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Abstract
Security games model strategic interactions in ad-
versarial real-world applications. Such applications
often involve extremely large but highly structured
strategy sets (e.g., selecting a distribution over all
patrol routes in a given graph). In this paper,
we represent each player’s strategy space using a
layered graph whose paths represent an exponen-
tially large strategy space. Our formulation en-
tails not only classic pursuit-evasion games, but
also other security games, such as those modeling
anti-terrorism and logistical interdiction. We study
two-player zero-sum games under two distinct util-
ity models: linear and binary utilities. We show
that under linear utilities, Nash equilibrium can be
computed in polynomial time, while binary utili-
ties may lead to situations where even computing
a best-response is computationally intractable. To
this end, we propose a practical algorithm based on
incremental strategy generation and mixed integer
linear programs. We show through extensive ex-
periments that our algorithm efficiently computes
ϵ-equilibrium for many games of interest. We find
that target values and graph structure often have a
larger influence on running times as compared to
the size of the graph per se.

1 Introduction
Security games model strategic interactions between a de-
fender, typically representing governmental entities, and an
attacker engaged in illicit activities. They have served as
the foundation for deployed solutions in numerous real-world
scenarios, spanning both physical and cyber security do-
mains, such as scheduling air marshals to protect flights [Tsai
et al., 2009], or protecting wildlife in natural parks [Fang
et al., 2017]. These applications feature complex strategy
spaces and reward functions that are application specific.
In this paper, we introduce Layered Graph Security Games
(LGSGs), a class of games where each player selects a path
in a layered directed acyclic graph (henceforth layered graph)
and receive payoffs depending on how “close” these two
paths were. LGSGs strike a good balance between model
expressiveness and computational complexity. On one hand,

many security games and their variants can be easily reframed
as LGSGs, despite not being explicitly defined in such terms.
These include patrolling games, which have a natural time-
component as well as cybersecurity applications, where lay-
ered graphs model dependencies in attack chains. Yet, be-
ing relatively compact structures, layered graphs retain, and
in some cases expose much of the “nice” combinatorial as-
pects of the underlying security game, resulting in practically
efficient game solvers. This stands in contrast to more heavy-
handed formulations such as extensive form games.

Our contributions are summarized as follows. (i) We in-
troduce Layered Graph Security Games (LGSG), and show
how they lead to compact representations of an otherwise ex-
ponentially large space (Section 3). (ii) We demonstrate how
many security problems may be reformulated as LGSGs, in-
cluding various pursuit-evasions games and two novel set-
tings relating to anti-terrorism and logistical interdiction
(Section 3.3). (iii) We study the computational complexity
of solving LGSGs in two regimes: linear and binary utili-
ties (Section 4), give polynomial-time algorithms for the for-
mer, and prove hardness results for the latter. (iv) For binary
utilities, we propose a solver based on incremental strategy
generation and efficient best-response oracles formulated as
mixed integer linear programs. (v) Experiments on a range of
applications using both synthetic and real-world maps from
various cities and parks (Section 5), show that our strategy
generation method scales favorably. We find that equilibria
exhibit a tiny support relative to the number of paths, vali-
dating our hypothesis that in practical domains, it is structure
and not game size that governs computational costs.

2 Related Work
This paper is related to several fields spanning across disci-
plines. Since these are huge research areas in and of them-
selves, we focus on those most related to security games.

Pursuit-Evasion games (PEGs) model scenarios when
one group (e.g., robots) locates and captures members of an-
other group, often within a specified timeframe. This rich line
of work goes by many names (e.g., Cops and Robbers, Differ-
ential Games, Games of Pursuit), dealing with a variety of en-
vironments, such as those exhibiting perfect or imperfect in-
formation, and on discrete and continuous time/space [Isaacs,
1999; Friedman, 2013; Weintraub et al., 2020; Bopardikar et
al., 2008; Bonato, 2011; Parsons, 2006]. The mathematics
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behind PEGs is deep and attractive. Nonetheless, computa-
tional costs become a hindrance in all but the simplest envi-
ronments. Furthermore, models in PEGs can be fairly rigid;
indeed, research in PEGs is often centered around the un-
derlying geometry of the environment or proving theoretical
bounds on metrics such as task-completion time.

Extensive-Form games (EFGs) are played on a game tree,
with each player choosing actions to take at each of their
information sets [Shoham and Leyton-Brown, 2008]. Ex-
tremely expressive and successful in practice, EFG solvers
are responsible for superhuman poker bots today [Brown and
Sandholm, 2018; Brown and Sandholm, 2019]. However, as
trees, computing exact equilibria in EFGs incurs computa-
tional costs that is exponential in time horizon. Conversely,
while the number of possible paths in LGSGs taken is also
exponential in horizon, its reward functions are constrained
by the layered graph structure, allowing for more efficient
computation of best-responses and equilibrium. Recently,
there have been significant work scaling up EFG solvers
by incorporating machine learning [Lanctot et al., 2017;
Perolat et al., 2022; Moravčı́k et al., 2017; Wang et al., 2019;
Xue et al., 2021]. While powerful, such approaches rarely
yield theoretical guarantees on quality of the equilibria, mak-
ing them less suited for high-stakes security applications.

Network Interdiction games (NIGs) study the optimal
arcs in a network to remove or interdict in order to pre-
vent an evader from traversing the graph. First studied by
Wollmer [1964], NIGs now come in a variety of objectives,
such as increasing the evader’s shortest path to an exit, min-
imizing the maximum flow between two vertices, as well as
a range of applications, including cybersecurity, cyberphysi-
cal security and supply-chain attacks [Washburn and Wood,
1995; Smith and Song, 2020; Smith and Lim, 2008]. Most
of the existing literature consider attacker paths, but allow the
defender to select arbitrary vertices or edges to interdict. This
is unrealistic, particularly in physical patrolling such as anti-
poaching, since it amounts to the defender “teleporting” to a
location rather moving in to intercept the attacker.

Security games are the namesake of this paper, and have
enjoyed much attention owing to a number of successful de-
ployments in the real-world [Jain et al., 2013; Pita et al.,
2008; Shieh et al., 2012; An et al., 2017]. In its vanilla form,
security games feature a defender choosing a distribution over
targets to defend and an attacker choosing one of them to
attack. This simple setting enjoys polynomial-time solvers,
even in the general-sum case [Kiekintveld et al., 2009;
Conitzer and Sandholm, 2006]. Much developments have
been made to account for large, but structured strategy spaces
such as defender target schedules [Korzhyk et al., 2010] and
repeated interactions [Fang et al., 2015]. Unfortunately, just
like NIGs, most security games focus on the special case
where only the defender possesses structured strategies — the
attacker still “teleports” to the target. This assumption reins
in computational costs, but at the price of realism.

One of the few works which do handle structured strate-
gies for both players is the Escape Interdiction Game (EIG)
studied by Zhang et al. [2017] who investigate interdiction
specifically in transport networks. LGSGs partially general-
izes EIGs by allowing for richer interdiction, reward func-

tions and most importantly goes beyond interdiction to in-
clude applications such as anti-terrorism, delayed interdiction
and advanced persistent threats (Section 3.3).

3 Layered Graph Security Games
The fundamental structure that we will work with is the lay-
ered directed graph. Let V be a finite set of vertices, and
Ga = (V, Ea), Gd = (V, Ed) graphs for the attacker and de-
fender, where the sets Ea and Ed contain directed edges. V
comprises L > 1 layers, meaning that V can be partitioned
into non-empty sets V1, . . . ,VL where all edges ea ∈ Ea lie
in Vℓ × Vℓ+1 for some ℓ ∈ [1, L − 1]. The same holds for
all ed ∈ Ed. For an edge e = (vl, vl+1), we denote the vertex
vl by e− and the vertex vl+1 by e+. For a player i ∈ {a, d},
the incoming edges for a vertex v are denoted as E+i (v) and
the outgoing edges as E−i (v). Note that Ga and Gd share the
vertex set V , though we allow Ga and Gd to be disconnected.

We assume that the first layer is a singleton, i.e., |V1| =
1; this restriction does not impose any significant modeling
restrictions. However, the last layer may comprise multiple
vertices. We call these terminal states or targets V⊙ = VL.

Player strategies. We denote byPa andPd the set of paths
for the attacker and defender. Each path for the attacker is
of the form (v1, v2, . . . vL) ∈ V1 × V2 × . . . ,×VL where
(vℓ, vℓ+1) ∈ Ea. Consider some path p ∈ Pa ∪ Pd. It tra-
verses vertices in increasing order of their layer number and
terminates at a target v ∈ V⊙. We denote by p(i) the i-th
vertex of p and p[i] its i-th edge, i.e., (vi, vi+1). With a slight
abuse of notation we write v ∈ p and e ∈ p if vertex v or edge
e lies in p. In general, |Pa|, |Pd| are exponential in L; dealing
with these large strategy spaces is our key contribution.

Targets and interdiction function. We assume that each
target has an associated value given by r⊙ : V⊙ → R.
Typically, this value will be nonnegative. For some path
p ∈ Pa∪Pd, we write r⊙(p) as a shorthand for r⊙(p(L)). We
also introduce an interdiction function R : Ed×Ea → {0, 1},
which is equal to 1 when two edges are in “close proxim-
ity” such that the defender is able to interdict the attacker.
While R is usually defined in terms of distance metrics (e.g.,
the range of a sensor and/or physical distance between two
edges), we impose no such restriction in our framework.

3.1 Player Utilities
In general, utilities are a function of paths ua : Pd×Pa → R.
We assume that the game is zero-sum, i.e., ua(pd, pa) =
−ud(pd, pa). For simplicity, we will write u = ua. Solving a
game with arbitrary u is computationally intractable (in terms
of the size of the graph |V|, |Ea|, |Ed|); indeed, it takes an ex-
ponential amount of space to even specify u. Nonetheless,
for many security games u takes more compact forms involv-
ing edges and possibly V⊙ and r⊙. The form of u greatly
influences equilibrium structure and its computation.

• Linear utilities may be additively decomposed in terms of
pairs of edges shared between pd and pa,

uLIN(pd, pa) =
∑

ed∈pd

∑
ea∈pa

Q(ed, ea), (1)
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(a) V and Ed ∪ Ea (b) Gd (c) Ga

Figure 1: Layered graphs of Example 1. V has 5 layers with a single
source and sink. Disconnected vertices in Ga and Gd are in white.

where Q : Ed × Ea → R maps payoffs between edges be-
tween Ea and Ed. We are particularly interested in the case
where Q = −R(ed, ea), i.e., the attacker incurs a penalty
of 1 each time it is interdicted. Linear utility models allow
the attacker to be caught repeatedly. For example, a driver
fined for speeding may be fined again in the future, with
penalties accumulating additively.

• Binary utilities avoid rewarding multiple interdictions,

uBIN(pd, pa) = r⊙(pa) · 1

[ ∑
ed∈pd

∑
ea∈pa

R(ed, ea) = 0

]
,

where 1 is the indicator function, i.e., the attacker receives
a reward of r⊙(pa) if and only if pa and pd do not share any
edge that are “close”. Binary utilities are often more suited
for security applications. For example, a driver is arrested
for drink driving, not released back to the public.

3.2 Nash Equilibrium
Our goal is to find a Nash equilibrium (NE), possibly mixed,
over player paths. Denote by ∆a and ∆d the probability sim-
plices over Pa and Pd respectively. Then, for some distri-
bution over paths xi ∈ ∆i, xi(pi) is the probability that pi
is played by player i ∈ {a, d}. The NE problem reduces to
solving the bilinear saddle point problem

min
xd∈∆d

max
xa∈∆a

Epd∼xd,pa∼xa
[u(pd, pa)] (2)

= min
xd∈∆d

max
xa∈∆a

∑
pd∈Pd

∑
pa∈Pa

xa(pa) · xd(pd) · u(pd, pa).

Since ∆d and ∆a are convex and compact and the objective
is convex-concave, the minimax theorem [v. Neumann, 1928]
holds. Thus, the game has a unique value.
Example 1. Consider the game in Figure 1, r⊙ = 1 and
R(ed, ea) = 1 [ed = ea], i.e., interdiction occurs when pa
and pd share an edge. There are 2 non-trivial “decision
points” for Ga, one in layer 1 and another in layer 3. Each
has two (independent) decisions, UP or DOWN. This gives
Pa = {UU,UD,DU,DD}. Conversely, Gd has only one
nontrivial decision point at the source, and Pd = {U,D}.

We can derive the following: (i) For both uLIN and uBIN,
the defender Nash strategy is x∗

d(U) = x∗
d(D) = 0.5. (ii)

Under uLIN, the attacker Nash strategies are exactly dis-
tributions that satisfy x∗

a(UU) = x∗
a(DD). This includes

the uniform strategy x∗
a(UU) = x∗

a(UD) = x∗
a(DU) =

x∗
a(DD) = 0.25. (iii) Under uBIN the unique attacker Nash

strategy is x∗
a(UU) = x∗

a(DD) = 0.5.
Example 1 illustrates the equilibrium differences between

uBIN and uLIN. Under uLIN there exists an equilibrium where

A

B

C

Gd only

(a) Gd and Ga

A

B

C

A

B

C

A

B

C

(b) Gd

A

B

C

A

B

C

A

B

C

(c) Ga

Figure 2: Physical graph and the layered graphs Gd,Ga obtained by
unrolling over 3 steps. The defender and attacker starts at A and B.
Note Gd has an extra loop at A. Unreachable vertices are in white.

xa and xd are “Markovian”, i.e., the strategy can be expressed
as a distribution over actions at each vertex, independently of
the path. Such an equilibrium does not exist for uBIN. We
discuss Markovianity in more detail in Section 4.

3.3 Applications
Now we give three examples of layered directed graphs and
how the rewards uLIN and uBIN arise. These examples in-
volve physical graphs for each player Ga = (V,Ea) and
Gd = (V,Ed) (note that we use G for physical graphs and G
for layered graphs). They may be directed, undirected, or in-
clude loops. For simplicity, we assume that Ga and Gd share
vertices, but not necessarily edges. The vertices in Ga,Gd

represent locations in the physical world which the attacker
and defender traverse over a finite set of timesteps T ≥ 1.
For example, Figure 3 illustrates the road networks used as
Ga,Gd in the case of Lower Manhattan, Minnewaska State
Park, and part of the Ukrainian city of Bakhmut, respectively.

For i ∈ {a, d}, the (T + 1)-layered graph Gi is obtained
from Gi by first fixing a source vertex vi,source ∈ Gi (or a set
of possible sources the player may choose from). We then
“unroll” Gi over time. Each layer of Gi contains vertices
which represent where the player is at a given timestep, while
edges between layers represent an action taken in the physical
world. Figure 2 shows a simple example of how a graph is un-
rolled over 3 timesteps. Crucially, this unrolling process does
not result in a tree (whose size is exponential in T ), but rather,
a compact layered DAG. Note that in general, layers in Gi
need not have the same edges across layers; in fact, vertices
in each layer Vℓ need not have a 1-1 mapping with V. Many
interesting domains may be described by slightly modifying
this unrolling process and/or adding application-specific aux-
iliary vertices/edges to this DAG. The detailed conversion of
Gi to Gi for each application is deferred to the appendix. 1

Remark. The graphs Ga,Gd are just a convenient way to
generate Ga and Gd. Our framework and algorithms do not
exploit properties of Ga,Gd. In fact, depending on the appli-
cation, one may choose to sidestep Ga and Gd entirely.
Pursuit-Evasion (PE). The simplest problem described
by our formulation is finite-horizon pursuit-evasion games
played on graphs [Parsons, 2006]. The pursuer plays the role
of the defender, while the evader is the attacker. Players start
at some vertex va,source, vd,source ∈ V. At each timestep t < T ,
players select an edge to traverse (loops are allowed in V). We
define R such that the attacker is interdicted if both players
share the same vertex v at the same time. We reiterate that
our framework admits many modifications, e.g., allowing the

1Full paper and source code: https://arxiv.org/abs/2405.03070.
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(a) L. Manhattan (b) Minnewaska SP (c) City of Bakhmut

Figure 3: Real-world physical graphs used to generate LGSGs for
our application domains, together with examples of defender’s (red)
and attacker’s (blue) equilibrial paths in (a) PE, (b) AT, and (c) LI.

attacker to be interdicted when traversing the same edge as
the defender, or if both players are physically “close” to each
other. Note that the game is one-shot: no information is re-
vealed to either player after each step. Nonetheless, this cap-
tures a wide variety of pursuit-evasion games. For example,
when the goal of the attacker is simply to evade capture, we
set r⊙(pa) = 1 and use binary utilities uBIN (we adjust r⊙
appropriately if final attacker locations matter).

Anti-Terrorism (AT). An extension to PE games has the
attacker playing the role of a terrorist, which seeks to plant
an explosive at some target node v ∈ V while evading cap-
ture. The explosive device requires Tsetup ≥ 0 time to setup,
during which the attacker must remain at that same vertex.
Once the setup is complete, the explosive detonates and the
attacker receives utility equal to r(v) ≥ 0. The attacker gets
0 utility if the explosive was not planted by the time limit, or
the attacker was interdicted while moving around or planting
the explosive. As with PE games, the interdiction function
R may be defined in various meaningful ways. This game
can be formulated using the same layered graph formulation
by introducing additional “waiting” vertices for each target
which represent how long an attacker has been setting up up
the explosive at each vertex. This results in a layered graph
of L = T + 1 layers, each roughly of size O(|V| · T ). Unlike
PE games, the representation of the interdiction function in
terms of Ga,Gd is slightly more complicated.

Logistical Interdiction (LI) and Persistent Threats (PT).
PE games may be modified to contain select exit vertices
which end the game when the attacker reaches them. We in-
troduce a delay factor γ ≥ 0. If the attacker reaches one of
these exit vertices at time texit it obtains a payoff of γtexit . If it
does not, or gets captured, it gets a payoff of 0. When γ = 1,
this reduces to PE games with the introduction of a special
‘exit’ vertex with a self-loop only reachable by the attacker.
When γ < 1, the delay factor encourages the attacker to exit
as soon as possible. We call these logistical interdiction (LI)
games, which model supply lines in warfare where delays in
shipments result in casualties. When γ > 1, the attacker
delays exiting as long as possible. We call these persistent
threat (PT) games. A raiding party seeks to cause damage
for as long as possible (without being captured). Similarly,
Advanced Persistent Threats (APTs) in cybersecurity procure
classified information for as long as possible (without being

evicted) before leaving [Rass et al., 2017].

4 Computing Equilibrium in LGSGs
This expressiveness of LGSGs comes at a cost: finding a NE
is intractable. This is unsurprising since layered graph games
generalize the EIGs of Zhang et al. [2017].
Proposition 1. It is NP-hard to find a NE for a layered graph
security game with general utilities given in Equation 2.

The proof is essentially identical to the reduction from 3-
SAT in Zhang et al. [2017]. Their reduction uses multiple
defenders, but may be adapted to LGSGs with u = uBIN,
r⊙ = 1 and suitably designed R (see appendix for details).
We now delve deeper and discuss subclasses of layered games
and their respective computational complexities.

4.1 LGSGs with Linear Utility Models
In the case of linear utilities uLIN, equilibrium computation
is greatly simplified. This arises from the use of network
flows as a polynomial-size representation of strategies which
is payoff equivalent to ∆d,∆a. Given a layered graph (or any
single-source DAG), the unit-flow polytopes Γd,Γa are given
by flow conservation constraints,

Γi =

fi ≥ 0

∣∣∣∣∣∣∣
∑

e∈E−
i (v)

fi(e) = 1 v ∈ V1
i∑

e∈E−
i (v)

fi(e) =
∑

e∈E+
i (v)

fi(e) v ∈ Vi\V1
i


Flows describe for each player i ∈ {a, d} the marginal proba-
bility that a particular edge is traversed. Crucially, every flow
is the convex combination of some set of paths. In particular,
flows embody Markovian strategies. For internal vertices v ∈
Vi\V1

i , the conditional probability of taking edge e = (v, v′)
is fi(e|v) = fi(e)/

∑
e′∈E+

i (v) fi(e
′), where by convention

we set 0/0 = 0, while fi(e|v) = fi(e) for v ∈ V1
i . The prob-

ability xi(p) of choosing a path p ∈ Pi is
∏

e:(v,v′)∈p fi(e, v).
Conversely, any distribution over paths xi ∈ ∆i (not neces-
sarily Markovian), maps to a flow fi : Ei 7→ [0, 1] where
fi(ei) =

∑
pi∈Pi(ei)

xi(pi). In fact, the vertices of Γi corre-
spond precisely to paths, simplifying linear utility models.
Proposition 2 (Kuhn’s theorem for uLIN). Suppose xd ∈
∆d, xa ∈ ∆a in a layered graph security game. Then uLIN

is bilinear in their flows fd(xd) and fa(xa). Specifically,

uLIN(xd, xa) =
∑

ed∈Ed

∑
ea∈Ea

Q(ed, ea)fd(ed)fa(ea).

Proposition 2 implies that rather than optimizing over ∆i,
we can optimize over Γi instead. Computing a Nash equilib-
rium (2) may be expressed as a bilinear saddle point problem

min
fd∈Γd

max
fa∈Γa

∑
ed∈Ed

∑
ea∈Ea

Q(ed, ea)fd(ed)fa(ea). (3)

We remark that, since Markovian strategies do not capture
every distribution over paths (i.e., there may be multiple
xi ∈ ∆i mapping onto the same flow), the solutions to the
above optimization will not necessarily capture all equilibria.
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Nonetheless, it will provide some Markovian equilibrium. In
fact, we argue that this is desirable since Markovian strategies
are compactly represented. The optimization problem in (3)
lends itself well to computation. Since Γd and Γa are compact
and convex sets (being polytopes), the minimax theorem [v.
Neumann, 1928] holds. In particular, (3) resembles the clas-
sic min-max formulation for solving zero-sum normal-form
games, except that we optimize over Γi instead of over the
probability simplex. Taking the dual of the inner maximiza-
tion problem yields the following linear program.

min
fd∈Γd,g∈R|V|

g(vsource)

g(e+a )− g(e−a ) ≥
∑

ed∈Ed

fd(ed) ·Q(ed, ea) ∀ea ∈ Ea

Here, the g variables are dual variables corresponding to val-
ues of vertices. We remark that other methods such as those
involving regret minimization over Γi [Takimoto and War-
muth, 2003; Farina et al., 2019; Farina et al., 2022] may be
more efficient in practice than this LP. Regardless, since the
number of variables and constraints is linear in the sizes of Gi
and LPs are solvable in polynomial time, we have:
Proposition 3. A NE for a LGSG with linear utilities as in
Equation (1) may be found in polynomial time.

Since LGSGs with linear utilities are less suited for secu-
rity applications and also computationally uninteresting, we
focus on binary utility models for the rest of the paper.

4.2 The Role of Flows in Binary Utility Models
In games with linear utilities, restricting the space of strate-
gies to flows resulted in polynomial-time algorithms. Such
optimism is perhaps unwarranted in binary utilities given the
intractability result of Proposition 1. It turns out that, not only
are polynomial-time algorithms unlikely, even the restriction
of strategies from Pi to Γi itself may not contain any NE.
Proposition 4. There exist LGSG with uBIN, r⊙ = 1,
R(ed, ea) = 1[ed = ea] where no NE is Markovian.

Proposition 4 follows directly from Example 1, whose
unique attacker Nash strategy x∗

a(UU) = x∗
a(DD) is clearly

not Markovian since the decision at the second vertex de-
pends on the previous action taken. This dependency is in-
tuitive: imagine the attacker has already taken the top path
and is deciding where to go in the second decision vertex.
The fact that it was not interdicted implies that the defender
did not play U , implying that it should continue to play UU .

Proposition 4 seems trivial in hindsight, but has important
ramifications. For example, one may try running deep re-
inforcement learning methods with self-play to arrive at an
equilibrium [Wang et al., 2019]. Proposition 4 implies that
the state features fed into such a policy or Q-function must
describe the player’s history and not just features of that ver-
tex. This stands in contrast to Markov games, and is analo-
gous to the importance of perfect recall in EFGs.

There exists similar examples to Example 1 where Ed = Ea
but with r⊙(v) varying over targets. These negative examples
lead us to believe that searching purely in the space of Γi is
unlikely to yield fruitful results. Nevertheless, our experi-
mentation seem to substantiate the following special case.

Conjecture 1. LGSGs with u = uBIN, r⊙ = 1, R(ed, ea) =
1[ed = ea] and Ed = Ea have a Markovian NE.

4.3 Best-Responses in Binary Utility Models
Recall that defender’s and attacker’s (pure) best-responses
to fixed strategies xa and xd are defined as pBR

d =
argminpd∈Pd

u(pd, xa) and pBR
a = argmaxpa∈Pa

u(xd, pa),
where u(xd, pa) = Epa∼xa

u(pd, pa) and u(pd, xa) =
Epd∼xd

u(pd, pa). One may hope that with uBIN, computing
best-responses is tractable even if equilibrium solving is not.
Unfortunately, it turns out that this too is intractable.

Proposition 5. Let P̃i ⊆ Pi be of size k (possibly much
smaller than |Pi|) and x̃i be a distribution with support P̃i.
Finding a best response of player −i against x̃i in a LGSG
with u = uBIN is NP-hard in terms of |Ga|, |Gd| and k.

We stress that while best-responses are closely related to
NE computation, these are generally distinct problems: it is
possible to devise classes of games where best-responses are
difficult to compute but finding NE is easy and vice versa
[Xu, 2016]. Proposition 5 suggests that even verifying that
a given pair (x∗

d, x
∗
a) is a NE may be difficult. Thankfully,

it turns out that in many games of interest a best-response
can be formulated as a mixed-integer linear program (MILP)
which can be practically tackled by commercial solvers, at
least when the opponent distribution x̃i has small support.

Let P̃a ⊆ Pa be the support of an attacker strategy x̃a(pa).
The following Mixed-integer linear program (MILP) solves
for the best defender response in the form of a path pd ∈ Pd.

max
fd∈Γd

∑
pa∈P̃a

−r⊙(pa) · (1− y(pa)) · x̃a(pa)

y(pa) ≤
∑

ed∈{ed:∃ea∈paR(ed,ea)=1}

fd(ed) ∀pa ∈ P̃a

fd(ed) ∈ {0, 1} ∀ed ∈ Ed
0 ≤ y(pa) ≤ 1 ∀pa ∈ P̃a.

In the above, y(pa) is the number of times the attacker is
interdicted when playing pa ∈ P̃a; note that this will be inte-
geral as elements of fd are binary. Observe that fd lies in the
intersection of the unit-flow polytope Γd and the {0, 1}|Ed| in-
teger lattice, which is precisely the set of all paths in Gd. The
objective minimizes the attacker utility by trying to achieve
large y(pa). The first constraint ensures that y(pa) can only
be set to 1 if at least one edge is shared between pa and the
path given by fd, while the last constraint limits the defender
to a maximum of one interdiction. This MILP grows in size
with |P̃a|, and is likely to be hard when |P̃a| is large.

This MILP serves as the defender’s best-response oracle to
a given distribution of attacker paths x̃a. We denote this by
DEFENDERBR(x̃a). Similarly, the attacker’s best response to
a distribution of defender paths x̃d with support in P̃d ⊆ Pd

is given by ATTACKERBR(x̃d). ATTACKERBR can also be
written as a MILP, the details of which are deferred to the
appendix. These best-responses are similar in spirit to those
in Zhang et al. [2017], except that we account for a wider
class of interdiction functions R and target values r⊙.
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Algorithm 1 Double Oracle for LGSGs

Require: Gd,Ga, r⊙, R, u, ϵ > 0

1: P̃d, P̃a ← INITIALSUBGAME(Gd,Ga)
2: repeat
3: x̃∗

d, x̃
∗
a ← NASHEQUILIBRIUM(P̃d, P̃a)

4: pBR
d , pBR

a ← DEFENDERBR(x̃∗
a), ATTACKERBR(x̃∗

d)

5: P̃d, P̃a ← P̃d ∪ {pBR
d }, P̃a ∪ {pBR

a }
6: until EQUILIBRIUMGAP(x̃∗

d, x̃
∗
a, p

BR
d , pBR

a ) < ϵ

4.4 Approximating NE Using Strategy Generation
in LGSGs with Binary Utility Models

The negative results of Proposition 1 compels us to work di-
rectly in the space of path distributions instead. Fortunately,
despite the number of paths being exponential, we find that
in practical applications such as those in Section 3.3, equi-
libria exhibit relatively small supports (in path space). This
motivates our adoption of the double oracle framework.

The double oracle (DO) algorithm is a variant of concur-
rent column and row generation. It is commonly used to solve
large saddle-point problems which admit efficient (in a prac-
tical sense) best-response oracles. The DO algorithm is an
iterative algorithm that incrementally builds a subgame — a
subset of pure strategies for each player — with the hope that
“weak” strategies outside the equilibrium’s support are never
included in the subgame. DO guarantees that at termination,
the subgame (ideally a small fraction of the entire game) has a
NE which mirrors the NE of the original game. In our setting,
pure strategies are paths pi ∈ Pi and subgames are specified
via subsets P̃i ⊆ Pi for each i. An outline of our proposed
DO implementation is shown in Algorithm 1.

The algorithm starts from a small subgame for each player
P̃d, P̃a. At each iteration, it computes the equilibrium
(x̃∗

d, x̃
∗
a) within the current subgame (i.e., player i may only

choose distributions of paths in P̃i) as a normal-form game.
For each player i ∈ {a, d} we compute best-responses pBR

i
(of the full game) against their opponent’s subgame equilib-
rium strategy x̃∗

−i. This is done using the best-response or-
acles. These best-responses give paths which are added into
the subgame, and the procedure repeats.

The DO algorithm terminates when the best-response or-
acle for both players returns responses that do not improve
the player’s return over the subgame value. This implies that
the current subgame equilibrium constitutes an equilibrium
in the full game, and further addition of strategies will not re-
sult in less exploitable strategies for either player. In practice,
rather than converging to an exact equilibrium, we compute
the equilibrium gap∇ = u(x̃∗

d, p
BR
a )−u(pBR

d , x̃∗
a) and termi-

nate when∇ ≤ ϵ for some pre-specified threshold ϵ > 0.
Speeding up DO. The efficiency of DO hinges on three

factors, (i) the time needed to compute a NE of the subgame,
(ii) the number of outer iterations of DO, i.e., the number
of strategies added to the subgame and (iii) the best response
oracles for each player. The first factor is typically negligible,
since computing the NE of a zero-sum matrix game may be
done in polynomial time. The second factor depends on the
underlying game (e.g., does it have a sparse equilibrium). The

third factor depends on how hard the MILP is.
The component most within our control is (iii), since

MILP solvers can be tuned via parameters and reformulation.
We consider the following speedups, (a) admitting approxi-
mate best-responses (or better responses) rather than solving
MILPs to completion, (b) strategy management by periodi-
cally removing “weak” strategies in P̃i that absent in x̃∗

i , (c)
tightening of MILPs by adding cuts/implied constraints or
lifting, and (d) tuning the MILP solver, using warm-starts,
or heuristics. Unfortunately, we find that only (a) yielded
consistently better results. We discuss implementation details
and other speedups in the appendix.

5 Empirical Evaluation
We seek to answer the following questions. (i) Performance:
how does DO compare with the full LP solver? (ii) Sparsity:
how do sizes of the (approximate) NE’s support and DO sub-
games compare to the game size itself? (iii) Factors: how
does performance scale with other game parameters?

The experiments were conducted on an Intel Xeon Gold
6226, 2.9Ghz on a Linux 64-bit platform. We used Gurobi
10.0.3 [Gurobi Optimization, LLC, 2023] for MILPs and
LPs. Each run was restricted to 8 threads and 32GB of RAM.
Our DO algorithm was implemented in Python 3.7.9 and con-
figured with a tolerance of ϵ = 10−3. The real-world physical
graphs were obtained using OSMnx [Boeing, 2017]. For ex-
periments with randomness, 20 instances were generated and
solved. We report their standard errors in plots, noting that
in almost all cases these are negligible. We limit solvers to 6
hours for each instance . Game sizes are defined as |Pd|+|Pa|
when reporting runtimes. We allow loops in Gi and set R
such that the attacker is interdicted when players share a ver-
tex. Application specific instantiations of R and r⊙, as well
as additional setup and results are deferred to the appendix.
A link to the source code is included in the full paper.

Performance and sparsity. We compare linear program-
ming for the full game (denoted LP, in the figures) against DO
with (i) exact (denoted DO) and (ii) approximate (denoted
DO+l) best-responses achieved by halting best-response com-
putations after 1s. For sparsity, we report subgame and sup-
port sizes (denoted SG and SP) summed over players and as
a fraction of the total number of paths |Pd|+ |Pa|.

We experiment on (a) a synthetic 4-connected 5 × 5 grid
world, with a few edges randomly removed per player (mak-
ing the grids unique), and (b) the map of Lower Manhattan in
New York City, USA, with 87 nodes and 191 edges (depicted
in Figure 3). In each domain, we ran pursuit-evasion (PE)
and anti-terrorism (AT) scenarios for varying horizons (i.e.,
different game sizes). For each of the 4 settings, we report in
Figure 4 running times (over 3 algorithms) and the final DO
subgame (SG) and support (SP) sizes. Note that for purposes
of comparison, target values are identical over PE and AT.

As expected, both variants of DO outperform linear pro-
gramming, which is unable to solve modestly-sized games
within the time limit of 6 hours. On Lower Manhattan, the
use of approximate best-responses yields up to half an order-
of-magnitude speedup over exact best-responses, despite fi-
nal subgame sizes being virtually identical. We report in the
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Figure 4: Computation times (black lines) and sparsity metrics (or-
ange lines, for vanilla DO with exact best-responses) for PE and AT
domains on grid world and Lower Manhattan.

appendix how equilibrium gaps evolve with running time.
Even though PE and AT utilize identical physical graphs

and target values, solving PE games appears harder than AT
games. This stems from more involved best-response compu-
tations. Furthermore, the size of the NE support remains no
more than 2-5 times less than the subgame sizes. This means
DO avoids adding too many unnecessary strategies. We dis-
cuss the qualitative behavior of equilibrium in the appendix.
Effect of diameter and horizon. Consider Minnewaska
State Park in NY, USA (138 nodes, 201 edges, Figure 3).
Here, we apply AT for anti-poaching, i.e., planting explo-
sives ≈ poaching. To model spatial correlations in ani-
mal density, we randomly assign 4 “animal habitats” (yellow
dots in figure), each associated with a positive animal score.
Each node’s value is the sum of animal scores, attenuated by
gLIN(z) = 1/z, where z is the node’s euclidean distance to
the habitat.We report results in the top row of Figure 5.

The results on DO+l in Figure 5 (black line, top left) ex-
hibit an anomaly where increasing horizon (i.e., larger games)
leads to a decrease in running time around the 1010 mark.
Furthermore, the standard deviations become extremely high
(see Figure 5, top right for individual runs). It turns out that
at lower horizons, parts of the Gi were not accessible and are
only “unlocked” at a deeper horizons. Sometimes, these lo-
cations lie close to a habitat (hence gLIN is high), unlocking
them causes the attacker’s strategy to almost always move to
these rich locations. This “phase transition” is accentuated
as gLIN has a singularity at z = 0. Hence, even though the
game is larger, the NE can be simpler. To validate our hy-
pothesis, we ran the same experiment (same habitats) using
gEXP(z) = exp(−z), avoiding the singularities in gLIN. This
anomaly and large standard deviations then vanish.
Effect of delay factor in LI and PT. Again, we consider (i)
the 5 × 5 grid world with 4-connectivity (denoted GW), and
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Figure 5: Computation times and sparsity metrics for AP and LI
domains demonstrating the effects of additional factors on the per-
formance of our DO algorithm with approximate best-responses.

(ii) the city of Bakhmut, Ukraine (denoted BK, 721 nodes,
1229 edges, Figure 3), a frontline in the Russo-Ukrainian
2022 war. The latter simulates logistical interdiction (LI)
involving the delivery of Ukrainian supplies to three front-
line locations (yellow dots in figure, playing the role of ex-
its) from two entry points (west-most blue dots) while being
susceptible to Russian attacks in the contested territory. For
each domain we study DO+l runtimes on the same physical
graph Gi, varying only the delay factor γ. In GW we consider
γ ∈ [0.8, 1.2], i.e., both persistent threats and interdiction,
while in Bakhmut we only consider γ ≤ 1, i.e., interdiction.

We report results in the bottom row of Figure 5. For GW,
games with high γ are more difficult to solve. When γ is
small, the attacker is incentivized to rush to an exit with less
consideration for being caught; when γ is closer to 1, more
unpredictable NE (hence larger support) are employed. This
occurs to a lesser degree in Bakhmut. Because players start
far apart, earlier actions are often inconsequential: players
simply move closer to the frontline where meaningful deci-
sions are actually made (illustrations in appendix). For γ > 1
in grid worlds (PT), running times skyrocket alongside the
subgame and support sizes. This is expected as being very
unpredictable is necessary to delay departure without being
interdicted (see bottom right of Figure 5 for individual runs).

6 Conclusion
This paper introduced Layered Graph Security Games
(LGSGs). LGSGs offer a balance between model expressive-
ness and computational complexity. We study the complexity
of solving LGSGs and propose a solver for the challenging
case of binary utilities. Our experiments demonstrate scala-
bility of our method and highlights the importance of struc-
ture over game size when estimating computational costs.
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