [Schwartz et al., 2020], and democratize
AI to wider communities with limited resources.

The second issue comes with the exponentially growing
training memory proportional to the attention-based model
size. For example, the largest language model in literature
grows from 345M with BERT-large [Kenton and Toutanova,
2019] in 2018, to hundreds of billions till now with models
such as MT-NLG [Smith et al., 2022] equipped with 530B
parameters. Therefore, these SOTA massive models call for
memory efficient training techniques to reduce the memory
footprint of storing intermediate tensors and data exchanges
(communications) across accelerators, while ensuring high
processing elements (PE) utilization.

In this survey, we review the generic techniques that boost
computation and memory efficiency for training attention-
based models, i.e., Transformers, as shown in Figure 1. We
characterize them by the technical innovations and primary
use case, summarize them and draw connections between
them. We are primarily interested in arithmetic innovations
that improve the training efficiency of Transformers and also
briefly discuss hardware/algorithm codesign advances. We
leave the review of hardware accelerator design, a broad
class, as future work.

2 Computation Efficiency
2.1 Optimization
Optimizer. To achieve a faster convergence rate for gra-
dient descent, a classic solution is to fuse the momentum
technique, where each step is a combination of the steepest
descent direction and the most recent iterate displacement,
helping to accelerate gradient descent in the relevant direc-
tion and dampens oscillations. The seminal works include
Nesterov’s accelerated gradient [Nesterov, 1983] for convex
optimization and proximal gradient with momentum [Li et
al., 2017] towards non-convex problems, etc. To meet the de-
mand of large-scale optimization of machine learning mod-
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Figure 1: Overview of the efficient training of Transformers including computation efficiency, memory efficiency and hardware/algorithm
codesign perspectives.

els, dominant optimizers are designed in a stochastic fashion.
In particular, stochastic gradient descent (SGD) with momen-
tum and the adaptive learning rate estimation method Adam
[Kingma and Ba, 2015] are widely used to train deep neu-
ral networks. Empirically, training Transformers with Adam
outperforms the SGD counterpart, and [Zhang et al., 2019b]
demystifies that a heavy-tailed distribution of the noise in
stochastic gradients is the main cause of SGD’s poor perfor-
mance and understands Adam through the lens of adaptive
noise clipping. By default, AdamW [Loshchilov and Hutter,
2019], a variant of Adam which decouples the L2 regular-
ization and the weight decay, is the most widely used op-
timizer for Transformers. More recently, Google searches
optimization algorithms and discovers a simple and effec-
tive optimizer called Lion [Chen et al., 2023]. Lion only
keeps track of the momentum with the first-order gradient,
and its update only considers the sign direction and has the
same magnitude for each parameter, which is very different
from the adaptive optimizers like AdamW. In practice, Lion
in general converges faster, and is more memory-efficient
and accurate than AdamW for training Transformers on var-
ious benchmarks. We refer readers to [Lin et al., 2020b;
Bottou et al., 2018] for more details about accelerated op-
timization methods in machine learning.

To improve the generalization of Transformers, Sharpness-
aware minimization (SAM) [Foret et al., 2021] seeks to si-
multaneously minimize loss value and loss sharpness, based
on the connection between the geometry of the loss land-
scape and generalization, i.e., a flatter minimum tends to im-
prove generalization. The following work [Chen et al., 2022]
applies SAM to Transformer, observing significant accuracy
gains via smoothing the loss surface. However, SAM needs to
solve a bi-level min-max optimization problem, which nearly
doubles the training time. To accelerate optimization, [Du
et al., 2022a] proposes stochastic weight perturbation to pre-

serve the generalization capability and sharpness-sensitive
subset selection strategies. More recently, [Du et al., 2022b]
designs a near zero-cost proxy of the sharpness loss by replac-
ing the sharpness estimation as the KL-divergence between
the two consecutive update steps.

Initialization. A good initialization is essential to stabilize
training, enable higher learning rate, accelerate convergence,
and improve generalization. Thus, many works have been
proposed for better initialization of Transformers. Specifi-
cally, Fixup [Zhang et al., 2019a] proposes to properly rescale
a standard initialization to ensure proper gradient norm to
avoid exploding or vanishing gradients, which can train very
deep networks with over 10,000 layers without adding nor-
malization layers. Based on the insight that the function
computed by normalized residual blocks is close to the iden-
tity function (i.e., unit variance), the following works ReZero
[Bachlechner et al., 2021] and SkipInit [De and Smith, 2020]
simply initialize each layer to perform the identity operation.
Specifically, they add a learnable scaling multiplier on the
output of each residual block:

xl+1 = xl + αlFl(xl), (1)

where xl and Fl(·) are the input and the function at layer
l, where the function can be multi-head self-attention layers
(MSA) and feed-forward networks (FFN), and αl is simply
initialized to 0. Customized to Transformers, T-Fixup [Huang
et al., 2020] analyzes that part of the optimization difficulty
comes from the unstable early updates in the Adam optimizer
as the variance of the second-order momentum is unbounded.
Therefore, it follows Fixup to adopt rescaling schemes for
the initialization of residual blocks. All the above-mentioned
methods remove batch/layer normalization from all blocks
and train without learning rate warmup. On training deep
vision Transformers (ViT), [Touvron et al., 2021a] proposes
channel-wise learnable scaling factors and empirically ob-
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serve that re-introducing the warmup and layer normalization
techniques can make training more stable.

Apart from the rescaling paradigm, some literature pro-
poses to improve initialization from a new perspective by
leveraging the relationship between self-attention and con-
volutional layers. [Cordonnier et al., 2020] proves that a
multi-head self-attention layer with N heads and a relative
positional encoding with dimension D ≥ 3 can be repa-
rameterized to express any convolutional layer of filter size√
N ×

√
N . The attention can be decomposed into a content

term and a (relative) positional term, where the latter deter-
mines the center and width of attention of each head. Based
on this property, ConViT [d’Ascoli et al., 2021] learns to con-
trol the locality by adding a soft gating parameter to balance
the two terms, which has the effect of incorporating soft con-
volutional inductive biases into global self-attention.

Sparse training. The key idea of sparse training is to di-
rectly train sparse subnetworks instead of the full networks
from scratch without sacrificing accuracy. The reliability
was first demonstrated by the lottery ticket hypothesis (LTH)
[Frankle and Carbin, 2019] that a dense, randomly initialized
network contains subnetworks (winning tickets) which can be
trained in isolation to match the accuracy of the original net-
work. However, LTH requires identifying the winning tickets
in an alternating train-prune-retrain manner, which makes the
training extremely costly for large models and datasets, limit-
ing the practical benefits. In light of this, follow-up works
with higher training efficiency can be roughly categorized
into three categories: (i) find sparse networks once at initial-
ization by measuring the importance of connections on the
loss, eliminating the need for the complex iterative optimiza-
tion schedule [Lee et al., 2019; Wang et al., 2020] ; (ii) iden-
tify the winning tickets in Transformers at a very early train-
ing stage via low-cost schemes and then merely train these
early tickets until convergence [You et al., 2020; Chen et al.,
2021d]; (iii) use an alternating pruning and growing sched-
ule to dynamically update model sparsity patterns throughout
training, suitable for general architectures [Evci et al., 2020;
Chen et al., 2021c].

Overparameterization. Practical DNNs are heavily over-
parameterized, where the number of learnable parameters is
much larger than the number of training samples. It is ob-
served that overparameterization empirically improves both
convergence and generalization, with theoretical guarantee
though not sufficient. The early work [Arora et al., 2018]
mathematically proves that increasing depth as overparame-
terization in linear neural networks can accelerate SGD con-
vergence. [Li and Liang, 2018] further explores two-layer
non-linear neural networks and [Allen-Zhu et al., 2019b]
proves that SGD can converge to global minima on the train-
ing objective of DNNs in polynomial time, assuming train-
ing samples are not duplicated, and the number of parame-
ters is polynomial in the number of training samples and net-
work depth. In terms of generalization, [Allen-Zhu et al.,
2019a] theoretically proves that a sufficiently overparameter-
ized (three-layer) neural network generalizes to the popula-
tion risk and an intriguing property is that there exists an ac-
curate network in the close neighborhood of any point on the

SGD training trajectory with high probability over random
initialization. Note that it has deep connections with LTH as it
partially explains why LTH stands in sparse training as good
small sub-networks with low risks are plentiful due to over-
parameterization. Applied to Transformers, [Li et al., 2020]
exploits the faster convergence and better generalization from
the overparameterization theory to design an efficient train-
ing pipeline: training a very large model, then perform early
stopping and heavily compress it, analogous to LTH.

Large batch training. Another prevailing way to acceler-
ate training is to use a large batch size, delivering a reduced
number of iterations per epoch and better computing resource
utilization. From the statistical view, large batch training re-
duces the variance of the stochastic gradient estimates, so a
reliable step size needs to be tuned for better convergence
[Bottou et al., 2018]. At the era of convolutional neural net-
works, [Goyal et al., 2017] employs the linear scaling of the
learning rate to train ResNet-50 on ImageNet with a batch
size of 8,192 in 1 hour. More advanced step size estima-
tion methods are then proposed. The widely used methods
are LARS [You et al., 2017] for SGD and LAMB [You et
al., 2019] for Adam, which propose to use layerwise adaptive
learning rates for ResNet and Transformers respectively. The
layerwise adaptation strategy can be formulated as

wi
t+1 = wi

t − ηt
ϕ(
∥∥wi

t

∥∥)∥∥γi
t

∥∥ γi
t , (2)

where ηt, wi
t and γi

t are the learning rate, parameters and the
momentum-based gradients of the i-th layer at time step t,
ϕ is a scaling function. It equips with a normalization term
that provides robustness to exploding gradients and plateaus,
and the scaling term ensures that the norm of the update is of
the same order as that of the parameter, promoting faster con-
vergence. More recently, more powerful optimization meth-
ods customized to large batch training have been empirically
shown to perform well. For example, [Kaddour, 2022] shows
that averaging the weights of a certain number of latest check-
points can facilitate faster training. DeepMind in [Hoffmann
et al., 2022] trains over 400 Transformer language models
with varying scales of model size and # of training tokens,
reaching to a practical hypothesis that the model size and
the number of training tokens should be scaled equally for
compute-optimal LLM training.

Incremental learning. The high-level concept of incre-
mental learning is relaxing the original challenging opti-
mization problem into a sequence of easy-to-optimize sub-
problems, where the solution of one sub-problem can serve as
a good initialization to the subsequent one to circumvent the
training difficulty, in analogy with annealing. Some works
[Gong et al., 2019; Gu et al., 2021] propose to accelerate
BERT pretraining by progressively stacking layers, properly
initializing a larger model from a smaller one. [Zhang and
He, 2020] goes in a reverse direction to train Transformers
with stochastic depth via layer dropping, where it progres-
sively increases dropping rate along both time dimension and
depth dimension. Customized to ViT, AutoProg [Li et al.,
2022a] proposes to automatically decide whether, where and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Survey Track

6825



how much should the model grow during progressive learn-
ing using neural architecture search. A key observation is
that progressively increasing the resolution of the input im-
ages (reducing the patch size) can significantly accelerate ViT
training, aligning with the widely known training dynamics
that focus on low-frequency structure in the early stage and
high-frequency semantics in the latter stage.

2.2 Data Selection

Apart from the model efficiency, data efficiency is also a cru-
cial factor of efficient training.

Token masking. Token masking is a dominant approach in
self-supervised pre-training tasks, such as masked language
modeling (MLM) [Kenton and Toutanova, 2019; Brown et
al., 2020] and masked image modeling (MIM) [Bao et al.,
2022; He et al., 2022]. The spirit of token masking is to ran-
domly mask some input tokens and train the model to predict
the missing content, e.g., vocabulary id or pixels, with the
context information from the visible tokens. Since squeez-
ing the sequence length reduces both the computational and
memory complexity quadratically, skipping processing the
masked tokens brings considerable training efficiency gain
for MLM and MIM. For MLM, [Song et al., 2019] proposes
to jointly pre-train the encoder and decoder for language gen-
eration tasks while removing the masked tokens in the de-
coder to save memory and computation costs. For MIM, rep-
resentative work [He et al., 2022] shows that in vision, re-
moving the masked image patches before the encoder demon-
strates stronger performance and 3× or more lower overall
pre-training time and memory consumption than keeping the
masked tokens. A similar phenomenon is also found in [Li
et al., 2022b] that for language-image pre-training, randomly
masking and removing the masked image patches shows 3.7×
faster overall pre-training time than the original CLIP [Rad-
ford et al., 2021].

Importance sampling. Importance sampling over data,
also known as data pruning, is theoretically guaranteed to ac-
celerate stochastic gradient algorithms for supervised learn-
ing by prioritizing informative training examples, mainly
benefiting from variance reduction. For DNNs, a principal
way of estimating per-sample importance is to use gradient
norm, and [Katharopoulos and Fleuret, 2018; Johnson and
Guestrin, 2018] use different approximations to make calcu-
lating these norms tractable. [Paul et al., 2021] further speeds
up the sampling process similar to the early-bird LTH, but in
the data domain, that simple average gradient norms or error
ℓ2-norms over several weight initializations can be used to
identify important examples at the very early stage in train-
ing. More recently, [Sorscher et al., 2022] shows an excit-
ing analytic theory that the scaling of test error with dataset
size can break beyond power scaling laws and be reduced to
at least exponential scaling if equipped with a superior data
pruning metric, and it employs a self-supervised metric us-
ing k-means clustering. It demonstrates a promising direc-
tion towards more efficient neural scaling laws based on data
importance sampling.

Method Class
Micikevicius et al. [Micikevicius et al., 2018] AMP

Chen et al. [Chen et al., 2016] Rematerialization
Herrmann et al. [Herrmann et al., 2019] Rematerialization

ZeRO-Offload [Ren et al., 2021] Offloading
Beaumont et al. [Beaumont et al., 2021] Offloading + Rematerization

ZeRO [Rajbhandari et al., 2020] DP+MP+AMP
Megatron-LM [Shoeybi et al., 2019] DP+TP

GPipe [Huang et al., 2019] DP+PP
torchgpipe [Kim et al., 2020] PP+Rematerization

Megatron-LM∗[Narayanan et al., 2021] DP+TP+PP+AMP
Wang et al. [Wang et al., 2018] FP8 Training

Cambier et al. [Cambier et al., 2020] FP8 Training
Mesa [Pan et al., 2021] 8-bit ACT

ACTNN [Chen et al., 2021a] 2-bit ACT
GACT [Liu et al., 2022] 2-bit ACT

[Lester et al., 2021],
[Jia et al., 2022],

[Houlsby et al., 2019]
Addition-based PET

Bitfit [Zaken et al., 2022],
LoRA [Hu et al., 2022] Reparameterization-based PET

Table 1: Summary of memory efficient training methods. Abbrevi-
ations include: AMP= Automatic Mixed Precision, DP = Data Par-
allelism, MP = Model Parallelism, TP = Tensor Parallelism, PP =
Pipeline Parallelism, ACT = Activation Compressed Training and
PET = Parameter-efficient Tuning.

3 Memory Efficiency
Apart from the computation burden, the growing model size
of large Transformer models, e.g., from BERT [Kenton and
Toutanova, 2019] 345M parameter model to GPT-3 of 1.75
trillion parameters, is a key bottleneck for training as they
do not fit into the memory of a single device. We first ana-
lyze the memory consumption of the existing model training
frameworks, which is occupied by 1) model states, includ-
ing optimizer states (e.g., momentum and variance in Adam),
gradients and parameters; and 2) activations (we ignore tem-
porary buffers and idle fragmented memory as they are rel-
atively small). We summarize the memory efficient training
methods in Table 1. In the following, we discuss dominant
solutions to optimize memory usage.

Parallelism. Training large DNNs with parallelism across
devices is a common practice to meet the memory demands.
There are basically two paradigms: Data Parallelism (DP)
which distributes a minibatch of data across different devices
and Model Parallelism (MP) which allocates subgraphs of a
model across multiple workers. For DP, with the increase
of available workers, the batch size is close to linear scal-
ing. Large batch training discussed in Sec. 2 is developed for
this case. However, it is obvious that DP has high commu-
nication/computation efficiency but poor memory efficiency
- when model becomes large, the single device cannot store
the model replica and the synchronized communications for
gradients can hinder the scalability of DP. Therefore, DP it-
self is only suitable for training small to moderate models.
To improve the scalability of DP, one solution for Trans-
former is parameter sharing [Lan et al., 2020], known as Al-
bert, but it limits the representational power. More recently,
ZeRO [Rajbhandari et al., 2020] incorporates uniform par-
titioning strategy with DP, where each data parallel process
merely deals with one partition of model states, working in
a mixed precision regime. To deal with very large DNNs,
one always need to utilize model parallelism to allocate dif-
ferent layers across multiple accelerators in a “vertical” man-
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ner. Though MP has good memory efficiency, its communi-
cation and computation efficiency is low due to high volume
data transfer cross devices and poor PE utilization. Luck-
ily, there are two strategies to further boost MP efficiency in
an orthogonal “horizontal” dimension, including Tensor Par-
allelism (TP) and Pipeline Parallelism (PP). TP partitions a
tensor operation in a layer across workers for faster computa-
tion and more memory saving. Customized to Transformer-
based models, Megatron-LM [Shoeybi et al., 2019] slices
both MSA and FFN across GPUs and requires only a few ex-
tra All-Reduce operations in the forward and backward pass,
allowing them to train models up to 8.3 billion parameters
using 512 GPUs. In terms of PP, it was originally proposed
in GPipe [Huang et al., 2019], which splits the input mini-
batch into multiple smaller micro-batches, enabling different
accelerators (sequential layers are partitioned across acceler-
ators) to work on different micro-batches simultaneously be-
fore applying a single synchronous gradient update for the
entire mini-batch. However, it still suffers from pipeline bub-
bles (accelerator idle time) that reduce efficiency. In partic-
ular, PyTorch implements the torchgpipe [Kim et al., 2020],
which performs micro-batch PP with checkpointing, allow-
ing scaling to a large number of micro-batches to minimize
the bubble overhead.
Note that DP and MP are orthogonal and so one can use
both simultaneously to train larger models with higher com-
putation and memory capacity. For example, Megatron-LM∗

[Narayanan et al., 2021] and DeepSpeed [Rasley et al., 2020]
compose tensor, pipeline, and data parallelism to scale train-
ing to thousands of GPUs.

Quantized training. The standard routine for training
neural networks adopts full-precision (i.e., FP32). In
contrast, quantized training trains neural networks from
scratch in reduced precision by compressing the activa-
tions/weights/gradients into low-bit values (e.g., FP16 or
INT8). It has been shown in previous works that reduced
precision training [Zhou et al., 2016; Hubara et al., 2017]
can accelerate neural network training with favorable per-
formance. For Transformers, the most widely adopted ap-
proach is automatic mixed-precision (AMP) training [Mi-
cikevicius et al., 2018]. Specifically, AMP stores a master
copy of weights in full-precision for updates while the acti-
vations, gradients and weights are stored in FP16 for arith-
metic. Compared to full-precision training, AMP is able to
achieve faster training/inference speed and reduce memory
consumption during network training. For example, based
on a batch size of 64 and image resolution of 224 × 224,
training a DeiT-B [Touvron et al., 2021b] on RTX3090 un-
der AMP is 2× faster than full-precision training (305 vs.
124 images/s), as well as consuming 22% less peak GPU
memory (7.9GB vs. 10.2GB). While it is commonly be-
lieved that at least 16-bits is necessary to train networks with-
out impacting model accuracy [Micikevicius et al., 2018;
Das et al., 2018], the most recent support for FP8 training
on NVIDIA H100 has shown promising results on Trans-
former training, where training DeiT-S and GPT [Brown
et al., 2020] under FP8 can match those of 16-bit train-
ing. Apart from reduced precision training which simul-

taneously quantizes activations/weights/gradients, activation
compressed training (ACT) [Chen et al., 2021a] stores low-
precision approximate copies of activations while computing
the forward pass exactly, which helps to reduce the overall
memory consumption during training. The saved activations
are then dequantized to the original precision in the backward
pass to calculate gradients. Recent work [Pan et al., 2021;
Liu et al., 2022] further propose to customize ACT to support
memory-efficient Transformer training.

Rematerialization and offloading. Rematerialization,
also known as checkpointing [Chen et al., 2016], is a widely
used technique for space-time tradeoff that only stores a
portion of activations/weights during the forward pass and
recomputes the rest during the backward pass. [Chen et
al., 2016] provides a simple periodic schedule which was
implemented in PyTorch2, but it is only optimal for homoge-
neous sequential networks. More advanced methods such as
[Herrmann et al., 2019] implements optimal checkpointing
for heterogeneous networks3. In terms of offloading, it is a
technique to use external memory such as CPU memory as
an extension of GPU memory to increase memory capacity
during training, through communications between GPU
and CPU. The model states as well as activations, can be
offloaded to CPU, but the optimal choice needs to minimize
communication cost (i.e., data movement) to/from GPU,
reduce CPU computation and maximize GPU memory
saving. A representative work is ZeRO-Offload [Ren et al.,
2021], which offers optimal offloading strategy customized
to mixed-precision training with Adam optimizer. It offloads
all fp32 model states and the fp16 gradients on the CPU
memory, and computes the fp32 parameter updates on CPU.
The fp16 parameters are kept on GPU and the forward and
backward computations are on GPU. For the best of both
worlds, [Beaumont et al., 2021] proposes to jointly optimize
activation offloading and rematerialization.

Parameter-efficient tuning. The public model zoo repre-
sented by HuggingFace, which contains rich pretrained mod-
els that are ready to be downloaded and executed, is con-
tributing significantly to reductions in training costs. Effi-
cient tuning these readily available models is becoming a
prevailing way to drastically cut training costs. As a pow-
erful alternative for the vanilla full fine-tuning, parameter-
efficient tuning (PET) only updates a small number of ad-
ditional parameters while freezing the pretrained model to
significantly reduce the storage burden, which scales with
dynamic deployment scenarios without the need to store a
separate instance of model for each case. The general PET
approaches can be categorized into addition-based methods
and reparameterization-based methods. The former attaches
additional trainable parameters to the pretrained model and
only tune these parameters. For example, [Lester et al., 2021;
Jia et al., 2022] add trainable parameters to the input space,
and [Houlsby et al., 2019] adds the adapter module twice
to each Transformer block after the MSA and FFN. How-
ever, the extra parameters introduce additional computation

2https://pytorch.org/
3https://gitlab.inria.fr/hiepacs/rotor
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and memory overhead during inference. To tackle this chal-
lenge, the latter proposes to tune parameters that are inher-
ently in the model [Zaken et al., 2022] or new parameters
that can be reparameterized into the model [Hu et al., 2022],
thereby yielding no sacrifice on the inference efficiency. In-
spired by the observation that large language pretrained mod-
els have low intrinsic dimension [Aghajanyan et al., 2021],
the representative work LoRA [Hu et al., 2022] approximates
the update of self-attention weights into two low-rank matri-
ces, which can be merged into the pretrained weights dur-
ing inference. Notably, one of the most recognized efforts
for democratizing LLM is Stanford Alpaca 4, which is fine-
tuned from the open-sourced LLaMA models [Touvron et
al., 2023] using the 52K instruction-following data generated
from ChatGPT. To fine-tune it cheaply and efficiently, its vari-
ant Alpaca-LoRA 5 further adopts the low-rank LoRA to en-
able instruct-tuning LLaMA on customer hardware, showing
training can be done within hours on a single RTX 4090.

Open-source frameworks. There are several widely
adopted prototypes for training large Transformer models
at scale, in which Microsoft DeepSpeed6, HPC-AI Tech
Colossal-AI7 and Nvidia Megatron-LM8 are the pioneering
ones. Specifically, DeepSpeed is implemented mainly based
on [Rasley et al., 2020] and ZeRO series works [Rajbhandari
et al., 2020; Ren et al., 2021], Colossal-AI is built upon [Bian
et al., 2021], and Megatron-LM implements [Narayanan et
al., 2021]. All of these support data and model parallelism in
mixed precision, along with other general practices such as
offloading and rematerialization. More libraries for efficient
distributed training include but not limited to HuggingFace
Transformers9, MosaicML Composer10, Baidu PaddlePad-
dle11, Bytedance Lightseq12, EleutherAI GPT-NeoX13, etc.

4 Hardware/Algorithm Co-design
Apart from computing and memory burden, designing effi-
cient hardware accelerators enables faster training and infer-
ence for DNNs. Specifically, compared with central process-
ing units (CPUs), graphics processing units (GPUs) are more
powerful to perform matrix multiplication due to the high
degree of parallelism. For applications that focus on spe-
cific computation tasks, application-specific integrated cir-
cuits (ASICs) have the advantage of low power consumption,
and high training/inference speed. For example, a tensor pro-
cessing unit (TPU) designed by Google delivered 30∼80×
higher performance-per-watt than contemporary CPUs and
GPUs [Jouppi et al., 2017]. However, ASICs are not eas-
ily reprogrammable or adaptable to a new task. In contrast,
Field Programmable Gate Arrays (FPGAs) are designed to be

4https://github.com/tatsu-lab/stanford alpaca
5https://github.com/tloen/alpaca-lora
6https://github.com/microsoft/DeepSpeed
7https://github.com/hpcaitech/ColossalAI
8https://github.com/NVIDIA/Megatron-LM
9https://github.com/huggingface/transformers

10https://github.com/mosaicml/composer
11https://github.com/PaddlePaddle/Paddle
12https://github.com/bytedance/lightseq
13https://github.com/EleutherAI/gpt-neox

reprogrammed to perform different functions as needed, and
can also be used as a prototype for ASICs before finalizing the
design. To further optimize the training efficiency of DNNs,
especially Transformers, hardware-algorithm co-design takes
the constraints and capabilities of the hardware into account
when designing the algorithm, which will be introduced in
the following subsections.

Sparse matrix multiplication. To reduce the computation
overhead of Transformers, sparse general matrix multiplica-
tion (SpGEMM), which involves multiplying a sparse matrix
with a dense matrix, takes advantage of the sparsity of the at-
tention matrices to reduce the number of computations. There
are several popular sparse matrix computation libraries, such
as Intel Math Kernel Library14 on CPU and cuSPARSE15,
CUSP16 and 2:4 structured sparsity 17[Mishra et al., 2021] on
GPU. However, due to the irregular sparsity, SpGEMM is of-
ten hardware unfriendly to general-purpose processors, such
as CPUs and GPUs. To handle this, specialized hardware ac-
celerators, such as FPGAs and ASICs, are required to handle
the poor data locality issue. For example, OuterSPACE [Pal et
al., 2018] transforms matrix multiplication into an outer prod-
uct procedure and eliminates redundant memory accesses by
decoupling multiplication from accumulation. To take full
advantage of this reduction without introducing significant
overheads, OuterSPACE builds a custom accelerator with re-
configurable memory hierarchy and achieves a mean speedup
of 7.9× over the CPU running Intel Math Kernel Library and
14.0× against the GPU running CUSP. Furthermore, to alle-
viate the data movement bottleneck caused by high sparsity,
ViTCoD [You et al., 2023] uses a learnable auto-encoder to
compress the sparse attentions to a much more compact rep-
resentation and designs encoder and decoder engines to boost
the hardware utilization.

Hardware-aware low-precision. Lowering the precision
of the computations reduces the amount of memory and com-
putation, which can be implemented in hardware-friendly
fixed-point or integer representations instead of floating-point
ones. As a result, we can use lower precision multipli-
ers, adders, and memory blocks, resulting in a significant
improvement in power consumption and speedup. More-
over, low-precision arithmetic can be combined with other
techniques, such as pruning and low-rank approximation, to
achieve further acceleration. For example, Sanger [Lu et
al., 2021] uses 4-bit queries and keys to compute the quan-
tized prediction of sparse attention matrix. Then, the sparse
attention masks are rearranged into structured blocks and
handled by reconfigurable hardware. The following work
DOTA [Qu et al., 2022] identifies unimportant connections
in attention using low-rank transformation and low-precision
computation. By incorporating token-level parallelism and
out-of-order execution, DOTA achieves a 152.6× speedup
over GPU.

14https://www.intel.com/content/www/us/en/developer/tools/
oneapi/onemkl.html

15https://docs.nvidia.com/cuda/cusparse/
16https://cusplibrary.github.io/
17https://developer.nvidia.com/blog/
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Efficient attention. Apart from the sparse matrix multi-
plication and low-precision computation, several pioneering
works focus on efficient and lightweight attention implemen-
tation in hardware [Ham et al., 2020; Ham et al., 2021;
Dao et al., 2022]. Specifically, A3 [Ham et al., 2020] only
selects those keys that are likely to have high similarity with
the given queries to reduce the amount of computation in at-
tention. ELSA [Ham et al., 2021] filters out irrelevant keys
for a particular query based on the hashing similarity to save
computation. With an efficient hardware accelerator, ELSA
achieves a speedup of 58.1× as well as three orders of mag-
nitude improvements in energy efficiency compared to an
Nvidia V100 GPU equipped with 16GB memory. Notably,
FlashAttention [Dao et al., 2022] proposes to exploit tiling to
reduce the I/O communication between GPU high bandwidth
memory (HBM) and on-chip SRAM, which is becoming a de-
fault fast and memory-efficient attention module for speedup.

5 Conclusion and Future Research
In this survey, we have reviewed several important factors
that improve the training of Transformers: 1) appropriate
initialization and optimization paradigms that can accelerate
the convergence rate with fewer training iterations, resulting
in lower computational costs; 2) higher data efficiency by
sampling informative training samples towards more efficient
neural scaling laws of test error with respect to dataset size;
3) memory-efficient techniques to meet the memory require-
ments for training large Transformers, which requires jointly
optimizing PE utilization, memory and communication foot-
prints across accelerators, using parallelism, low-precision
arithmetic, checkpointing and offloading strategies, etc; 4)
hardware and algorithm co-design to maximize the training
scalability on hardware platforms.

We finally highlight several promising directions based on
the reviewed progress: (i) joint training and deployment ef-
ficiency optimization. In reality, we usually need to de-
ploy models to diverse tasks and platforms with different re-
source constraints. Therefore, it is highly desirable to de-
velop new methods for efficiently training an elastic supertnet
that supports many diverse architectural configurations fol-
lowing single-shot NAS [Chen et al., 2021b] or mixture of
experts [Fedus et al., 2022], for multiple tasks and budget re-
quirements; (ii) on-device training [Lin et al., 2020a] on the
edge with limited resources (e.g., low battery and memory
capacity), to avoid frequently transmitting data which results
in privacy and latency issues; (iii) combine efficient approx-
imation techniques such as token/model pruning, low-rank
factorization, lightweight architecture design, dynamic neural
networks and etc, to reduce the model size and computational
cost in the complimentary sense; (iv) a standard benchmark to
evaluate and compare the efficient training methods. Having
such a benchmark would fasten the adoption of these methods
and lead to actual costs reduction down the line.
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