
SemFORMS: Automatic Generation of Semantic Transforms
By Mining Data Science Code

Ibrahim Abdelaziz , Julian Dolby , Udayan Khurana , Horst Samulowitz , Kavitha Srinivas
T.J. Watson Research Center, IBM Research

{ibrahim.abdelaziz1,kavitha.srinivas}@ibm.com, {samulowitz, dolby, ukhurana}@us.ibm.com

Abstract
Careful choice of feature transformations in a
dataset can help predictive model performance,
data understanding and data exploration. How-
ever, finding useful features is a challenge, and
while recent Automated Machine Learning (Au-
toML) systems provide some limited automation
for feature engineering or data exploration, it is still
mostly done by humans. We demonstrate a system
called SemFORMS (Semantic Transforms), which
mines useful expressions for a dataset from access
to a repository of code that may target the same
dataset/similar dataset. In many enterprises, nu-
merous data scientists often work on the same or
similar datasets, but are largely unaware of each
other’s work. SemFORMS finds appropriate code
from such a repository, and normalizes the code to
be an actionable transform that can be prepended
into any AutoML pipeline. We demonstrate Sem-
FORMS operating over example datasets from the
OpenML benchmarks where it sometimes leads to
significant improvements in AutoML performance.

1 Introduction
Enterprises that perform data analytics and modeling have
multiple data scientists who often work on the same type of
datasets while being largely unaware of each other’s work.
Their code often contains a wealth of domain specific knowl-
edge to wrangle, explore, and visualize the data. For example,
Listing 1 shows a real code snippet trimmed for illustrative
purposes. It reads tabular data in a function on Line 3 while
Line 4 declares a new function where two new expressions
are added to the input dataframe houses df . The defined ex-
pressions in Lines 5 and 6 present manipulations on a dataset
that are about factors that influence house prices. For exam-
ple, the expression total bedrooms/total rooms cal-
culates the square footage dedicated to bedrooms as a ratio of
the total square footage; a useful factor in predicting house
value.

Such code is a great repository of applied domain knowl-
edge, which is locked up in individual scripts and unfortu-
nately lacks means for sharing and reuse. SemFORMS (Se-
mantic Transforms) is a system to leverage this knowledge;

Listing 1 Example data science code, with transforms

1 import pandas as pd
2 def read_df():
3 return pd.read_csv('houses.csv')
4

5 def manipulate_df(houses_df):
6 houses_df['beds_to_total'] =

houses_df['total_bedrooms'] /
houses_df['total_rooms']

↪→
↪→

7 houses_df['popdf'] = houses_df['population'] /
houses_df['households']↪→

8

9 def main():
10 h_df = read_df()
11 manipulate(h_df)

it mines code and automatically creates data transforms that
a data scientist can drop into an AutoML pipeline for a new
similar dataset.

The key technical challenge in mining such transforms is
that this requires sophisticated program analysis techniques
to identify key objects (e.g., pandas dataframes), and several
reads/writes from dataframes; that is, how data flows through
the program. This is especially challenging for dynamically
typed languages such as Python. SemFORMS has the ma-
chinery to perform such extraction; to our knowledge, no
other analysis framework can extract such expressions in dy-
namically typed languages such as Python. Furthermore, we
use the analysis framework to normalize expressions and gen-
erate lambda expressions that can be used within the popular
scikit-learn pipeline.

Our results on OpenML datasets show that when scripts
exist in open repositories such as GitHub, SemForms sug-
gested expressions improved AutoML performance on 10/41
datasets. The value of a system such as SemFORMS is that
because evaluation of transforms is entirely automated, trans-
forms that do not improve overall performance can be dis-
carded without any effort on part of the data scientist. Sem-
FORMS system is available as an open source system1.

2 System Overview
Figure 1 describes the overall SemFORMS system. Given
a new dataset, the system queries code repositories such as
GitHub with the table’s metadata, specifically the table and

1https://github.com/wala/graph4code/tree/master/semForms

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7106

https://github.com/wala/graph4code/tree/master/semForms

Recovered Deaths

Dataset
COVID

Create pipeline to apply
transforms

Function Transforms

Build model,
Assess improvement

AutoML
System

Query GitHub: covid
recovered deaths

Program analysis

Analyze reads and writes
of pandas data frames

Figure 1: Overview of SemForms

column names. If the table is too wide, the system tries to
search for relevant scripts using subsets of columns with the
table name. These scripts are then fed into an analysis frame-
work. Currently the analysis framework only operates on
Python code; given that a large amount of data science code
is written in Python, we targeted this language first, although
nothing in the analysis framework is specific to Python.

The program analysis framework analyzes the Python code
and identifies reads and writes to pandas dataframes, which
are the normal heap structure that is modified in data prepara-
tion stages. Each possible write is a creation of a new col-
umn in the dataframe, and hence is of interest as a trans-
form. The writes are analyzed and new code to repro-
duce that transform by eliminating differences in naming
variables is generated by traversing the intermediate struc-
tures created by the analysis framework. New normalized
code is generated as a lambda function so it can be used
with the scikit-learn’s FunctionTransformer
class. For the purposes of the demo, we use these
FunctionTransformers to create a pipeline with an es-
timator, and evaluate the advantage of adding the extracted
transforms to the estimator compared to using only the origi-
nal features.

3 Demonstration
We show in Listing 2 an example of how SemForms API

is used for an example OpenML dataset (houses). We show
the performance of traditional machine learning model on an
OpenML dataset with and without SemForms recommended
transforms. We propose to demonstrate SemForms function-
ality on any input dataset; an OpenML dataset or a local
dataset that the user uploads. Once a dataset and its corre-
sponding estimator (regressor or classifier) are chosen, our
demonstration will show 1) the performance of the chosen
estimator on the original dataset, 2) search and analysis of
Github to extract a set of recommended transforms, and 3)
automated application of these transforms on the performance
of the estimator on the augmented data. We also show in List-
ing 3 the set of transforms for a completely different dataset
– BNG(heart-h). At the conference, we will allow the audi-
ence to select an available dataset of their choice, and explore
the dataset before and after augmentation.

4 Experiments
To assess the value of the transforms in terms of predictive
performance, we used the state-of-the-art gradient boosted
tree implementation LGBM [Ke et al., 2017] as a strong base-

line ML model. In order for LGBM to consume the input
data, we performed a minimal set of standard prepossessing
operations. Note that in the demo we use the RandomForest
estimator just to demonstrate the API.

First, we measured the baseline performance of LGBM on
155 data sets. Among those, we are able to successfully ap-
ply transforms on 41 out of 155 benchmarks; that is only 41
benchmarks had any applicable scripts. We note that applica-
bility of transforms to data is not just based on schema simi-
larity, but data values as well; some transforms were not ap-
plicable because the data values were not present.

As shown in Table 1 shows we found relative performance
improvements for 10/41 benchmarks in total. The underly-
ing performance metric was MSE for regression targets, and
balanced accuracy for classification problems.

Dataset Relative
Improvement Dataset Relative

Improvement

BNG(heart-h) 12.8% Houses 10.4%
BGG(heart-c) 5.8% pc1 4.8%
Diabetes 3.3% BNG(heart-c,nominal) 2.1%
pbcseq 1.9% BNG(page-blocks) 0.8%
BNG(auto price) 0.7% strikes 0.6%

Table 1: Relative predictive performance gains on data sets. Regres-
sion targets used MSE, classification used balanced accuracy.

While not all improvements result in substantial gains
in predictive performance, it is worth considering that: (a)
improving a state-of-the-art ML model such as LGBM by
solely augmenting the data automatically is not straight-
forward; as is highlighted by the significant computational
effort needed to determine such features [Khurana et
al., 2016] and; (b) in most cases the applied transforms
are semantically consistent and are therefore explain-
able. As shown in Table 2, when the system adds new
features based on an expression such as lambda df:
numpy.logical and((df[’trestbps’] >120),
(df[’age’] >70)), it actually enriches the data based
on domain knowledge. It is possible that such relations
may be determined automatically using transformation
search-based approaches (e.g., [Khurana et al., 2016]), but in
all likelihood, they would require an exponentially expensive
computational effort to find that one relation given that a
combination of columns as well as values is required.

Adding new features to the data based on transformations
can result in no improvement, or in the reduction of predictive
performance, as we note in 31/41 benchmarks. Note, how-
ever, that because the entire process is automated, one can

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7107

Listing 2 SemForms API
1 # -------------------Input Dataset------------------#
2 dataset_name = 'houses' # can be OpenML or local

dataset↪→
3 dataset = fetch_openml(dataset_name)
4 X = dataset['data']
5 target = dataset['target'].to_frame()
6

7 # -----------Performance on Original Data----------#
8 # Set standard classifier (could be any AutoML)
9 estimator = RandomForestRegressor(random_state = 1908)
10 scores = cross_val_score(estimator, X,

numpy.ravel(target), cv=3, scoring='r2')↪→
11 print("Averaged r2 score on (orig. data): " +

str(statistics.mean(scores)))↪→
12 '''
13 Averaged r2 score on orig. data: 0.58
14 '''
15 # --------SemForms: Recommend new transforms-------#
16 # use GitHub API to find relevant Python notebooks
17 urls = search_github(dataset_name,

dataset_cols=X.columns)↪→
18 expressions = mine_code_for_expressions(urls)
19 # Analyze found transforms and if applicable, create

SKLEARN Function Transforms as a pipeline↪→
20 transforms_suggested, correlation =

handle_transforms("both", expressions, target, X)↪→
21 pretty_print_transforms(transforms_suggested)
22 '''
23 Filtered Expressions:
24 lambda df: (df['total_rooms'] / df['households'

])↪→
25 lambda df: (df['total_bedrooms'])
26 lambda df: (df['longitude'] == 0)
27 lambda df: (df['longitude'] > -114)
28 lambda df: (df['population'] / df['households'

])↪→
29 '''
30 # ------SemForms: Apply recommended transforms-----#
31 # Add estimator to suggested transformation pipeline
32 transforms_suggested.append(('estimator', estimator))
33 pipeline = Pipeline(transforms_suggested)
34 # Evaluate with data augmentation added as function

transformers based on original data↪→
35 scores = cross_val_score(pipeline, X,

numpy.ravel(target), cv=3, scoring='r2')↪→
36 print("Averaged r2 score with SemForms: " +

str(statistics.mean(scores)))↪→
37 '''
38 Averaged r2 score with SemForms: 0.65
39 '''

simply disregard the suggested transforms in searching for an
optimal model, as is often the case when AutoML systems
search optimal pipelines or hyperparameters.

5 Related Work
Code analysis: We need to track reads and writes to
dataframes as they flow through the program, so we need
analysis that is inter-procedural. Few systems such as Pysa2

perform limited inter-procedural analysis. However, it has a
single summary for a function, and none of the existing analy-
sis systems, to our knowledge, provide the range of traditional
machinery that we require here. To facilitate mining trans-
forms, we extended GraphGen4Code [Abdelaziz et al., 2021]
to model heap access to track reads and writes to Python ob-
jects.
Mining from notebooks: Some works have targeted mining
from notebooks to understand at a broad level, what methods

2https://pyre-check.org/docs/pysa-basics/

Listing 3 Suggested Expressions for BNG(heart-h)
1 '''
2 Filtered Expressions:
3 lambda df: (df['age'] > 70)
4 lambda df: (df['sex'])
5 lambda df: (df['thal'])
6 lambda df: (df['sex'] == 0)
7 lambda df: (df['sex'] == 1)
8 lambda df: (df['oldpeak'] < 4)
9 lambda df: (df['oldpeak'] > 1)

10 lambda df: (df['age'] > 75)
11 lambda df: ((df['slope']))
12 lambda df: (df['slope'])
13 lambda df: (df['chol'])
14 lambda df: (df['trestbps'] > 120)
15 '''

Dataset SemForm Suggested Expression

BNG(cleveland) lambda df: (df[’trestbps’] >120)
pc1 lambda df: (df[’B’] >1)
BNG(cholesterol) lambda df: numpy.logical and((df[’trestbps’] >120), (df[

’age’] >70))
houses lambda df: (df[’total bedrooms’] / df[’total rooms’])
the-complete-
pokemon

lambda df: (df[’weight kg’] / df[’height m’])

cleanedpokemon lambda df: (df[’type2’] == ”flying”)

Table 2: Examples of expressions with significant correlations for
some OpenML and Kaggle datasets

or objects are most used using shallow analysis of variable
names and imports such as [Rehman, 2019] or [Psallidas et
al., 2022], but none have the machinery needed to extract
transforms as stated in [Rehman, 2019]. Amongst dynamic
analysis based approaches, Auto-suggest [Yan and He, 2020]
uses heuristics to handle hard issues such as missing data files
and packages by searching. It depends on the availability of
the CSV file in the public domain, and on dynamic analy-
sis which is difficult to perform on a large number of scripts
efficiently.
Automated Feature Generation for Predictive Modeling:
Existing automated feature engineering techniques typically
explore the growth of given feature using pre-determined
mathematical transformation functions which are agnostic of
the nature of the data [Lam et al., 2021; Kanter and Veera-
machaneni, 2015; Kaul et al., 2017; Le and Gulwani, 2014;
Yan and He, 2020; He et al., 2018; Jin et al., 2017]. Our
work is orthogonal to these systems where SemForms’ rec-
ommended expressions can be automatically applied to input
datasets as new features to improve ML models performance.

6 Conclusion

In this work, we introduced Semantic Transforms (Sem-
FORMS), an approach for mining transforms from existing
repositories to re-use prior work performed by other data sci-
entists on similar datasets. Our demo highlights how the
extracted features from code can be readily dropped into a
scikit-learn pipeline and be re-used to improve perfor-
mance.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7108

https://pyre-check.org/docs/pysa-basics/

References
[Abdelaziz et al., 2021] Ibrahim Abdelaziz, Julian Dolby,

James P McCusker, and Kavitha Srinivas. A toolkit for
generating code knowledge graphs. The Eleventh Interna-
tional Conference on Knowledge Capture (K-CAP), 2021.

[He et al., 2018] Yeye He, Xu Chu, Kris Ganjam, Yu-
dian Zheng, Vivek Narasayya, and Surajit Chaudhuri.
Transform-data-by-example (tde) an extensible search en-
gine for data transformations. Proceedings of the VLDB
Endowment, 11(10):1165–1177, 2018.

[Jin et al., 2017] Zhongjun Jin, Michael R Anderson,
Michael Cafarella, and HV Jagadish. Foofah: Transform-
ing data by example. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages
683–698, 2017.

[Kanter and Veeramachaneni, 2015] James Max Kanter and
Kalyan Veeramachaneni. Deep feature synthesis: Towards
automating data science endeavors. In 2015 IEEE interna-
tional conference on data science and advanced analytics
(DSAA), pages 1–10. IEEE, 2015.

[Kaul et al., 2017] Ambika Kaul, Saket Maheshwary, and
Vikram Pudi. Autolearn—automated feature generation
and selection. In 2017 IEEE International Conference on
data mining (ICDM), pages 217–226. IEEE, 2017.

[Ke et al., 2017] Guolin Ke, Qi Meng, Thomas Finley,
Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information process-
ing systems, 30:3146–3154, 2017.

[Khurana et al., 2016] Udayan Khurana, Deepak Turaga,
Horst Samulowitz, and Srinivasan Parthasarathy. Cognito:
Automated feature engineering for supervised learning. In
IEEE ICDM, pages 1304–1307, 2016.

[Lam et al., 2021] Hoang Thanh Lam, Beat Buesser, Hong
Min, Tran Ngoc Minh, Martin Wistuba, Udayan Khurana,
Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and
Horst Samulowitz. Automated data science for relational
data. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 2689–2692. IEEE, 2021.

[Le and Gulwani, 2014] Vu Le and Sumit Gulwani. Flashex-
tract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 542–553, 2014.

[Psallidas et al., 2022] Fotis Psallidas, Yiwen Zhu, Bojan
Karlas, Jordan Henkel, Matteo Interlandi, Subru Krishnan,
Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang,
Markus Weimer, Avrilia Floratou, Carlo Curino, and Kon-
stantinos Karanasos. Data science through the looking
glass: Analysis of millions of github notebooks and ml.net
pipelines. SIGMOD Rec., 51(2):30–37, jul 2022.

[Rehman, 2019] Mohammed Suhail Rehman. Towards un-
derstanding data analysis workflows using a large note-
book corpus. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, page

1841–1843, New York, NY, USA, 2019. Association for
Computing Machinery.

[Yan and He, 2020] Cong Yan and Yeye He. Auto-suggest:
Learning-to-recommend data preparation steps using data
science notebooks. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data,
pages 1539–1554, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Demonstrations Track

7109

	Introduction
	System Overview
	Demonstration
	Experiments
	Related Work
	Conclusion

