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Abstract

We introduce in this survey the major concepts,
models, and algorithms proposed so far to in-
fer causal relations from observational time se-
ries, a task usually referred to as causal dis-
covery in time series. To do so, after a de-
scription of the underlying concepts and mod-
elling assumptions, we present different methods
according to the family of approaches they be-
long to: Granger causality, constraint-based ap-
proaches, noise-based approaches, score-based ap-
proaches, logic-based approaches, topology-based
approaches, and difference-based approaches. We
then evaluate several representative methods to il-
lustrate the behaviour of different families of ap-
proaches. This illustration is conducted on both ar-
tificial and real datasets, with different characteris-
tics. The main conclusions one can draw from this
survey is that causal discovery in times series is an
active research field in which new methods (in ev-
ery family of approaches) are regularly proposed,
and that no family or method stands out in all situa-
tions. Indeed, they all rely on assumptions that may
or may not be appropriate for a particular dataset.

1 Introduction
Causality plays a central role in science and has been the sub-
ject of many debates among philosophers, biologists, math-
ematicians and physicists, to name but a few. Causality is
implicit in the logic and structure of ordinary language and is
embedded in our understanding mechanism that pushes hu-
mans to invoke questions. Why is it dark? Why is the sea
salty? What is the effect of exercise on heart rate, of a vaccine
on a particular disease? What is the effect of industrial pol-
lution on the environment? And so, as already advocated by
Spirtes, Glymour and Scheines, in attempting to answer such
questions, both the baby and the scientist try to turn observa-
tions into causal knowledge [Spirtes et al., 2001]. Causality
is indeed crucial for explanatory purposes since an effect can

∗The full paper is published in Journal of Artificial Intelligence
Research, 73:767–820, August 2022.

be explained by its causes, regardless of the correlations it
may have with other variables.

The recent decades have seen the development, from
philosophers, mathematicians, and computer scientists, of
different models and methods to infer causal relations from
data and to reason on the basis of these relations (to, e.g.,
predict the effect of changing a particular medication). If the
first studies were dedicated to non temporal data, more and
more studies now focus on time series. Indeed, time series
arise as soon as observations, from sensors or experiments,
for example, are collected over time. They are present in var-
ious forms in many different domains, as healthcare (through,
e.g., monitoring systems), Industry 4.0 (through, e.g., predic-
tive maintenance and industrial monitoring systems), surveil-
lance systems (from images, acoustic signals, seismic waves,
etc.) or energy management (through, e.g. energy consump-
tion data). The number of scientific publications dedicated
to causality in time series as well as the number of tools de-
veloped in this context have steadily increased to a point that
it is difficult for non specialists to grasp the most important
approaches proposed so far.

The goal of our survey is twofold: On the one hand, we
want to introduce the major concepts, models, methods, and
associated algorithms proposed so far to infer causal rela-
tions from observational time series, a task usually referred
to as causal discovery; on the other hand, we want to assess
how different methods for causal discovery in time series be-
have in practice. Several surveys on causal discovery have re-
cently been proposed [Guo et al., 2020; Nogueira et al., 2021;
Glymour et al., 2019; Vowels et al., 2021]. However, most of
them do not discuss time series and when they do, they fo-
cus on Granger causality. In contrast, our survey is dedicated
to causal discovery in time series and reviews all families of
approaches proposed in this area.

The remainder of this extended abstract is organized as fol-
lows. After a brief description of the main concepts and as-
sumptions in Section 2, we briefly present some of the dif-
ferent algorithms that we presented in our survey according
to the family of approaches they belong to and summarize
the main characteristics of these algorithms. Section 4 points
out some aspect of causal discovery from time series that are
not included in the survey. Lastly, Section 5 concludes this
extended abstract.
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Figure 1: Different causal graphs to respresent a diamond structure with self causes: full time causal graph (5a), window causal graph (5b)
and summary causal graph (5c). Note that the first one gives more information but cannot be inferred in practice, the second one is a schematic
viewpoint of the full behavior, whereas the last one give an overview and can be deduced from the window causal graph.

2 Background
Causal discovery in time series aims at discovering, from
observational data, causal relations within and between d-
variate time series X where, for a fixed t, each Xt is a vector
(X 1

t , · · · ,X d
t ) in which each variable X p

t represents a mea-
surement of the p-th time series at time t. There are at least
three ways to represent time series through a causal graph
G = (V,E) with V the set of vertices and E the set of edges.
The first is called a full time causal graph and represents a
complete acyclic graph of the dynamic system, as illustrated
in Figure 1a.

Definition 1 (Full Time Causal Graph). Let X be a multi-
variate discrete-time stochastic process and G = (V,E) the
associated full time causal graph. The set of vertices in that
graph consists of the set of components X 1, . . . ,X d at each
time t. The edges E of the graph are defined as follows: vari-
ables X p

t−i and X q
t are connected by a lag-specific directed

link X p
t−i → X q

t in G pointing forward in time if and only if
X p causes X q at time t with a time lag of i > 0 for p = q
and with a time lag of i ≥ 0 for p ̸= q.

It is usually not possible to infer general full time causal
graphs as there usually is a single observation for each time
series at each time instant and it is common to rely on the
so-called Consistency Throughout Time assumption.

Definition 2 (Consistency Throughout Time). A causal
graph G = (V,E) for a multivariate time series X is said to
be consistent throughout time if all the causal relationships
remain constant in direction throughout time.

When assuming consistency throughout time, the full time
causal graph can be contracted to give a finite graph which
we call window causal graph. It is a representation of the
causal graph through a time window, the size of which equals
the maximum lag relating time series in the full time causal
graph.

Definition 3 (Window Causal Graph). Let X be a multivari-
ate discrete-time stochastic process and G = (V,E) the as-
sociated window causal graph for a window of size τ . The
set of vertices in that graph consists of the set of components
X 1, . . . ,X d at each time t, . . . , t + τ . The edges E of the
graph are defined as follows: variables X p

t−i and X q
t are

connected by a lag-specific directed link X p
t−i → X q

t in G
pointing forward in time if and only if X p causes X q at time
t with a time lag of 0 ≤ i ≤ τ for p ̸= q and with a time lag
of 0 < i ≤ τ for p = q.
Figure 1b illustrates a window causal graph corresponding to
the full time causal graph given in Figure 1a. In practice, it
is often sufficient to know the causal relations between time
series as a whole, without knowing precisely the relations be-
tween time instants, in addition, in some applications, an ex-
pert would like to validate a causal graph before using it, but
validating a window causal graph can be difficult as it is diffi-
cult to determine the temporal lag between a cause and an ef-
fect. In these cases, one one can use a summary causal graph.
An example of such a graph is given in Figure 1c. Note that
since a summary causal graph is a abstraction of the full time
causal graph, it can contain cycles.
Definition 4 (Summary Causal Graph). Let X be a multi-
variate discrete-time stochastic process and G = (V,E) the
associated summary causal graph. The set of vertices in that
graph consists of the set of time series X 1, . . . ,X d. The edges
E of the graph are defined as follows: variables X p and X q

are connected if and only if there exists some time t and some
time lag i such that X p

t−i causes X q
t at time t with a time lag

of 0 ≤ i for p ̸= q and with a time lag of 0 < i for p = q.
The relations between a probability distribution and its

causal graph are central to the construction of the graph. It
is however not always possible to infer a causal graph solely
from observational data on which one can only compute cor-
relations and statistical independencies. For this reason, in
addition to the acyclicity of the full time causal graph and
consistency throughout time, all methods rely on at least two
of the following assumptions:

• Stationarity, which states that the generative process
does not change with respect to time;

• Causal Markov condition [Spirtes et al., 2001; Pearl,
2000], which states that every variable is independent
of all its nondescendants in the graph conditional on its
parents;

• Causal sufficiency [Spirtes et al., 2001; Pearl, 2000],
which states that all common causes, i.e., confounders,
of all observed variables are observed;
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• Minimality [Spirtes et al., 2001], which requires that all
adjacent nodes are dependent;

• Faithfulness [Spirtes et al., 2001; Pearl, 2000], which
states that all conditional independencies are entailed
from the causal Markov condition;

• Semi-parametric models [Peters et al., 2017], which
stipulates a general form for the underlying model, as
linear models or nonlinear additive noise models;

• Temporal priority [Hume, 1738], which makes the pro-
cess of causality asymmetric in time and is useful for
orienting a causal relation when one knows that two vari-
ables are causally related, as well as its relaxed version
which allows for instantaneous relations as the differ-
ence in time between two values of two time series may
not be observed if the sampling frequencies of the time
series are small.

3 Diffferent Families of Approaches for
Causal Discovery

We now turn to the most widely used approaches used to in-
fer causal graphs between time series. Additional approaches
can be found in the complete survey.

Granger causality is one of the oldest concepts in causal
inference, based on a statistical version of Hume’s regularity
theory [Hume, 1738] which states that causal relations can
be inferred by the experience of constant conjunctions be-
tween causes and effects, a cause preceding its effects. As-
suming stationary linear systems, one can assess whether X p

Granger-causes X q by considering two autoregression mod-
els: an autoregressive restricted model that uses only past
values of X q to predict its current value and an augmented
version of the autoregressive model that uses both past val-
ues of X q and X p to predict the current value of X q . If
the augmented version is significantly more accurate than the
restricted model, one can conclude that X p Granger-causes
X q . In a multivariate setting, a pairwise analysis can be per-
formed using the bivariate approach denoted as PWGC. This
approach does however not fully capture Granger’s original
ideas which assume that all relevant information is included
in the analysis [Eichler, 2008]. To include all relevant in-
formation in the analysis, the multivariate Granger causal-
ity denoted as MVGC [Geweke, 1982; Chen et al., 2004;
Barrett et al., 2010] was introduced. In MVGC, the restricted
and augmented models are both based on a vector autore-
gressive instead of a simple autoregressive model, where the
augmented model uses all observational time series whereas
the restricted model uses all time series except X p. Analo-
gously to the bivariate case, if the augmented model is sig-
nificantly more accurate than the restricted model, one con-
cludes that X p Granger-causes X q . Note that several exten-
sions of the above approach have been proposed, as the tem-
poral causal discovery model, denoted as TCDF [Nauta et
al., 2019], which dispenses with the linear assumption made
in the original proposal.

Constraint-based approaches exploit conditional inde-
pendencies to build a skeleton between variables. This skele-

ton is then oriented either according to temporal priority or
according to a set of rules that define constraints on admis-
sible orientations while assuming faithfulness. oCSE [Sun
et al., 2015] algorithm uses the causation entropy to find
these conditional independencies under the assumption that
all causal relations have a time-lag of size 1. Due to this as-
sumption, temporal priority is sufficient to orient all edges
and the summuary causal graph gives the same information
as the window causal graph. However, time-lag of size 1 is
not always satisfied in real world scenarios, so the PCMCI
algorithm [Runge et al., 2019] was introduced to detect time
lagged causal relations in the form of a window causal graph.
Note that PCMCI can be flexibly combined with any kind
of conditional independence tests. Instantaneous causal rela-
tions, which were not supported in the initial algorithm, have
been integrated to PCMCI [Runge, 2020] by conducting sep-
arately the edge removal for lagged conditioning sets and in-
stantaneous conditioning sets. Lagged relations are treated
as in PCMCI and instantaneous relations are oriented using
the known PC-rules [Spirtes et al., 2001] which were intro-
duced for non temporal graphs. Both of the above algorithms
assume causal sufficiency, however, there exists constraint-
based algorithms, such as tsFCI [Entner and Hoyer, 2010],
that do not need this assumption.

Noise-based approaches do not consider that statistical
noise is as a nuisance that one has to live with. Instead, they
consider it as a valuable source of insight to identify causal
relations [Hoyer et al., 2009; Climenhaga et al., 2019]. Even
though it has been shown that, in a non parametric setting,
the noise does not help to distinguish between a cause and its
effects [Peters et al., 2017], this is no longer the case when us-
ing specific semi-parametric models as a a linear model with
non-Gaussian noise [Shimizu et al., 2006], or a nonlinear ad-
ditive noise model [Hoyer et al., 2009]. Therefore, the Var-
LiNGAM [Hyvärinen et al., 2010] algorithm was proposed
for uniquely identifying causal structures based on purely ob-
servational time series assuming a linear model with non-
Gaussian noise. Similarly, TiMINo [Peters et al., 2013] was
introduced for nonlinear additive noise models. Both algo-
rithms assume causal sufficiency and the minimality condi-
tion, which is a weaker version of faithfulness.

Score-based approaches aim to find the graph that best
matches the data based on a score that typically strikes a
balance between the likelihood of the data given the net-
work and a penalty term related to the complexity of the net-
work. Assuming causal sufficiency as well as linearity, the
DYNOTEARS [Pamfil et al., 2020] algorithm was proposed
to simultaneously estimate instantaneous and time-lagged re-
lationships between time series. This algorithm relies on min-
imizing a penalized loss based on the Frobenius norm of the
residuals of a linear model.

Summary Table 1 displays the main characteristics of rep-
resentative algorithms in the above families. As one can note,
4 algorithms infer a summary causal graph and 5 infer a win-
dow causal graph. It is of course possible to deduce the
summary causal graph from a window causal graph and, in
the case of oCSE, the summary causal graph is equivalent
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PWGC S ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Granger MVGC S ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

TCDF W ✓⊕ ✓ ✓⊕ ✓ ✓ ✗ ✓ ✗ ✗

Constraint-based PCMCI W F ✓ ✗† ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓
oCSE S F ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
tsFCI W F ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Noise-based VarLiNGAM W M ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
TiMINo S M ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓

Score-based DYNOTEARS W ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Table 1: Summary of the main characteristics of representative algorithms in all the families discussed in this survey. For causal graphs,
S means that the algorithm provides a summary causal graph whereas W means that the algorithm provides a window causal graph; F
corresponds to faithfulness and M to minimality. For a fixed algorithm, check marks with ⊕ are mutually exclusive. A cross mark with †

indicates that the corresponding algorithm was recently extended to handle the information given in the corresponding column. An empty
cell can either mean that the information given in the corresponding column was not discussed by the authors of the corresponding algorithm
or that this information is not needed for the corresponding algorithm.

to the window causal graph. Roughly only half of the algo-
rithms address the problem of discovering instantaneous re-
lations. Most algorithms can detect confounders. However,
only TCDF can detect instantaneous hidden confounders and
only tsFCI can detect lagged hidden confounders. More gen-
erally, very few algorithms can deal with hidden variables,
which violates the causal sufficiency assumption. Regarding
the type of underlying models, almost all algorithms rely on a
particular model (except PCMCI and oCSE). Among the al-
gorithms relying on a model, roughly half of them rely on a
linear model. Relying on a specific model can be an advan-
tage when the data considered arises from a similar model. It
can be of course a disadvantage when this is not the case and
when the model family considered is not a universal approxi-
mator. Lastly, as one can note, most algorithms have few (less
than 5) hyper-parameters, with the exception of TCDF which
is based on deep neural networks.

4 Elaboration
Our survey reviews different causal discovery algorithms in
the setting where consistency throughout time as well as other
technical conditions are satisfied. However, it is important to
note that there exists algorithms that relax these conditions:
[Huang et al., 2015; Huang et al., 2020; Saggioro et al., 2020]
relax the consistency throughout time constraint, [Danks and
Plis, 2013; Gong et al., 2015] allow for temporal aggre-
gation or subsampling, and [Kleinberg and Mishra, 2009;
Kleinberg, 2011; Kleinberg, 2015] consider qualitative and
mixed data. In addition, in each family of approaches, we
presented what we think are the most known algorithms but
one should bear in mind that there exists many extensions of

these algorithms. For example, in the constraint-based family,
the idea behind the oCSE algorithm was extended to handle
lags of size different from 1, instantaneous relations as well as
a method to directly infer the summary causal graph without
going through a window causal graph [Assaad et al., 2022a;
Assaad et al., 2022b]. In the noise based-family, identifia-
bility was shown to be also possible under a post nonlinear
additive noise model [Zhang and Hyvärinen, 2009]. Finally,
it is worth noting that we did not include hybrid methods
[Malinsky and Spirtes, 2018; Sanchez-Romero et al., 2019;
Assaad et al., 2021] which sometimes yield better results than
purebred methods.

5 Conclusion

Our survey presents different algorithms, pertaining to dif-
ferent families of approaches, for causal discovery in time
series. The families we have retained here correspond to ap-
proaches à la Granger, constraint-based approaches, noise-
based approaches and score-based approaches. Further de-
tails on those algorithms and their evaluation, as well as
on other families of approaches (namely, logic-based ap-
proaches, topology-based approaches, and difference-based
approaches) and associated algorithms can be found in the
full paper [Assaad et al., 2022c]. In a nutshell, one can draw
from our survey that causal discovery in times series is an ac-
tive research field in which new methods (in every family of
approaches) are regularly proposed, and that no family or al-
gorithm stands out in all situations. Indeed, they all rely on
assumptions that may or may not be appropriate for a partic-
ular dataset.
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