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Abstract
Deep learning-based drug response prediction
(DRP) methods can accelerate the drug discov-
ery process and reduce research and development
costs. Despite their high accuracy, generating
regression-aware representations remains challeng-
ing for mainstream approaches. For instance, the
representations are often disordered, aggregated,
and overlapping, and they fail to characterize dis-
tinct samples effectively. This results in poor rep-
resentation during the DRP task, diminishing gen-
eralizability and potentially leading to substantial
costs during the drug discovery. In this paper, we
propose CLDR, a contrastive learning framework
with natural language supervision for the DRP. The
CLDR converts regression labels into text, which
is merged with the drug response caption as a
second sample modality instead of the traditional
modes, i.e., graphs and sequences. Simultaneously,
a common-sense numerical knowledge graph is in-
troduced to improve the continuous text represen-
tation. Our framework is validated using the ge-
nomics of drug sensitivity in cancer dataset with
average performance increases ranging from 7.8%
to 31.4%. Furthermore, experiments demonstrate
that the proposed CLDR effectively maps samples
with distinct label values into a high-dimensional
space. In this space, the sample representations are
scattered, significantly alleviating feature overlap.
The code is available at: https://github.com/DrugD/
CLDR.

1 Introduction
Phenotypic drug discovery (PDD) [Chen et al., 2023; Vincent
et al., 2022a] demonstrates its superiority over target-based
approaches [Lu et al., 2022; Li et al., 2021] by identifying
drugs, targets, and mechanisms of action (MoA) [Maillard
and Pascoe, 2023]. When molecular insights into a disease
are limited [Vincent et al., 2022b; Eder et al., 2014], PDD
research provides a framework for exploring the uncharted
"dark biological matter" territory, which includes biological
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Figure 1: Visual comparison of various methods’ learned representa-
tions on the GDSC2 dataset. Traditional DRP task regression meth-
ods poorly map samples with different regression labels, resulting
in aggregated and overlapping features after visualization with the
t-SNE method. In contrast, our method can efficiently represent dif-
ferent samples and provide scattered high-dimensional features for
the regression task.

molecules and cellular processes linked to diseases through
the utilization of proteomics and other molecular methods.
This contributes to a more efficient drug discovery process
[Moffat et al., 2017]. Moreover, the drug response predic-
tion (DRP) task is an essential PDD step, which is gradually
developing as a field and becoming a recognized discovery
paradigm in academia and the pharmaceutical industry [Liu
et al., 2023]. This sustained interest stems from notable suc-
cesses over the past decade, such as treating schizophrenia
with SEP-363856 [Begni et al., 2021], malaria with KAF156
[Ogutu et al., 2023], and atopic dermatitis with Crisaborole
[Kim et al., 2023].

DRP primarily focuses on regression tasks. Historically,
representation learning has received less attention for regres-
sion than classification tasks [Zha et al., 2023]. This is be-
cause the DRP task inputs are one cell and drug type, and the
output is the half maximal inhibitory concentration (IC50)
[Bébéar and Robertson, 1996] of this process. Notably,
deep learning-based DRP methods (e.g., [Chu et al., 2023;
Liu et al., 2020; Liu et al., 2019b]) show excellent perfor-
mance when both drug and cell line species are present in
the training and test datasets (i.e., many/few-shot [Lee et
al., 2022]). However, in practical applications, the IC50 of
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the tested compounds are unlabeled and not observed in the
training datasets (i.e., zero-shot [Wang et al., 2023]). Differ-
ent drugs exhibit diverse structures and properties within the
same cell line, resulting in a significant performance decline
under the zero-shot learning condition. This factor presents a
serious challenge to the development of PDD. For instance, in
the work of [Nguyen et al., 2022], the prediction performance
of their models based on graph neural networks (GNNs) ex-
ceeded 90% in the Pearson correlation coefficient (PCC) un-
der the many-shot condition. However, the PCC decreased to
about 4–32% under the zero-shot condition.

Under the zero-shot condition, traditional methods repre-
sent sample features inadequately. This is mainly due to over-
lapping and disordered sample features. These challenges re-
duce the effectiveness of the DRP model. As illustrated in
Figure 1, we compare our method’s representations with that
of traditional approaches using the genomics of drug sensitiv-
ity in cancer database (GDSC2) [Yang et al., 2013], visual-
ized with the t-distributed stochastic neighbor embedding (t-
SNE) method. Applying the mean squared error (MSE) loss
function as an example, traditional methods yield disordered,
fragmented, aggregated, and overlapping mappings, leading
to unsatisfactory results during various regression tasks. It is
worth noting that when the model fails to capture the map-
ping pattern of numerical labels, it can only map unseen sam-
ples into the known space in a disordered manner, resulting
in samples with different label values that cannot be distin-
guished. This has a detrimental impact on the DRP model’s
performance during practical applications. Therefore, there is
an urgent need to enhance a model’s ability to represent con-
tinuous values in an ordered and scattered manner to improve
generalization performance under the zero-shot condition.

In recent years, contrastive language image pre-training
(CLIP) [Zhang et al., 2022] has provided a powerful multi-
modal representation learning framework, enabling comput-
ers to better understand and process the semantic relation-
ships between images and text, like GLIDE [Nichol et al.,
2022]. Moreover, CLIP research indicates that state-of-the-
art (SOTA) image representations can be achieved with a sim-
ple pre-training task using a dataset of 400 million image-text
pairs. Furthermore, contrastive learning with labels has been
theoretically proven to enhance the performance of learned
representations [Ji et al., 2023] in downstream tasks [Wang
et al., 2022]. Consequently, in the realm of drug discov-
ery, it becomes possible to establish a connection between
drug response data and annotated text, learning representa-
tions from the text [Fang et al., 2022]. Subsequently, these
representations may be used to enhance zero-shot learning
performance during natural language supervision contrastive
learning [Khosla et al., 2020; Gunel et al., 2020].

To address this challenge, we present the CLDR, a
contrastive learning framework with natural language super-
vision for drug response prediction. The CLDR framework
transforms numerical labels used to represent drug response
into text using customized prompts. First, drugs and cell lines
from the same samples are encoded using natural language
and traditional fusion methods, respectively. Then, a con-
trastive learning strategy is employed to map the drug and
cell line feature space and the text with labels using natu-

ral language into the shared representation space. This strat-
egy maximizes the similarity between related samples while
minimizing those between unrelated ones. In this study, we
construct a common-sense numerical knowledge graph (CN-
KG), drawing inspiration from the ordinal number definition
[Agustito et al., 2023]. The CN-KG constrains the text rep-
resentation order, improving the fusion encoder representa-
tion for drugs and cell lines. Furthermore, through contrastive
learning pre-training, ordered and scattered natural language
representations are aligned and mapped to a unified high-
dimensional space with those of the fusion encoder for drugs
and cells.

For the practical evaluation, we validate the method using
a dataset comprising over 150,000 samples from the GDSC2
dataset. Consequently, all the methods display increases of
7.88%, 19.49%, 17.83%, 14.29%, 13.04%, and 31.46% after
adopting our framework. The proposed CLDR method ef-
fectively establishes connections between drug response data
and the corresponding labeled text, enhancing generalizabil-
ity and improving the PDD success rate. Section 3.4 provides
detailed theoretical proof of the CLDR method’s validity. Our
contributions are as follows:

• We propose the CLDR method, a novel contrastive
learning framework with natural language supervision
for the DRP task. The CLDR method effectively con-
structs links between drug response data and labeled
text.

• We construct a CN-KG to capture the continuous nature
of sample order to improve the fusion encoder represen-
tation for drugs and cell lines.

• The extensive experiments using the GDSC2 dataset
demonstrate that employing the CLDR method leads to
a notable improvement in the DRP methods, enhancing
results by at least 7.8% and up to 31.4%.

2 Related Work
DRP exploration has become feasible due to drug response
studies on a large number of cell lines, exemplified by
GDSC2 [Yang et al., 2013] and cancer cell line encyclope-
dia (CCLE) [Barretina et al., 2012]. Various DRP techniques
have been introduced, and categorized into 1DCNN, graph,
and transformer methods. Generally, non-graph-based meth-
ods employ convolutional neural networks (CNNs) and multi-
layer perceptrons (MLPs) for information retrieval. These
methods encode drug molecules in the simplified molecular
input line entry specification (SMILES) string format and di-
rectly extract gene sequence features using 1DCNN, over-
looking the pharmacological and structural attributes of the
molecule. Conversely, graph-based methods [?; Liu et al.,
2020] concentrate on converting drug molecules into graph
structures, utilizing GNNs for representation instead of di-
rectly extracting features from the SMILES strings. Addi-
tionally, in contrast to GNNs, the transformer-based methods
[Chu et al., 2023; Jiang et al., 2022] avoid introducing any
structural inductive bias at intermediate layers [Chu et al.,
2023], thereby mitigating the GNNs’ expressivity limitations
[Park et al., 2020].
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Figure 2: Summary of the CLDR framework. (a)During the pre-training stage, the CLDR jointly trains the cell and drug fusion and the
caption encoders to predict the correct sample pairings. (b)When fine-tuning, the standard DRP model trains the drug-cell feature fusion
encoder and a regressor to predict IC50. (c)When the caption encoder describes the response process, the number encoder is restricted to
learning the continuous nature of sample orders with the CN-KG.

In summary, the conventional DRP method employs a uni-
modal end-to-end approach for IC50 training and prediction.
However, its effective applicability is limited under the zero-
shot condition, affecting the PDD’s efficiency.

3 Methods
During the pre-training stage, the CLDR method principally
comprised the fusion encoder for the drug and cell line fea-
tures extraction and fusion, the caption encoder for the drug
response process text, and the natural language supervision
module incorporating the CN-KG.

Subsequently, during the fine-tuning phase, standard re-
gression loss functions are utilized. The primary goal of the
pre-training phase is to map the feature spaces of the drug,
cell line, and the labeled text, along with the labeled text, into
a shared representation space.

3.1 The Fusion Encoder
The DRP task’s inputs were the drugs and cell lines, and the
specific method for the fusion encoder is not discussed in de-
tail in this section.

Moreover, the input types for the drug extractor were the
SMILES sequence or molecular graph. We uniformly de-
scribe the feature representations process for the drug (de-
notes as di) and the cell line (denotes as ci) as follows:

Pi = Φdrug(di),Qi = Φcell(ci), (1)

where, N represents the total number of samples i ∈ [0, N ],
Φdrug and Φcell denotes the drug and cell line encoders of the
initial DRP methods, while Pi and Qi are the representations
of the drug di and the cell line ci. The fusion encoder can be
expressed as follows:

F = Φf([Pi,Qi]), (2)

where F ∈ RN×m is the feature after encoding using the
fusion encoder, Φf denotes the fusion encoder, which can be
replaced in different methods.

3.2 The Caption Encoder
In the caption encoder, the text-based description was the sec-
ond coding modality for the drug response process. The in-
puts a, b and the output c in the DRP task are described uni-
formly with the prompt Fprompt(a,b) as follows:

The drug response value between [a] and [b] is [c]
where a denotes the drug’s SMILES string representation, b
represents the name of the cell line, and c is the quantitative
output value of the reaction level between the drug and the
cell lines (i.e., the IC50). To represent IC50 efficiently, we
defined a transformation method Fnum2str(c) that converts
it into English words in character order, where the decimal
point is encoded as "point". For example, as shown in Figure
2(a), "0.513" can be converted to "zero point five one three."

To facilitate continuity constraints on the values, the
caption encoder was designed to consist of two encoders,
including Φtext, Φnumber, which encodes text Ttext =
Fprompt(a,b) and value-based descriptions Tnumber =
Fnum2str(c), respectively.

Then, the two feature vectors were merged, fusing the de-
scriptive information of the drug reaction process using the
multi-layer transformer Φcap as follows:

T = Φcap ([Φtext (Ttext) ,Φnumber (Tnumber)]) , (3)

where T ∈ RN×m is the description text feature with the
caption encoder encoding.

3.3 Supervising Natural Language Using a
Knowledge Graph

To guarantee perceiving the number continuity when encod-
ing numerical values in natural language, we constructed a
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CN-KG according to [Liu et al., 2017; Duan et al., 2021],
which uses linear structures to construct graphs that accu-
rately and intuitively represent numbers and their relation-
ships.

As shown in Figure 2(c), the CN-KG’s entity sets are se-
quences of ordered numbers, denoted as E. These CN-KG
entities are integers, the significant number of c multiplied
by the specified precision, where the minimum and maxi-
mum numbers are customized for the specific task. The E
are linked by a single relationship type called "is less than,"
denoted as L, which ensures the numbers’ transfer properties
are captured.

When dealing with numerical information, we must con-
sider how to incorporate numerical features into the frame-
work to represent their relationships more accurately. To en-
hance the number encoder’s efficiency in the numerical re-
lationships using the CN-KG, we proposed a margin-based
loss function LKGE for the CN-KG embedding. We aim to
minimize the differences in embedding vectors between the
entities’ set E and the single relationship L (i.e. is less than).

LKGE =
∑

(h,l,t)∈S

[γ + d(h + l, t)− d(t + l, h)]+ , (4)

where, [x]+ denotes the positive part of x, γ > 0, and is a
margin hyperparameter. The set S is composed of the triplets
(h, l, t), with h, t ∈ E, l ∈ L. The embeddings h, l, t obtain
values in Rk (k is a hyperparameter) and are denoted with
the same letters in boldface characters. In addition, the L1 or
L2-norm can be used for the similarity measure d.

Considering that the CN-KG can restrict number relation-
ships, the set of entities E are encoded by the number encoder
Φnumber (Tnumber(E)), and the relationship l is represented
by a learnable embedding.
Pre-training For the i-th representations (di, ci) generated
by the fusion encoder and the j-th captions (dj , cj , yj) pro-
duced by the caption encoder in a batch B, we normalized
the feature vectors in a hyper-sphere using ui :=

Φf (di,ci)
∥Φf (di,ci)∥

and vj :=
Φcap(dj ,cj ,yj)

∥Φcap(dj ,cj ,yj)∥ . The similarity between ui and vj

was calculated as uT
i vj . Finally, a supervised contrastive loss

function was used to train the model:

LNCE = − 1

N

(
N∑
i

log
exp(uT

i vi/σ)∑N
j=1exp(u

T
i vj/σ)

+

N∑
i

log
exp(vTi ui/σ)∑N
j=1exp(v

T
i uj/σ)

)
,

(5)

where, N is the size of the batch B, and σ is the temperature
for scaling the logits.

CLDR’s goal during the pre-training phase is to jointly
optimize the following contrast and CN-KG embedding loss
functions:

LAll = αLNCE + (1− α)LKGE, (6)
where α represents the joint optimization weight adjustment
factor for the two loss functions.

Fine-tuning During the fine-tuning stage, we employed the
MSE loss function for supervised regression on the fusion
encoder. A regression output layer Φmlp based on the MLP
was designed after the fusion encoder as follows:

LREG =
1

|N |

|N |∑
i=0

(Φmlp(Φfusion(di, ci))− yi)
2. (7)

where yi is the normalized value of IC50 corresponding to
{di, ci}.

3.4 Theoretical Analysis
In this section, we theoretically prove that jointly optimiz-
ing LNCE and LKGE enables the fusion encoder Φf to obtain
continuous regression-aware representation.

Notations Let {xi, yi} be the inputs and outputs respec-
tively, where yi is a sorted label with the ordering y1 ≤ y2 ≤
· · · ≤ yn. The δ ∈ (0, 1) denotes the minimum interval of
normalized labels yi ∈ [0, 1].

First, based on the loss function LKGE and its expectation
that t should be a nearest neighbor of h + l [Bordes et al.,
2013] (see Section 3.3), we formulated:

d(Φnumber(yi),Φnumber(yi+1)) := l+ ϵ, (8)

where l is the only relationship embedding type in the CN-
KG and ϵ ∈ R is a model perturbation. If we denote Φnumber

as N , then the following lemma can be inferred:

Lemma 1 (Equal interval representation of N ). For any 0 <
δ < 1, two perturbations ϵ0, ϵ1 exist to make:

N (yi)−N (yi+1) = ϵ0 · l+ ϵ1.

Lemma 1 implies that Φnumber can learn continuous rep-
resentations that capture the intrinsic sample order of the re-
gression target. Next, based on the LNCE constraints on pos-
itive xi, yi and negative samples x−

i , y
−
i , we expect the fol-

lowing:

d(C(xi, yi),F(xi)) ≪ d(C(x−
i , y

−
i ),F(xi))

d(C(xi, yi),F(xi)) ≪ d(C(xi, yi),F(x−
i )),

(9)

where C and F denote Φcap and Φf , respectively. Also, M :=
C(xi, yi) − F(xi) denotes the degree of alignment between
two modalities. The subsequent lemma can be derived from
Equation (9):

Lemma 2 (Upper bound of LNCE). For any i ∈ j, the for-
mula ϵ2 > 0 such that ∥M∥ ≤ ϵ2 exists.

where ϵ2 is a value related to ϵ0 and ϵ1. Lemma 2 states that
the upper bound on LNCE is equal to the upper bound on the
distance between the distributions of features C and F in a
uniform representation space.

Thus, under the LNCE constraint, the property of the equal
interval representation of N will conditionally transfer to F :

Theorem 1 (Main theorem). For any i ∈ j, the formula θ ∈
(0, 1) such that if δ is close to 0, then ∥F(xi)−F(xi+1)∥ ≤
2ϵ2 exists.
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Drug Total
Methods

RMSE ↓ MSE ↓ PCC ↑ SPC ↑ Rank ↓ RMSE ↓ MSE ↓ PCC ↑ SPC ↑ Rank ↓

tCNNs
[Liu et al., 2019b]

Original 0.0548 0.0036 0.4710 0.4682 0.0257 0.0596 0.0036 0.5342 0.4632 0.0267

+CLDR 0.0539 0.0034 0.5272 0.5321 0.0218 0.0580 0.0034 0.5451 0.4894 0.0227
(Improv.) 1.64% 5.56% 11.93% 13.65% 15.18% 2.71% 5.34% 2.05% 5.64% 15.13%

Original 0.0620 0.0057 0.4405 0.4409 0.0291 0.0729 0.0054 0.3231 0.1986 0.0302

+CLDR 0.0590 0.0044 0.4778 0.4797 0.0200 0.0659 0.0043 0.3873 0.2756 0.0208
DeepTTC
[Jiang et al., 2022]

(Improv.) 4.84% 22.81% 8.47% 8.80% 31.27% 9.55% 19.16% 19.89% 38.75% 31.32%

Original 0.0598 0.0050 0.4599 0.4546 0.0330 0.0726 0.0053 0.3419 0.2282 0.0342

+CLDR 0.0560 0.0040 0.5360 0.5402 0.0264 0.0640 0.0041 0.4262 0.2696 0.0275
DeepCDR
[Liu et al., 2020]

(Improv.) 6.35% 20.00% 16.55% 18.83% 20.00% 11.82% 22.25% 24.68% 18.13% 19.66%

Original 0.0637 0.0056 0.4402 0.4447 0.0337 0.0729 0.0053 0.3096 0.2037 0.0312

+CLDR 0.0565 0.0047 0.5285 0.5348 0.0287 0.0699 0.0049 0.3410 0.2712 0.0297
GraphDRP
[Nguyen et al., 2022]

(Improv.) 11.38% 16.23% 20.05% 20.25% 14.91% 4.09% 7.77% 10.14% 33.14% 4.91%

Original 0.0593 0.0047 0.4738 0.4770 0.0283 0.0666 0.0044 0.4080 0.3255 0.0292

+CLDR 0.0523 0.0039 0.5288 0.5333 0.0264 0.0633 0.0040 0.4665 0.4424 0.0274
GratransDRP
[Chu et al., 2023]

(Improv.) 11.80% 17.02% 11.61% 11.80% 6.71% 5.01% 9.77% 14.33% 35.92% 6.39%

Original 0.0624 0.0052 0.5060 0.5040 0.0295 0.0694 0.0048 0.3040 0.1635 0.0331

+CLDR 0.0547 0.0038 0.5149 0.5294 0.0229 0.0612 0.0037 0.4768 0.3721 0.0239
TransEDRP
[Li and Hu, 2022]

(Improv.) 12.38% 26.23% 1.77% 5.05% 22.42% 11.93% 22.43% 56.86% 127.62% 27.92%

Table 1: Overall method experiment summary. Each method shows the results of the original and those based on our framework (+CLDR),
where Improv. denotes the enhancement percentage. Positive improvements are highlighted in red.

More generally, if Q := F(xi) − F(xi+1), then we can
derive the following expression:

∥Q∥ ≤
∥∥∥∥∂C∂y (xi, θyi + (1− θ) yi+1)

∥∥∥∥ (yi+1 − yi) + 2ϵ2.

(10)
Theorem 1 suggests an upper bound on the learned con-

tinuous representation of F . The upper bound is jointly de-
termined by that of M and δ, corresponding to LNCE and
LKGE, respectively. In addition, we observed that reducing δ
and LNCE enhances the representation of Φf .

3.5 Algorithm Complexity
When a model encounters many unlabeled compounds, pre-
diction time and accuracy become the most critical fac-
tors, while the training time and calculated cost may be
deemed negligible. Our method exhibits a time complex-
ity of O(2n2 + 3n) during pre-training. This complexity
shows moderate variations when integrated with specific DRP
models. During the fine-tuning and inference phases, the
algorithm’s complexity is solely determined by the specific
model, and our method does not play a role in these processes.

4 Experiments
4.1 Experiment Settings
Validation strategy In the zero-shot learning context, sim-
ulating the PDD practical application scenario required clus-
tering the response data by drug type. Then, the data was

randomly divided into training, validation, and testing sets
by a ratio of 8:1:1 and the drug type as the division stan-
dard. As a result, the DRP model encounters unknown
compounds during the testing phase. This zero-shot learn-
ing condition presents a greater level of complexity com-
pared to the random splitting of the entire dataset com-
monly employed in supervised learning [Bai et al., 2023;
Wang et al., 2023]. During the ablation study, all the fusion
encoder experiment branches adopted the TransEDRP struc-
ture [Li and Hu, 2022].
Metrics To comprehensively evaluate the CLDR’s impact,
we employed several evaluation metrics: root mean square
error (RMSE) to gauge deviation, PCC [Cohen et al., 2009]
to assess linear correlation, Spearman’s rank correlation co-
efficient (SRC) [Sedgwick, 2014] to measure monotonicity,
and margin ranking loss (Rank) [Liu et al., 2019a] to evalu-
ate ranking performance.

4.2 Overall Experiment
This paper proposes the CLDR framework which leverages
the caption encoder and CN-KG’s powerful representation
capabilities to align the fusion encoder for drug response fea-
tures, improving the DRP model’s generalizability for zero-
shot learning.

Therefore, we broadly selected representative DRP meth-
ods based on deep learning models such as CNNs, GNNs, and
transformers, to verify the CLDR’s effectiveness and gener-
alizability. In the overall experiment, we selected and tested
six methods on the most widely employed GDSC2 dataset.
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Figure 3: Illustrations of learned representations of 0.000 to 0.999
with different strategies, where the dimensions of the text represen-
tations are reduced in one- and two-dimensions by t-SNE to compare
the effect of the CN-KG.

As shown in Table 1, the original models’ prediction results
are denoted by Original, while the combinedCLDR frame-
work’s outcomes are represented by +CLDR .

All the methods demonstrated increases of 7.88%, 19.49%,
17.83%, 14.29%, 13.04%, and 31.46% after our framework
was adopted. The results show that the CLDR framework
can be generally applied to various DRP methods to enhance
performance under the zero-shot condition.

4.3 Ablation Study
CN-KG To verify that the CN-KG enhances the continuous
numerical text representation, we designed the experiment
without using the knowledge graph embedding. Specifically,
we did not constrain the number encoder with LKGE. Also,
we maintained pre-training and the fine-tuning approach re-
mained unchanged. Based on the ablation experiments in
Table 2, the model’s performance increased by 9.6% with
LKGE.

Furthermore, as shown in Figure 3, the numerical text
representation vectors employing the CN-KG are compared.
This is because contrastive learning enables the fusion en-
coder to learn the number encoder’s continuous numerical
representation capability. Although the fusion encoder with-
out LKGE can still represent the continuous sample informa-
tion in a regular manner (as shown in Figure 1), it fails to
capture the continuous nature of sample orders, resulting in
feature overlap and making distinguishing between different
samples difficult.

Precision During pre-training, the constraint of continuous
values with different precision has various effects on the per-
formance of models based on Equation (10). Thus, we de-
signed ablation experiments to investigate specific effects.
With all other conditions consistent, the precision grids 0.1,
0.01, and 0.001 were created to pre-train the model. The
results are shown in Table 2, where the performance of the
model at 0.01 significantly exceeds that at 0.1 and 0.001. This
is mainly because the model needs to balance the precision
and perturbation. As shown in Table 1, the MSE loss of vari-
ous DRP methods is around 0.005.

As a result, the model cannot accurately predict the thou-
sandth part. Additionally, there is a possibility that the value

Figure 4: DRP model’s drug screening capabilities.

of the thousandth part will be a perturbation factor during
contrastive text learning.
Caption During the pre-training phase, the caption en-
coder’s prompts contain the drug response inputs a,b and the
IC50 results c. Since the inputs contain drugs and cell lines,
to verify whether the inputs containing the drug reaction cap-
tions improve the fusion encoder’s ability to discretely map
various drug reaction pairs, we removed the input texts to
compare the results. In the caption encoder, we used a and
b as Text, and c as Number. As shown in Table 2, the model
improves on all metrics with an average increase of 9.1% af-
ter adding the inputs to the text description. This is because
the description of the drug response, a real biological phe-
nomenon, requires at least three kinds of information, drug,
cell type, and reaction result. Otherwise, the drug response
process will collapse into a one-dimensional space, affecting
the transformation of the feature space from the caption to the
fusion encoder.

4.4 Computational Analysis
We performed a computational analysis to compare the time
cost and parameter increases to the profits made during the
pre-training phase.

The experiment utilized an Intel Xeon E5-2690 v3 proces-
sor with 12 cores (i.e., 24 threads) and a clock frequency of
2.60GHz. Additionally, the RTX 4090 GPU was utilized.
During the training time experiments, each model underwent
testing 10 times in the GPU environment.

As shown in Table 3, AVG w. CLDR represents an av-
erage metric enhancement facilitated by the CLDR method.
Incorporating the CLDR framework significantly extends the
training time and parameter count by an additional 4.21 sec-
onds and 5,811M, respectively. Notably, the CLDR method
demands fewer training epochs in the pre-training and fine-
tuning phases, resulting in a shorter training duration than the
original models.

In summary, integrating the CLDR framework while in-
creasing the parameter count substantially enhances gener-
alization performance. Our work represents a breakthrough
when compared to traditional DRP methods.

4.5 Case Study Analysis
During the overall experiments, the CLDR method demon-
strated high accuracy and generalizability, presenting an ad-
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Finetune Caption Precision
Loss Total Drug

MSE CNE KGE RMSE ↓ MSE ↓ PCC ↑ SPC ↑ Rank ↓ RMSE ↓ MSE ↓ PCC ↑ SPC ↑ Rank ↓

× - -
√

0.069 0.005 0.304 0.163 0.033 0.062 0.005 0.506 0.504 0.030
× Number 0.001

√
0.089 0.008 0.299 0.248 0.038 0.077 0.008 0.434 0.466 0.037√

Number 0.001
√

0.063 0.004 0.414 0.361 0.025 0.056 0.004 0.516 0.525 0.024
× Number 0.001

√ √
0.084 0.007 0.262 0.150 0.041 0.073 0.007 0.446 0.467 0.040√

Number 0.001
√

0.065 0.004 0.403 0.301 0.027 0.055 0.004 0.514 0.520 0.026
× Text+Number 0.1

√ √
0.451 0.203 0.006 0.051 0.156 0.132 0.054 0.008 0.006 0.048

× Text+Number 0.01
√ √

0.428 0.183 -0.085 -0.175 0.143 0.197 0.084 0.008 0.004 0.040
× Text+Number 0.001

√ √
0.332 0.110 0.167 0.178 0.078 0.238 0.081 -0.011 -0.009 0.076

× Text+Number 0.001
√

0.311 0.097 -0.279 -0.211 0.112 0.243 0.085 -0.008 -0.005 0.096√
Text+Number 0.1

√ √ √
0.065 0.004 0.411 0.287 0.023 0.056 0.004 0.519 0.527 0.022√

Text+Number 0.01
√ √ √

0.061 0.004 0.484 0.362 0.024 0.054 0.004 0.531 0.540 0.023√
Text+Number 0.001

√ √ √
0.061 0.004 0.502 0.354 0.024 0.056 0.004 0.517 0.523 0.023√

Text+Number 0.001
√ √

0.066 0.004 0.371 0.321 0.027 0.057 0.004 0.521 0.528 0.026

Table 2: Our method’s ablation experiments. Our method’s design rationality was tested using the GDSC2 dataset and employing TransEDRP
as a drug-response fusion encoder. All numerical values in the table are rounded to three significant figures. The best performer is highlighted
in bold.

Model Training time(s) Params(M) Gain w. CLDR(%)

tCNNs 2.35 233 7.88
DeepCDR 1.69 179 17.83
DeepTTC 1.28 1573 19.49
GraphDRP 1.58 529 14.29
GratransDRP 1.71 2361 13.04
TransEDRP 0.98 2244 31.46
AVG w. CLDR +4.21 +5811 +17.3

Table 3: Computational analysis and performance comparison of
different models under the CLDR framework. Training time sig-
nifies the duration required for processing one batch, while Gain
w. CLDR denotes the level of performance improvement within the
CLDR.

vanced DRP framework in drug discovery research. To val-
idate that our framework improves numerical values and in-
creases drug screening hit rates, we conducted a case study
analysis as illustrated in Figure 4. We used unknown drugs
as the screen molecules in our test dataset during preclinical
drug screening.

Then, we compared the screening results of different meth-
ods with and without incorporating our framework. Accord-
ing to HR@n in recommendation systems [Lee et al., 2010],
we defined a novel evaluation measure specifically designed
for drug screening, denoted as Shot@x:

Shot@x =

∑Ncell

c=1 Hit(Ttop1
c ,Ptopx

c )

Ncell
. (11)

where T and P represent the true labels and predicted results,
respectively. topx represents top number of drugs with the
smallest drug response values, Ncell represents the number
of c cell lines in the test dataset, and Hit(·, ·) is a counting
function that is 1 when the two inputs are equal and 0 other-
wise.

We present the capabilities of three representative meth-

ods, tCNNs, GraphDRP, and TransEDRP, under the original
strategy (i.e., MSE) and the CLDR framework. As shown in
Figure 4, We assessed the predicted IC50 rankings of mul-
tiple drugs using the model with the actual values in order.
Then, the probability of scoring a hit with the first optimal
drug when recommending x compounds.

Due to the application of the CLDR framework, the proba-
bility of the model scoring a hit with the first optimal drug was
consistently above 32%. In other words, for a set of screened
compounds, our model achieves a hit rate of about 32% on a
single chance for about 320 cell lines, and it has a cumula-
tive hit probability of between 46% and 51% on the second
attempt. Notably, as the number of x attempts increases, the
results between methods become more similar; however, the
number of attempts is limited in real drug studies. Thus, the
DRP task requires the model to efficiently recommend the
most effective drug in as few attempts as possible. In this
context, our method improves the success rate by about 10%
compared to traditional methods when only one attempt is
available. This is an astounding development.

5 Conclusion
In this paper, we propose the CLDR framework, a contrastive
learning framework with natural language supervision for
DRP. The CLDR framework converts regression labels into
text, which is merged with the drug response captions as a
second modality for the samples in contrast to traditional en-
coding modalities. To enhance the continuous representation
capability of the numerical text, the CN-KG was proposed
to constrain the caption encoder’s ability to perceive continu-
ous values. In addition, we provided detailed theoretical evi-
dence of the CLDR method’s validity and conducted valida-
tion experiments on the GDSC2 dataset. This demonstrated
the CLDR framework’s ability to establish a link between
drug-response data and valuable labeled text, improving the
PDD’s generalizability and success rate.
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