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Abstract

Vehicle license plate recognition is a crucial task
in intelligent traffic management systems. How-
ever, the challenge of achieving accurate recogni-
tion persists due to motion blur from fast-moving
vehicles. Despite the widespread use of image
synthesis approaches in existing deblurring and
recognition algorithms, their effectiveness in real-
world scenarios remains unproven. To address this,
we introduce the first large-scale license plate de-
blurring dataset named License Plate Blur (LP-
Blur), captured by a dual-camera system and pro-
cessed through a post-processing pipeline to avoid
misalignment issues. Then, we propose a Li-
cense Plate Deblurring Generative Adversarial Net-
work (LPDGAN) to tackle the license plate de-
blurring: 1) a Feature Fusion Module to integrate
multi-scale latent codes; 2) a Text Reconstruction
Module to restore structure through textual modal-
ity; 3) a Partition Discriminator Module to en-
hance the model’s perception of details in each let-
ter. Extensive experiments validate the reliabil-
ity of the LPBlur dataset for both model training
and testing, showcasing that our proposed model
outperforms other state-of-the-art motion deblur-
ring methods in realistic license plate deblurring
scenarios. The dataset and code are available at
https://github.com/haoyGONG/LPDGAN.

1 Introduction
Efficient recognition of vehicle license plates is crucial for
intelligent traffic management systems, however real-world
scenarios often pose a significant challenge due to motion
blur. This blur, making license plates unreadable, is espe-
cially problematic in situations involving high-speed vehicles
or low-light conditions. Such issues are exacerbated during
nighttime or in bad weather, resulting in considerable motion
blur in captured images. To tackle these issues, our study in-
troduces a comprehensive dataset and a novel model tailored
for realistic license plate deblurring.
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Figure 1: The visual deblurring results of several state-of-the-art
models and our model for real-world motion blurred license plate
images.

Image deblurring is a key task in computer vision, focused
on restoring blurred images to clear ones for accurate obser-
vation and identification. The progress in this field heavily
depends on the development of relevant datasets. Current
methods for creating deblurring datasets fall into three main
categories: (1) synthetic blurring using blur kernels [Sun
et al., 2013; Köhler et al., 2012; Lai et al., 2016], which
leads to a lack of generalization capability for models trained
on these synthesized images when applied to real-world im-
ages. (2) The generation of blurred images from sharp frames
via averaging or fusion [Nah et al., 2017; Shen et al., 2019;
Jiang et al., 2020], which doesn’t fully mimic real-world
overexposure outliers [Chang et al., 2021]. (3) Lastly, beam-
splitting systems capture sharp and blurred image pairs via
camera shake [Rim et al., 2020], with potential issues in color
accuracy and alignment. Each approach contributes to the
field but also has inherent limitations impacting the realism
and utility of the datasets.

With the advent of deep learning, numerous convolutional
neural network (CNN)-based methods have surfaced [Sun et
al., 2015; Gong et al., 2017; Tao et al., 2018; Shen et al.,
2019; Zhang et al., 2023], playing an essential role in the
motion deblurring task. Recently, the proposal of Genera-
tive Adversarial Networks (GAN) has also profoundly im-
pacted the image deblurring field [Ramakrishnan et al., 2017;
Kupyn et al., 2018; Kupyn et al., 2019; Zhao et al., 2022].
Despite these advancements, deblurring license plate images
remains a significant challenge, primarily due to the lack of
large-scale, tailored datasets. The complexity of license plate
blurring, with its more severe degradation compared to stan-
dard motion blur, poses an additional challenge. To better jus-
tify the performance of existing image deblurring algorithms
on real-world blurred license plate images, we evaluate the
performance of several state-of-the-art deblurring algorithms
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with blurred license plate images. As shown in Figure 1, we
can conclude that all these methods fail to perform well in this
task. It underscores the necessity for further research specifi-
cally targeting real-world vehicle license plate deblurring.

To address these challenges, we present a comprehensive
solution consisting of a large-scale paired license plate dataset
and a dedicated license plate deblurring model. Our data col-
lection employs a dual-camera setup with different shutter
speeds to capture sharp and blurred images simultaneously,
eliminating color deviations and enabling post-processing
alignment. Our innovative end-to-end model leverages an en-
coder and latent fusion module for handling multi-scale la-
tent codes, featuring the Swin transformer block ([Liu et al.,
2021]) for effective long-range modeling. To enhance let-
ter reconstruction and text legibility, we introduce a partition
discriminator assessing per-letter sharpness. Extensive ex-
periments using our LPBlur dataset, including metrics such
as L1 loss, Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), Perceptual Loss (PerL), and Text
Levenshtein Distance (TLD) [Levenshtein and others, 1966],
validate its suitability for training and testing. Our proposed
model outperforms state-of-the-art motion deblurring meth-
ods in real-world license plate deblurring scenarios.

In summary, our main contributions are as follows:
• We present a real-world sharp-blurred license plate

dataset, named LPBlur. This dataset consists of 10,288
paired images, meticulously collected under diverse
real-road scenarios using our designed dual-camera sys-
tem, and corrected by a post-processing pipeline.

• We introduce a novel LPDGAN, a license plate deblur-
ring model that leverages multi-scale latent codes as ref-
erences. It incorporates both a partition discriminator
and text reconstruction techniques, which enhance the
model’s capability to generate high-quality license plate
images through spatial architecture and textual informa-
tion, respectively.

• Extensive experiments demonstrate that our dataset LP-
Blur is highly effective for model training and evalu-
ation. Compared to other state-of-the-art (SOTA) de-
blurring models, our proposed LPDGAN can achieve
21.24% license plate recognition accuracy improve-
ment.

2 Related Work
2.1 Image Deblurring Datasets
Image deblurring relies on paired sharp-blur image datasets.
Traditionally, blurred images are generated by convolving
sharp images with uniform or non-uniform blur kernels
[Levin et al., 2009; Sun et al., 2013; Köhler et al., 2012;
Lai et al., 2016]. Consequently, some researchers attempt to
capture sequences of sharp frames while vibrating the cam-
era, averaging or fusing such sequences of frames into cor-
responding motion-blurred images [Nah et al., 2017; Shen et
al., 2019; Jiang et al., 2020; Noroozi et al., 2017]. HIDE
dataset [Shen et al., 2019] is created by averaging 11 con-
secutive frames, with the central frame serving as the sharp
image. The same strategy is employed in the collection of the

Blur-DVS dataset [Jiang et al., 2020] and MSCNN (WILD)
dataset [Noroozi et al., 2017]. However, models lack general-
izability to real-world scenarios when they are trained on such
synthetic datasets generated using the aforementioned meth-
ods. Recently, certain researchers gathered authentic pairs of
sharp-blur images employing beam-splitting systems. They
position two cameras at a fixed angle to ensure that both im-
ages share the same visual field, as described in works by Rim
et al. and Li et al.. However, this approach can lead to color
cast discrepancies in the paired images due to inherent issues
with beam-splitting systems.

2.2 Blind Deblurring
The majority of conventional approaches employ priors of
natural images to estimate latent images or blur kernels [Fer-
gus et al., 2006; Shan et al., 2008; Cho and Lee, 2009;
Ren et al., 2018; Whyte et al., 2012]. However, the afore-
mentioned techniques have certain limitations by predicat-
ing upon the assumption of uniform image blur. To address
this issue, some methods [Ren et al., 2017; Hyun Kim et al.,
2013] estimate blur kernels at a pixel level, thereby accom-
modating more complex blurring situations.

With the advent of deep learning technologies, significant
strides have been made in image deblurring, applying deep
learning to predict blur kernels or latent images to procure
clear images. In the work of [Sun et al., 2015], a method
based on CNNs is proposed to predict the probability distri-
bution of block-level motion blur. Gong et al. introduces a
method to directly estimate the motion flow of blurred im-
ages, recovering non-blurred images from the estimated mo-
tion flow. MIMO-UNet [Cho et al., 2021] deploys a multi-
input-multi-output single Unet network to simulate multi-
level Unet for noise reduction across various image scales.
MSSNet [Kim et al., 2022] enhances deblurring network per-
formance by using a stage configuration reflecting blur scales,
an inter-scale information propagation scheme, and a pixel-
shuffle-based multi-scale scheme. XYDeblur [Ji et al., 2022]
further augments network efficiency and deblurring perfor-
mance by employing rotated and shared kernels within the
decoder.

2.3 GAN-Based Deblurring
In recent years, following the inception of GANs, their ap-
plication in the domain of image deblurring has achieved
remarkable success. DeblurGAN [Kupyn et al., 2018] first
presents an end-to-end learning method for motion deblur-
ring, and also introduces a new method for blur generation.
DeblurGAN-v2 [Kupyn et al., 2019] introduces a dual-scale
discriminator based on a relative conditional GAN framework
and incorporates a feature pyramid into the deblurring pro-
cess, which permits the flexible substitution of the backbone
network. MSG-GAN [Karnewar and Wang, 2020] addresses
the issue of insufficient overlap between the true and false
support distributions during the transfer from discriminator to
generator in GANs by allowing multi-scale gradient networks
from the discriminator to the generator. FCL-GAN [Zhao
et al., 2022] designs a lightweight domain conversion unit
(LDCU) and a parameter-free frequency-domain contrastive
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Figure 2: (a) A schematic diagram of the paired image acquisition system collecting data in a pedestrian bridge. (b) The pipeline of paired
images post-processing.

unit (PFCU) for lightweight property and performance su-
periority. The aforementioned methods can handle standard
blurred images, but they struggle to deliver satisfactory re-
sults on license plate blurring with very severe degradation.
We propose an end-to-end generative model that accommo-
dates multi-scale inputs and outputs, employing several novel
modules to accomplish the license plate deblurring task bet-
ter.

3 Proposed LPBlur Dataset
3.1 Data Collection
Causes of Motion Blur. Motion blur refers to the percepti-
ble streaking effect observed when capturing the movement
of objects. In the capturing process, the correlation be-
tween the amount of light entering the photosensitive compo-
nent and the camera’s basic parameters satisfies the following
equation:

La ∝ SL × ISO × Et× (Ap)2 , (1)

where La denotes the number of photons received by the
camera, SL represents the light intensity of the scene, ISO
represents the camera ISO value, Et is the exposure time, Ap
denotes the camera aperture size. Cameras adjust these pa-
rameters automatically within limits depending on the light-
ing situation. For example, cameras increase their aperture
and exposure time in low-lighting settings to capture enough
light. Fast-moving objects leave trajectories within a single
frame during this extended exposure time, resulting in a mo-
tion blur effect.
Paired Image Acquisition. To collect paired sharp-blur
images, we use two identical scientific cameras that are set
with different exposure times. As shown in Figure 2a, cam-
eras S and L are fixed parallel on a tripod to maintain hori-
zontally to the ground. Specifically, Camera S is set by an
extremely short exposure time Ets, employed for the collec-
tion of sharp images, while Camera L is set by a relatively
longer exposure time Etl for the acquisition of blurred im-
ages. Both of these cameras are interfaced with a computer
via a synchronizer, which ensures the synchronization of the
start of exposures, and both cameras capture the same scene.

Scenes are taken in a variety of locations, including above,
on the right side, and on the left side of roadways, to guaran-
tee the dataset’s diversity. Also, depending on the road and

the illumination conditions, we dynamically modulate cam-
era exposure time according to the subsequent equation:

v · Et =
b ·D
p · f , (2)

where v denotes vehicular velocity, Et represents exposure
time, b represents pixels blurred, D is the distance between
vehicle and camera, f denotes camera focal length, and p is
pixel edge length on the sensor. Given that the actual speeds
of individual vehicles are indeterminable, we standardize im-
age captures on high-speed road sections with a regulatory
speed limit of 70 km/h to ensure that D is remained within a
range of 10-20 meters.

Moreover, to ensure equality in exposure between two
cameras, we make their exposure times and ISO values to
satisfy the following equation:

ISOs

ISOl
=

Etl
Ets

, (3)

where ISOs is the ISO value for Camera S and ISOl Cam-
era L. However, variations in ISO values can cause changes
in image noise levels, in post-processing, we incorporate a
denoising step for sharp images.

3.2 Data Post-processing
As shown in Figure 2b, the paired image post-processing in-
cludes denoising, geometrical alignment, and license plate
cropping.
Denoising. Due to the disparate ISO settings of the two
cameras, Camera S and Camera L capture images with a dif-
ferent noise level. Consequently, during the conversion of
RAW images to RGB format, wavelet denoising [Liu et al.,
2020] is employed after white-balancing, color mapping, and
gamma correction.
Geometrical Alignment. Cameras S and L capture sharp
and blurred image pairs with slight horizontal misalignment
even though they are closely aligned left-to-right to minimize
the difference. To align these image pairs perfectly, we first
take a static image pair without any moving vehicles as the
reference pair for each scene. Then, the Enhanced Corre-
lation Coefficient Maximization [Evangelidis and Psarakis,
2008] is adopted to estimate the geometric transformation be-
tween the sharp and blur of the reference image pair. Finally,
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Figure 3: Overview of the proposed Licence Plate Deblurring Generative Adversarial Network.

the estimated geometric transformation is applied to the im-
age pairs in the same scene.

License Plate Cropping. A pre-trained YOLO v5 [Jocher,
2020] and a pre-trained CRNN [Shi et al., 2016] model are
facilitated the detection and recognition of license plates un-
der standard conditions, both models are pre-trained on the
CCPD [Xu et al., 2018] license plate dataset. Following the
geometrical alignment, the pre-trained YOLO v5 and CRNN
detect and recognize the bounding box of each sharp plate in
the paired images, both the sharp and blurred images are then
cropped using the same detected coordinates.

In conclusion, we collect 10,288 image pairs, with an orig-
inal image size of 1920× 1220. Post-processing crops image
size to 224 × 112 with blur size ranging from 20-50 pixels.
Among them, 5672 pairs are captured under normal light con-
ditions and 4616 pairs under low light conditions, including
1,000 pairs under rainy environmental conditions. For more
information, please refer to the released dataset on the GitHub
repository.

4 Method
Overview. The goal of our work is to improve the clarity of
license plate images using a meticulously crafted image-to-
image translation framework, called LPDGAN. As depicted
in Figure 3, our approach first constructs a multi-scale fea-
ture extraction and fusion module designed to encode input
blurred images effectively. Subsequently, an image decoder
is employed to generate sharp and high-quality images. To
further enhance the overall image quality, we integrate both a
global discriminator and a partition discriminator for adver-
sarial training. Additionally, we incorporate a text reconstruc-
tion module to enrich the semantic information embedded in
the generated license plate images.

4.1 Multi-scale Feature Extraction and Latent
Fusion Module

Feature Extraction. In real-world scenarios, license plate
images affected by motion blur often exhibit intricate degra-
dations, including noise, low resolution, and ghosting effects.
Our feature encoder, denoted as E, is specifically used to
address these degradations, extracting essential image fea-
tures for subsequent processing. In particular, the Swin trans-
former block [Liu et al., 2021] is selected for its ability to cap-
ture global information through self-attention mechanisms.
This is crucial to resolve the elongated ghosting artifacts that
often appear in motion-blurred license plate images. To ad-
dress variations in license plate image sizes due to differing
capture distances, our approach employs a multi-scale fea-
ture extraction strategy, which is illustrated in Figure 3. This
approach facilitates the encoding of features at each scale,
which are represented as E(xi) for i = 1, 2, 3.
Latent Fusion. Based on the Spatial Feature Transform
(SFT) [Wang et al., 2018], we further propose a Latent Fu-
sion Module F (see Figure 3). This module is designed based
on an affine transformation to effectively integrate the ob-
tained multi-scale features. The corresponding formulas are
provided below:

α, β = Conv (E(xi+1)sp1 + E(xi+1)sp2) ,

Fi,i+1 = Concat (α⊙ E(xi) + β,E(xi)) ,
(4)

where E(xi+1)sp1 and E(xi+1)sp2 represent the two parts
into which E(xi+1) is divided along the channel dimension.
Specifically, for the fusion of E(x1) and E(x2), we first split
E(x2) along the channel dimension. Each part is then pro-
cessed through a series of convolutional layers to derive the
fusion parameters α and β. These parameters are employed
to modulate E(x1) through scaling and shifting operations.
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Moreover, we reintegrate the originalE(x2) using a skip con-
nection, which is then combined with the modified E(x1)
along the channel dimension. This fusion process is also ap-
plied between E(x2) and E(x3).

4.2 Decoder and Discriminator
Decoder. As depicted in Figure 3, our decoder D is com-
posed of a sequence of Swin transformer blocks and patch
expanding operations. Similar to the encoder, our decoder is
designed to generate sharp images in a multi-scale fashion,
and the output images are denoted as ỹ1, ỹ2 and ỹ3 accord-
ingly.
Discriminator. We design two discriminators: 1) the
Global Discriminator (Dg) enhances overall spatial and color
information in the restored images; 2) the Partition Discrimi-
nator (Dp) focuses specifically on refining character informa-
tion by examining n randomly selected partitions of letters
within the license plate image. The structure of Dp is shown
in Figure 4. It identifies and locates letter positions in both
the real image y and the fake image ỹ. Following this, n
partition images are randomly chosen for evaluation by Par-
tition Discriminator. In the early stages of training, when our
mode’s capacity to produce sharp images is still developing,
the generated image might not be recognized with high ac-
curacy. To address this, an average partitioning approach is
applied to both y and ỹ, initially setting n to 7. As training
progresses, a pre-trained YOLO v5 model is used for precise
letter detection and the number of partitions n is set to 3. In
our experiment, we employ WGAN-GP to train our model.
In particular, the adversarial loss for the Global Discrimina-
tor can be formulated as follows:

LDg =Eỹ [Dg (ỹ)]− Ey [Dg (y)]

+ λgp1Eŷ

[(
∥∇ŷDg (ŷ)∥2 − 1

)2]
,

ŷ = ϵ · ỹ + (1− ϵ) · y, ϵ ∼ U [0, 1] .

(5)

Similarly, for the Partition Discriminator Dp, the formulation
is as follows:

LDp =Eỹ [Dp (P (ỹ))]− Ey [Dp (P (y))]

+ λgp2Eŷ

[(
∥∇ŷDp (P (ŷ))∥2 − 1

)2]
,

ŷ = ϵ · P (ỹ) + (1− ϵ) · P (y) , ϵ ∼ U [0, 1] ,

(6)

where P is the partition operation, λgp1 and λgp2 are the
weighting parameters used to control the gradient penalty.

Note that we apply both discriminators to the outputs at three
different scales.

In addition to the adversarial loss, we also incorporate re-
construction loss Lrec, defined as follows:

Lrec = λl1 ∥y − ỹ∥1 + λper ∥ψvgg (y)− ψvgg (ỹ)∥2 , (7)

where the ψvgg represents a pre-trained VGG-19 network [Si-
monyan and Zisserman, 2014], from which we use feature
maps from the 8th, 15th, and 22nd ReLU layers to compare
shallow textures and deep features between real and gener-
ated images.

4.3 Text Reconstruction Module
We also incorporate a Text Reconstruction Module T specif-
ically designed to enhance our model’s ability to accurately
interpret characters on license plate images. T merges the
Decoder’s intermediate feature FD with the fusion latent code
F2,3 along the channel dimension. This combined feature
then traverses a series of convolutional and linear layers, re-
sulting in a vector that represents the recognized text. Con-
currently, a pre-trained CRNN model extracts ground-truth
text vectors from real images. We calculate the L1 loss be-
tween the output vector from our Text Reconstruction Module
T and the ground-truth text vector. The loss is defined as:

Ltext = ∥T (F2,3, FD)− ψcrnn (y)∥1 , (8)

where FD is the feature maps obtained from the middle layers
of Decoder, ψcrnn represents the pre-trained CRNN model.

4.4 Fully Objective
Our full objective is

L(E,D,F,Dg, Dp, T ) = Lrec + λgLDg
+ λpLDp

+ λtLtext,
(9)

where λg , λp and λt control the relative importance of the
different objectives. We aim to solve:

E∗, F ∗, D∗ = arg min
E,F,D,T

max
Dg,Dp

L(E,D,F,Dg, Dp, T ).

(10)

5 Experiment
5.1 Experimental Setups
Dataset setup. The proposed LPBlur dataset is partitioned
into a training set with 9,288 image pairs, and a test set with
1,000 image pairs. The test set encompasses 500 pairs ac-
quired under normal light conditions and another 500 pairs
captured in low light conditions.
Evaluation metrics. To evaluate the image quality of de-
blurred images, we adopt three evaluation metrics: PSNR,
SSIM, and Perceptual Loss (PerL). The Perceptual Loss is
specifically defined by comparing the generated images with
the ground truth images at the output feature maps of sequen-
tial layers 8, 15, and 22 of a pre-trained VGG-19 model.
To assess the recognisability of the generated license plate
images, we calculate the Text Levenshtein Distance (TLD)
[Levenshtein and others, 1966] between the detected text of
the generated images and the real images.
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Scenario Normal Light Low Light

PerL↓ PSNR↑ SSIM↑ TLD↓ PerL↓ PSNR↑ SSIM↑ TLD↓
Pix2Pix 5.57 28.89 0.6669 1.35 2.24 28.71 0.7491 2.53

DeblurGAN v2 8.02 28.51 0.5257 2.28 4.32 28.11 0.5451 4.34
MIMO-UNet 3.79 29.12 0.7448 1.02 1.65 29.03 0.8083 2.68

MSSNet 3.39 29.63 0.7891 0.62 2.74 29.62 0.8725 1.05
LBAG 3.34 29.24 0.7916 0.58 1.44 29.44 0.8889 1.13

LPDGAN (ours) 3.31 29.95 0.7950 0.57 1.01 30.96 0.9214 0.81

Table 1: Quantitative results of comparing motion deblurring models. “PerL” and “TLD” denote Perceptual Loss and Text Levenshtein
Distance, respectively.

Implementation details. The shape of multi-scale input
images for LPDGAN are (112, 224, 3), (56, 112, 3), and
(28, 56, 3) respectively. Random rain adding and random
cutout are utilized for data augmentation. The optimizer we
use is Adam [Kingma and Ba, 2014]. The batch size is set
to 7. The initial learning rate is 10−4, and the linear weight
decay is used after the 100th epoch. All experiments are con-
ducted on a GeForce RTX 3090 GPU.

5.2 Deblur Results
To evaluate the deblur performance of our method, we com-
pare LPDGAN with five SOTA methods: Pix2Pix [Isola et
al., 2017], DeblurGAN v2 [Kupyn et al., 2019], MIMO-Unet
[Cho et al., 2021], MSSNet [Kim et al., 2022], and LBAG [Li
et al., 2023] on LPBlur.

From the results presented in Table 1, it can be observed
that our LPDGAN outperforms all other models in both nor-
mal and low light conditions. In normal light conditions,
our LPDGAN achieves a PerL of 3.31, PSNR of 29.95, and
SSIM of 0.795, which are superior to the latest deblurring

method LBAG. The performance gap becomes even more
pronounced when dealing with low light images, with our
model exhibiting improvements of 29.8%, 4.5%, and 3.7%
in PerL, PSNR, and SSIM, respectively, compared to LBAG
and MSSNet.

Figure 5 provides a visual comparison between sets of
blurred and deblurred images under two light conditions. In
the case of normal light, our LPDGAN effectively restores
license plates afflicted with severe motion blur, accurately
generating and reconstructing characters such as ‘D’, ‘O’ and
‘B’, as well as numbers like ‘7’, ‘1’, and ‘L’, which often
pose challenges for other models, as shown in the 1st, 3rd
and 7th column of Figure 5. In low light scenarios, where
license plates are barely visible to the human eye, our model
excels in generating details that significantly surpass the per-
formance of other models. This highlights the inadequacy of
models designed for minor blurs in large scenes when applied
to the deblurring of license plates, which are subject to more
severe blurring.
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Normal Light PerL↓ PSNR↑ SSIM↑ TLD↓
Synthetic Data 3.45 28.74 0.7061 1.68
LPBlur Data 3.31 29.95 0.7950 0.57
Low Light PerL↓ PSNR↑ SSIM↑ TLD↓

Synthetic Data 2.05 28.28 0.7933 2.65
LPBlur Data 1.01 30.96 0.9214 0.81

Table 2: Quantitative comparison using synthetic and LPBlur data
in normal and low light scenarios, respectively.

5.3 Text Recognition Results

We further evaluate the plate text recognition accuracy based
on those deblurred images. The CRNN [Shi et al., 2016]
is incorporated for the recognition of generated and sharp
license plate characters. The 4th and 8th columns in Ta-
ble 1 compare the TLD between the generated images and
original sharp images. In the context of normal light condi-
tions, LPDGAN exhibits comparable performance to LBAG
in terms of TLD but surpasses all other models. Under low
light conditions, LPDGAN is the only model with a TLD
lower than 1. This implies that a pre-trained CRNN model,
when employed to recognize deblurred license plate images
produced by LPDGAN, will obtain an average error in less
than one character per instance. Consequently, LPDGAN has
the best performance overall, demonstrating robust capability
in deblurring license plates across two scenarios.

5.4 Ablation Study

To evaluate the effectiveness of each proposed module, a se-
ries of ablation experiments are performed, which is shown in
Table 3. The omission of the Latent Fusion Module leads to
a decline in global metrics, underscoring its effectiveness in
fusing multi-scale features and improving the model’s perfor-
mance in restoring sharp images. Removing the Text Recon-
struction Module results in a significant downturn in global
metrics, particularly noticeable under low light conditions.
This highlights the pivotal role of the Text Reconstruction
Module in enabling the model to have a deeper understand-
ing and restoration capability for license plates affected by
severe pixel disruption. Similarly, the exclusion of the Par-
tition Discriminator Module deteriorates global metrics and
notably affects the SSIM metric to a greater extent. This con-
firms the module’s contribution to enhancing the model focus
on the details of each letter on the license plate.

Model No.
Normal Light

La. Te. PD PerL↓ PSNR↑ SSIM↑ TLD↓
1 ✓ ✓ 3.49 29.68 0.7883 0.69
2 ✓ ✓ 3.56 29.41 0.7797 0.72
3 ✓ ✓ 3.41 29.73 0.7829 0.61

LPDGAN ✓ ✓ ✓ 3.31 29.95 0.7950 0.57

Model No.
Low Light

La. Te. PD PerL↓ PSNR↑ SSIM↑ TLD↓
1 ✓ ✓ 1.26 30.05 0.9165 0.92
2 ✓ ✓ 1.79 29.12 0.8861 1.45
3 ✓ ✓ 1.38 29.93 0.9012 1.01

LPDGAN ✓ ✓ ✓ 1.01 30.96 0.9214 0.81

Table 3: Ablations of LPDGAN on LPBlur. La.,Te. and PD de-
note the Latent Fusion Module, Text Reconstruction Module and
Partition Discriminator Module, respectively.

5.5 Necessity of LPBlur
We further demonstrate the importance of introducing a
dataset consisting of real blurred images for the task of li-
cense plate deblurring. To assess this, we employ different
blur kernels randomly to the sharp images in LPBlur dataset
and finally create a synthetic dataset. The result samples, il-
lustrated in Figure 6 and summarized in Table 2, clearly in-
dicate that LPDGAN trained on the synthetic dataset fails to
eliminate real-world license plate blur effectively. This is ev-
ident both visually and in the metric evaluations, showcasing
poorer performance compared to when trained on the LPBlur
dataset.

The aforementioned outcomes highlight a significant dis-
parity between synthetic and real-world license plate blur,
emphasizing that synthetic blurred image data cannot serve as
a substitute for the LPBlur dataset. Thus, the LPBlur dataset
proves to be more effective in training models for real-world
license plate deblurring.

6 Conclusion
In this paper, we study the issue of motion license plates de-
blurring. We introduce the first large-scale license plate de-
blurring dataset for this research and address color bias and
misalignment problems through appropriate data collection
methods and post-processing. Furthermore, given that the de-
gree of blur caused by vehicular motion substantially exceeds
that induced by camera shake, we propose a model based on
multi-scale input and output for license plate deblurring. This
includes a latent fusion module, a supervision module for tex-
tual modality information, and a partition discriminator mod-
ule. Experimental results indicate that our model performs
favorably in comparison to current state-of-the-art deblurring
algorithms. In the future, we intend to augment our dataset
with license plates from a broader range of countries and re-
gions to enhance its diversity. Regarding the model, we in-
tend to incorporate modules that ensure the restoration capa-
bility for spatially complex characters, such as Chinese char-
acters.
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