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Abstract
We develop a general, formal model of social
choice in which voters have continuous preferences
over a one-dimensional space. Our model is param-
eterized by different restrictions that we introduce
regarding the way voter preferences change in time
as well as the optimization criteria (that correspond
to a normative continuum of fairness definitions)
desired from an aggregation method—that outputs
a continuous, one-dimensional curve—given such
inputs. We discuss the applicability of the model
to different real-world situations and, as a first step
towards an analysis of the different model realiza-
tions, we concentrate on identifying those cases
that are computationally feasible to compute.

1 Introduction
Social choice theory offers algorithms that aggregate voter
preferences and output various aggregated outputs, such as
in single-winner elections [Sen, 1986], multiwinner elec-
tions [Faliszewski et al., 2017], and participatory budget-
ing [Aziz and Shah, 2021]. These examples, however, are all
of a discrete flavor and with a simple structure. In particular,
both the output (the name of a single candidate, the names of
the k committee members, the names of the projects to fund)
as well as the input (i.e., voter preferences) are discrete.

Indeed, some social choice settings are continuous (most
notably perhaps are randomized mechanisms and portioning
methods [Airiau et al., 2023]), however, there is a general
need for devising aggregation algorithms that are able to out-
put more structurally-involved, continuous outputs. Corre-
spondingly, here we are interested in social choice settings in
which both the inputs (i.e., voter preferences) as well as the
output (the aggregated result) are continuous. Consider first
the following example usecases.

• Deciding on a monetary policy: One of the important
features of a monetary system is its policy, where one of
the main goals of such a policy is to stabilize the econ-
omy using certain policy tools [Friedman, 1995]. These
tools include setting the interest rates, adjusting the re-
serve requirements for banks, and continuously buying
and selling various securities. Consider, say, a group of

experts, each with its own idea on a certain issue such
as the required change in the interest rate for the coming
year: as each of these experts may have different prefer-
ences regarding the ideal monetary policy, those individ-
ual preferences may be aggregated to a single, agreeable
policy.1

• Optimizing production: In industrial production en-
vironments, certain time-based estimations and deci-
sions have to be made. Two of the most fundamental
ones include estimating the future product demand—
and, based on such estimations, decide the future prod-
uct supply [Levinsohn and Petrin, 2003]. Correspond-
ingly, consider a group of experts—that may also in-
clude certain data-intensive artificial experts—each with
its own estimation and preferences, and consider the
need for a method that aggregates these.

• Controlling energy usage and consumption: For
many energy sources (e.g., electricity), the energy cost
is not only affected by the sheer amount of consumed
energy but also on how the consumption is spread in
time [Johnson et al., 2011]. In particular, as the cost of
producing electricity increase dramatically in times of
peak demand, many systems aim at so-called “flattening
the curve” (of household electricity demand) [Barker et
al., 2012]. Correspondingly, consider an agent commu-
nity (say, residents of some residential complex) where
different agents may have different preferences regard-
ing the consumption of energy in time. For sustainability
reasons as well as for purely economical reasons, there
is a need to aggregate those preferences to come to a
single, agreeable energy consumption curve.

• Collaborative forecasting: Consider a set of sen-
sors/machines/agents, each of which is producing a fore-
cast for, say, next weeks’ weather. These predictions
may be aggregated to arrive to a single, agreeable fore-
cast [Leutbecher and Palmer, 2008].

• Space-based preferences: The above scenarios relate
to aggregating time-based preferences. There are, how-
ever, similar scenarios that involve aggregating space-

1In this context, we mention cryptoeconomical situations involv-
ing time-based bonding curves [Zargham et al., 2020], Conviction
Voting [Emmett, 2019], and Commitment Voting [Berg et al., 2020].
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based preferences. E.g., a group of agents wishing to
jointly decide on a water policy [Perret, 2002].

More abstractly, in such applications as described above,
we are interested in aggregation methods that take continu-
ous, one-dimensional voter preferences and output a continu-
ous, one-dimensional output. To the best of our knowledge,
no solutions are currently available for such social choice set-
tings.2 Thus, motivated by such scenarios—and by the lack
of appropriate aggregation algorithms for their instances—in
this paper we develop a formal model for the aggregation of
continuous preferences in one dimension and suggest several
corresponding aggregation algorithms for such situations.

As our model is novel, we are mainly interested in under-
standing what is possible to compute in our model—i.e., what
realizations of the model and which special cases of it have a
mathematical structure that admits efficient aggregation algo-
rithms. Generally speaking, we observe that, while the model
is computationally intractable in its most generality, it admits
efficient, exact algorithms for certain aggregation functions
and certain restrictions on voter preferences.

In what follows, after reviewing related work (Section 2),
we describe our parameterized formal model (Section 3).
Then, we present our theoretical results (which are formally
summarized in Section 3.2): a proof of the general compu-
tational intractability of the model is described in Section 4;
algorithms for basic aggregation functions are described in
Section 5; and efficient algorithms for linear inputs and out-
put are described in Section 6. We end with a future-facing
discussion.

2 Related Work
Our work has some relation with the relatively-new line
of work on perpetual social choice [Bulteau et al., 2021;
Lackner, 2020; Lackner and Maly, 2021]. However, while
the model of perpetual social choice deals with preferences
that may change between timesteps, it is nevertheless a dis-
crete model of preferences and aggregation. (Note that there
is also work on perpetual fair division [Igarashi et al., 2024].)

Another related work is that of Lodi et al. [2022] who
consider a time-based model of decision making; while their
model (and focus) is of a somewhat continuous flavour, it is
significantly different than ours, in particular by their model
of individual utilities. We also mention the work of Bred-
ereck et al. [2022] regarding a sequence of committee elec-
tions that does not directly fit within the framework of per-
petual social choice but is of a somewhat similar style of a
repeated, discrete decision making flavor.

A different line of work within social choice that relates
to our work considers settings that have some continuous in-
gredients. For example, some papers consider a model of
divisible participatory budgeting [Freeman et al., 2021] (also
referred to as portioning [Airiau et al., 2023]), in which the

2Indeed, models developed by political economists, such as the
spatial model of elections [Enelow and Hinich, 1984] concentrate
on continuous preferences, however differ in that we concentrate
on continuous functions as modeling both voter preferences and the
output of the aggregation process.

aggregated output is a division of a joint budget (usually rep-
resented pictorially as a pie chart). Another example include
probabilistic social choice [Brandt, 2017], in particular aggre-
gation methods that are randomized and thus can be viewed
as outputing a probability distribution that may be continu-
ous. Yet a different flavor of continuity in social choice cor-
responds to the line of work on so-called society graphs: here,
the electorate is treated as a continuous entity [Faliszewski et
al., 2022; Gonen et al., 2023].

Somehow farther away is the vast literature on economic
forecasting [Elliott and Timmermann, 2013]. In a way, our
work can be applied on top of methods of traditional forecast-
ing in that we offer a principled way of aggregating different
forecasters. Note, however, that in our settings the ground
truth (i.e., an ultimately perfect prediction) is not always the
goal, as we concentrate on the collaborative aspects that relate
to representation and equality in the decision-making mech-
anisms (as such, situations that have some subjective aspects
perhaps fit better to our model). In this context, our work also
has a similar structure to work on ensemble learning [Dong et
al., 2020] in which several machine learning models are ag-
gregated to create one, hopefully better, model. Here, again,
we differ also as we concentrate on a social choice perspec-
tive over such aggregation—indeed, the different q-norms we
use correspond to a continuum of normative fairness guaran-
tees, ranging from a utilitarian extreme (with q = 1) to an
egalitarian extreme (with q = ∞). Another scientific field
that relates to our work is decision theory [DeGroot, 2004] in
which (sometimes continuous) values are to be decided in an
uncertain environment.

3 Formal Model
We describe our general model. Our model consists of a
continuous time axis T ; we normalize the time axis so that
T = [0, 1], and we use t ∈ T (i.e., 0 ≤ t ≤ 1) to de-
note points in time. We consider a decision space S = [0, 1]
(corresponding to selecting a value between 0 and 1). By
V = {v1, . . . , vn} we denote a set of voters, where each voter
vi provides her ideal point for each point in time: formally,
v ∈ V is a continuous function v : T → S where v(t) is
the ideal point of v at time t. A solution W : T → S is a
continuous function as well.
Example 1. Consider V = {v1, v2, v3} with v1(t) = 0.5,
v2(t) = 0.75, and v3(t) = t. For such voter preferences, a
solution W may be, e.g., W (t) = 0.5.

Given voter preferences as above, we define a general
framework for corresponding objective functions for our ag-
gregation methods to pursue. First, we define the cost of a
solution for a voter in a certain timepoint; then, the cost of
a solution for a voter; and, then, the cost of a solution to the
voter community (which we aim at minimizing):

• We define a measure on the decision space to define the
timepoint-cost of voter v at time t with respect to some
solution W , as:

cost(v, t,W ) = |v(t)−W (t)| .

• Based on the values of the timepoint-cost functions that
we get for each t ∈ T , we define an (aggregated)
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cost function for a voter v with respect to some solu-
tion W : cost(v,W ). We use several specific functions
as cost(v,W ); in particular, Lp norms—the continuous
counterpart of p-norms, parameterized by p ∈ [1,∞]:

costp(v,W ) =

(∫
T

costp(v, t,W )dt

) 1
p

.

In particular, cost∞(v,W ) = maxt∈T cost(v, t,W ).
• Based on these (aggregated) cost values for each voter
v ∈ V , we define a total cost function cost(W ) (for
V ) that we wish to minimize. We use several specific
functions as cost(W ); in particular, q-norms (over the
voters), parameterized by q ∈ [1,∞]:

costq(W ) =

(∑
v∈V

costq(v,W )

) 1
q

.

In particular, cost∞(W ) = maxv∈V cost(v,W ).
When p and q are clear by the context, we shorten the no-

tation and use cost(W ) to denote the cost of the solution W .
Example 2. Let V and W be the same voter set and possible
solution as in Example 1 and consider the following:

• For p = 1 and q = 1 we have cost(W ) =
cost1(v1,W ) + cost1(v2,W ) + cost1(v3,W ) = 0 +
0.25 + 0.25 = 0.5.

• For p = 1 and q = ∞ we have cost(W ) =
max(cost1(v1,W ), cost1(v2,W ), cost1(v3,W )) =
max(0, 0.25, 0.25) = 0.25.

• For p = ∞ and q = 1 we have cost(W ) =
cost∞(v1,W )+ cost∞(v2,W )+ cost∞(v3,W ) = 0+
0.25 + 0.5 = 0.75.

• For p = ∞ and q = ∞ we have cost(W ) =
max(cost∞(v1,W ), cost∞(v2,W ), cost∞(v3,W )) =
max(0, 0.25, 0.5) = 0.5.

Note that, for mathematical clarity, we have chosen an
optimization-oriented exposition (in which the aggregation
goal is to minimize some norms). Indeed, an equivalent ex-
position may use axiomatic properties—defining that an ag-
gregation method is deemed “fair” if it satisfies the axiom of
maximizing some norms. In particular the continuum of val-
ues for the q-norms corresponds to the normative tradeoff be-
tween the utilitarian extreme (with q = 1) and the egalitarian
extreme (with q = ∞).

3.1 Notation
Let C : T → S denotes a class of all continuous functions.
By L : T → S, we define a class of linear functions. For a
natural number n we use [n] = {1, 2, . . . , n}.

Our CONTINUOUS VOTING model has four parameters:
1. the input functions’ type: Tinput ⊆ C,
2. the output functions’ type: Toutput ⊆ C,
3. the parameter p of the Lp norm that defines the aggrega-

tion of the timepoint-cost of a voter to its cost. We refer
to this Lp as the time-aggregation method; and,

4. the parameter q of the q-norm that defines the objective
function we wish to minimize. We refer to this q-norm
as the voter-aggregation method.

Accordingly, for specific values of Tinput, Toutput, p, and
q, we write (Tinput, Toutput, p, q)-CV to denote the corre-
sponding computational problem, i.e., the problem of opti-
mally aggregating input preferences from Tinput into a solu-
tion in Toutput where the minimization is over Lp norm time-
aggregation and q-norm voter-aggregation. We note that de-
pending on the specific values of Tinput (resp. Toutput) an
input (resp. output) may be defined as an oracle (e.g., in the
case of general continuous functions) or by numerical values
(e.g., a linear function may be defined by two numerical val-
ues). In this paper, the use of these approaches is clear from
the context.

3.2 Summary of the Results
Throughout the paper we study the computational complexity
of identifying optimal solutions for the different realizations
of our formal model. These are our main results:

• General intractability: We establish, in Theorem 1, the
computational intractability of our problem. Indeed, that
is not surprising, albeit crucial as a starting point.

• General continuous functions: We then consider gen-
eral continuous functions; in Theorem 2, we show that:

– For any Tinput ⊆ C, (Tinput, C, 1, 1)-CV is
polynomial-time solvable; i.e., for any input type
and output type, as long as we use an L1 time-
aggregation function and summing voters’ costs,
we can provide an optimal solution oracle in poly-
nomial time (and using at most one oracle access to
every input function);

– and, for any Tinput ⊆ C, (Tinput, C,∞,∞)-CV
is polynomial-time solvable; i.e., similarly to the
above, albeit with L∞ time-aggregation function
and taking maximum over voters’ costs.

• Linear functions: We then go on to consider linear
functions; we show that:

– (L,L,∞, q)-CV is ϵ-approximable in polynomial
time (Theorem 3);

– (L,L,∞,∞)-CV is polynomial time solvable
(Theorem 4);

– (L,L,∞, 1)-CV is polynomial time solvable (The-
orem 5); and

– (L,L, 1, q)-CV is ϵ-approximable in polynomial
time (Theorem 7).

Indeed, constraining the input and output functions may
be a too-strong of a restriction for many of the applications
of our model (recall the applications described in Section 1).
Nevertheless, we wish to note that:

• scientifically, as we concentrate on the basic question of
what is feasible to compute in our model, starting from
certain restrictions is natural;

• mathematically, as the results of Section 6 demonstrate,
even the linear case is highly challenging to analyze;
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• algorithmically, using the positive algorithmic results for
linear inputs may be a step towards the design of effi-
cient algorithms for more involved inputs such as, e.g.,
piecewise linear functions. They can reasonably approx-
imate general continuous functions, and thus are closer
to the applications described in Section 1. It is, neverthe-
less, not trivial to get a reasonable approximation guar-
antee in general, as the loss on approximation depends
both on the number of intervals as well as the volatility
of the original functions over these intervals;

• practically, the results of Section 5 show that, for ba-
sic aggregation functions, also general continuous func-
tions (which correspond to the applications described
in Section 1) admit efficient aggregation. In particu-
lar, we show, using quite elegant results, that for p =
q = 1 (which corresponds to utilitarian aggregation over
“pragmatic” voters whose satisfaction is their average
satisfaction over time) and for p = q = ∞ (which
corresponds to egalitarian aggregation over “pessimstic”
voters whose satisfaction is their worst satisfaction over
time) efficient aggregation is possible.

4 General Intractability
As expected, our model is generally computationally in-
tractable. Below, we show that already a specific model real-
ization is NP-hard.

In particular, let Fz ⊆ C be a family of continuous func-
tions that are divisible into z equal intervals in time (each
interval of length 1/z) such that, in each interval, the func-
tion is either constant 0 or constant 1. Therefore, every func-
tion from Fz is represented by z bits. Continuity is ob-
tained by defining f(i/z) = 0.5 for every f ∈ Fz and
i ∈ {0, 1, . . . z} and connecting the intervals using two linear
segments (of gradients z3 and −z3). Formally, we connect
points (p−i , f(p

−
i )) and (p+i , f(p

+
i )) via a point (i/z, 0.5),

where p−i = i/z − 0.5/z3 and p+i = i/z + 0.5/z3.
Theorem 1. (Fz,Fz, 1,∞)-CV is NP-hard.

We prove NP-hardness of (Fz,Fz, 1,∞)-CV by consider-
ing its decision variant where in the input we are additionally
given a number r ∈ R≥0. The question to decide is whether
the input (Fz,Fz, 1,∞)-CV instance has an objective value
smaller or equal to r. We construct a polynomial-time re-
duction from the CLOSEST STRING problem, which is NP-
hard even on the binary alphabet [Frances and Litman, 1997;
Bulteau et al., 2014]. For space constraints, the proof is de-
ferred to the full version of the paper.

5 Basic Cases
We observe that for cases when p = q = 1 or p = q =
∞, if an output function is not restricted, i.e., it can be any
continuous function, then we can provide an optimal solution
oracle in polynomial time. Note that this holds for every class
of input functions.
Theorem 2. For every Tinput ⊆ C, we can provide oracles
for (Tinput, C, 1, 1)-CV and (Tinput, C,∞,∞)-CV in poly-
nomial time and using at most one oracle access to every in-
put function.

Proof. We describe the solution for these two cases sepa-
rately.

The case of (Tinput, C, 1, 1)-CV: for this case, a solu-
tion W is, intuitively, the median of votes at time t. In
the case of even number of voters, we interpolate between
the two middle votes. Formally, for t ∈ T , we order
{v1(t), v2(t), . . . , vn(t)} in a non-decreasing way (this re-
quires one oracle access to every input function). We denote
this ordered sequence as Vt. We define an optimal solution
W as follows:

W (t) =

{
Vt

(
n+1
2

)
n is odd,

1
2

(
Vt

(
n
2

)
+ Vt

(
n
2 + 1

) )
n is even.

The case of (Tinput, C,∞,∞)-CV: for this case, an opti-
mal solution W is the mid-range of an interval spanned be-
tween a minimum and a maximum vote at time t. Formally:

W (t) =
1

2

(
max
v∈V

v(t)−min
v∈V

v(t)

)
.

Example 3. Consider the setting of Example 1. Then, fol-
lowing the algorithms described in Theorem 2 we have that:

• For p = q = 1, an optimal solution is:

W (t) =


1/2 for t ∈ [0, 0.5),

t for t ∈ [0.5, 0.75),

3/4 for t ∈ [0.75, 1).

• For p = q = ∞, an optimal solution is:

W (t) =


t/2 + 3/8 for t ∈ [0, 0.5),

5/8 for t ∈ [0.5, 0.75),

t/2 + 1/4 for t ∈ [0.75, 1).

6 Linear Inputs and a Linear Output
In this section, we assume that voters provide linear func-
tions, and our goal is to obtain a linear function. Formally,
for voter vi, i ∈ [n], we let the function vi : [0, 1] → R be
defined by vi(t) := ait + bi, for ai, bi ∈ R. The solution
W : [0, 1] → R is defined by W (t) := at+ b, for a, b ∈ R.

We first consider the case with p = ∞ and then the case
with p = 1. Below we show that we can solve the case of
p = ∞, for any q, to any ϵ-accuracy, in polynomial time. We
also show that in two special cases, we can solve this case
exactly in polynomial time.

We need some structural lemmas first. In particular, we
start with a lemma, which shows that the cost function of a
single voter i, denoted by cost(vi,W ), is a piecewise linear
convex function, i.e., it can be written as the maximum of a
finite number of affine linear functions.

Lemma 1. In the (L,L,∞, q) case, we have

cost(vi,W ) = max{b− bi, −b+ bi, (a+ b)− (ai + bi),

−(a+ b) + (ai + bi)}.
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Proof. By definition, cost(vi,W ) is the following function
of (a, b) ∈ R2:

cost(vi,W ) := max
t∈[0,1]

{|(at+ b)− (ait+ bi)|}.

Since the function (at+ b)− (ait+ bi) is linear, we can write
cost(vi,W ) in the form

cost(vi,W ) = max
t∈{0,1}

{|(at+ b)− (ait+ bi)|}

= max{|b− bi|, |(a+ b)− (ai + bi)|}
= max{b− bi, −b+ bi,

(a+ b)− (ai + bi), −(a+ b) + (ai + bi)}.

This finishes the proof.

The next lemma shows that, whenever the functions
cost(vi,W ) are convex, then so is our objective function,
which is the function from R2 to R defined by

cost(W ) :=

(
n∑

i=1

cost(vi,W )p

) 1
p

.

Lemma 2. Assume that the functions cost(vi,W ), for i ∈
{1, 2, . . . , n}, are convex. Then, the function

cost(W ) :=

(
n∑

i=1

cost(vi,W )p

) 1
p

is convex, for every p ≥ 1.

Proof. Consider the function h : Rn → R defined by

h(x) :=

(
n∑

i=1

max{xi, 0}p
) 1

p

.

This function is convex and nondecreasing. Since the func-
tions cost(vi,W ), for i ∈ [n], are convex, we conclude that

h(cost(v1,W ), . . . , cost(vn,W ))

is a convex function of W (see “Vector composition” in
Section 3.2.4 in [Boyd and Vandenberghe, 2014]). Since
cost(vi,W ) is nonnegative for each i ∈ [n], we have that

cost(W ) = h(cost(v1,W ), . . . , cost(vn,W )) ,

so our conclusion is that cost(W ) is convex.

We are now ready to prove the main results of this section.

Theorem 3. The (L,L,∞, q) case can be solved to any ϵ-
accuracy in polynomial time.

Proof. Our problem can then be cast as the following opti-
mization problem:

min cost(W )

s.t. 0 ≤ b ≤ 1

0 ≤ a+ b ≤ 1 ,

where cost(W ) is the function from R2 to R defined by

cost(W ) :=

(
n∑

i=1

cost(vi,W )p

) 1
p

.

From Lemma 1, we know that cost(vi,W ) is a piecewise lin-
ear convex function, for every i ∈ [n]. From Lemma 2, we
know that cost(W ) is convex as well, for every p ≥ 1.

In this optimization problem, we have two variables, a and
b, the objective function cost(W ) is convex, and the feasible
region is a quadrilateral sandwiched between balls with center
(0, 0.5) and radii 0.3 and 1.2. Theorem 4.3.13 in [Grötschel
et al., 1988] implies that this optimization problem can be
solved to any ϵ-accuracy in polynomial time, and we refer to
the statement of this result for details.

Next, we show that two important special cases can be
solved exactly in polynomial time via linear programming.
Theorem 4. The (L,L,∞,∞) case is solvable in polyno-
mial time.

Proof. Our problem can then be cast as the following opti-
mization problem:

min cost(W )

s.t. 0 ≤ b ≤ 1

0 ≤ a+ b ≤ 1 ,

where cost(W ) is the function from R2 to R defined by

cost(W ) := max
i∈[n]

{cost(vi,W )} .

From Lemma 1, we obtain that cost(W ) can be written as the
maximum of the 4n affine linear functions b − bi, −b + bi,
(a + b) − (ai + bi), −(a + b) + (ai + bi), for i ∈ [n]. The
above optimization problem can then be cast as the following
linear programming problem (see Section 1.3 in [Bertsimas
and Tsitsiklis, 1997]):

min z

s.t. z ≥ b− bi ∀i ∈ [n]

z ≥ −b+ bi ∀i ∈ [n]

z ≥ (a+ b)− (ai + bi) ∀i ∈ [n]

z ≥ −(a+ b) + (ai + bi) ∀i ∈ [n]

0 ≤ b ≤ 1

0 ≤ a+ b ≤ 1 .

It is well-known that linear programming problems can be
solved in polynomial time via the ellipsoid algorithm or inte-
rior point methods [Bertsimas and Tsitsiklis, 1997].

Theorem 5. The (L,L,∞, 1) case is solvable in polynomial
time.

For space constraints, the proof is deferred to the full ver-
sion of the paper. We go on to consider p = 1. Below, we
show that we can solve the case with p = 1, for any q, to any
ϵ-accuracy, in polynomial time.

To prove this result, we use Theorem 5.5 in [Bauschke et
al., 2016]. Thus, we now state this result and introduce the
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required notation3. In the following, X is an Euclidean space
and I is a nonempty finite set.
Definition 1 (Compatible system of sets [Bauschke et al.,
2016]). Let A := {Ai}i∈I be a system of convex subsets
of X , and let A :=

⋃
i∈I Ai. We say that A is a compatible

system of sets if
i ∈ I
j ∈ I
i ̸= j

}
⇒ clAi ∩ clAj ∩ riA = Ai ∩Aj ∩ riA,

(1)

where cl is the closure and ri is the relative interior of a set.
Let f : X → R ∪ {+∞}. The domain of f is Df := {x ∈

X | f(x) < +∞}. f is said to be proper if Df ̸= ∅. In
the following, F := {fi}i∈I is a system of proper convex
functions from X to R ∪ {+∞} and f := mini∈I fi is the
piecewise-defined function associated with F . For x ∈ X ,
I(x) := {i ∈ I | x ∈ Dfi} is the active index set function.
Definition 2 (Compatible system of functions [Bauschke et
al., 2016]). We say that F is a compatible system of functions
if, for every i ∈ I , fi|Dfi

is continuous and

i ∈ I
j ∈ I
i ̸= j

Dfi ∩Dfj ̸= ∅

⇒ fi|Dfi
∩Dfj

≡ fj |Dfi
∩Dfj

. (2)

Theorem 6 (Theorem 5.5 in [Bauschke et al., 2016]). As-
sume that F is a compatible system of functions, that each fi
is differentiable on intDfi ̸= ∅, and that the following hold:
(a) Df =

⋃
i∈I Dfi is convex and at least 2-dimensional.

(b) {Dfi}i∈I is a compatible system of sets.
(c) There exists a finite subset E of X such that

x ∈ (intDf ) \E
{i, j} ⊆ I(x)

}
⇒ lim

z→x
z∈intDfi

∇fi(z)

= lim
z→x

z∈intDfj

∇fj(z) exists.

Then f is convex.
Theorem 7. The (L,L, 1, q) case can be solved to any ϵ-
accuracy in polynomial time.

Proof. First, we obtain the cost function of a single voter i,
denoted by cost(vi,W ). From simple geometric arguments,
we write cost(vi,W ) as a function of (a, b) ∈ R2 as follows:

cost(vi,W ) =


quad(a, b) if b < bi, a+ b > ai + bi
lin(a, b) if b < bi, a+ b ≤ ai + bi
− quad(a, b) if b ≥ bi, a+ b < ai + bi
− lin(a, b) if b ≥ bi, a+ b ≥ ai + bi,

where

quad(a, b) =
(b− bi)

2 + (a+ b− ai − bi)
2

2(a− ai)
,

lin(a, b) = (−a− 2b+ ai + 2bi)/2.
3For further background, we refer the reader to [Bauschke and

Combettes, 2011; Mordukhovich and Nam, 2013].

Claim 1. The function cost(vi,W ) is a convex function from
R2 to R.

Proof of Claim. To prove this claim, we use Theorem 6
(Theorem 5.5 in [Bauschke et al., 2016]). Let X := R2 and
I := {1, 2, 3, 4}. We define the following four functions fi,
for i ∈ I:

f1(a, b) :=


0 if (a, b) = (ai, bi)

quad(a, b) if (a, b) ̸= (ai, bi), b ≤ bi,

a+ b ≥ ai + bi
+∞ otherwise,

f2(a, b) :=

{
lin(a, b) if b ≤ bi, a+ b ≤ ai + bi
+∞ otherwise,

f3(a, b) :=


0 if (a, b) = (ai, bi)

− quad(a, b) if (a, b) ̸= (ai, bi), b ≥ bi,

a+ b ≤ ai + bi
+∞ otherwise,

f4(a, b) :=

{
− lin(a, b) if b ≥ bi, a+ b ≥ ai + bi
+∞ otherwise.

The domains of the above four functions Dfi , for i ∈ I , are:

Df1 : = {x ∈ R2 | f1(x) < +∞}
= {x ∈ R2 | b ≤ bi, a+ b ≥ ai + bi},

Df2 : = {x ∈ R2 | f2(x) < +∞}
= {x ∈ R2 | b ≤ bi, a+ b ≤ ai + bi},

Df3 : = {x ∈ R2 | f3(x) < +∞}
= {x ∈ R2 | b ≥ bi, a+ b ≤ ai + bi},

Df4 : = {x ∈ R2 | f4(x) < +∞}
= {x ∈ R2 | b ≥ bi, a+ b ≥ ai + bi}.

We now check that F := {fi}i∈I is a compatible system
of functions. First, for every i ∈ I , fi|Dfi

is continuous.
Thus, we only need to check that condition (2) holds. For
(i, j) ∈ {(1, 3), (2, 4)}, we have Dfi ∩Dfj = {(ai, bi)} and

fi(ai, bi) = fj(ai, bi) = 0.

For (i, j) = (1, 2), we have Df1 ∩ Df2 = {x ∈ R2 | b ≤
bi, a+ b = ai + bi}, and for every (a, b) in this set,

f1(a, b) = f2(a, b) = (bi − b)/2.

For (i, j) = (2, 3), we have Df2 ∩ Df3 = {x ∈ R2 | b =
bi, a+ b ≤ ai + bi}, and for every (a, b) in this set,

f2(a, b) = f3(a, b) = (ai − a)/2.

For (i, j) = (3, 4), we have Df3 ∩ Df4 = {x ∈ R2 | b ≥
bi, a+ b = ai + bi}, and for every (a, b) in this set,

f3(a, b) = f4(a, b) = (b− bi)/2.

For (i, j) = (4, 1), we have Df4 ∩ Df1 = {x ∈ R2 | b =
bi, a+ b ≥ ai + bi}, and for every (a, b) in this set,

f4(a, b) = f1(a, b) = (a− ai)/2.
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This completes the proof that F := {fi}i∈I is a compatible
system of functions.

Next, we see that each fi is indeed differentiable on
intDfi . In fact, we have

∇ quad(a, b) =(
− (b− bi)

2 + (a− ai + b− bi)
2

2(a− ai)2
+

a− ai + b− bi
a− ai

,
2(b− bi) + 2(a− ai + b− bi)

2(a− ai)

)
and

∇ lin(a, b) = (−0.5,−1) .

We have Df =
⋃

i∈I Dfi = R2, which is convex and 2-
dimensional. Thus, condition (a) in the statement of Theo-
rem 6 is satisfied.

Next, we observe that condition (b) in the statement of The-
orem 6 is satisfied, i.e., that {Dfi}i∈I is a compatible system
of sets. This is simply because each Dfi is closed and convex.

Consider now condition (c) in the statement of Theorem 6
with E := {(ai, bi)}. Due to this definition of E, it suffices
to check the condition for the following pairs (i, j): (1, 2),
(2, 3), (3, 4), (4, 1). For (i, j) = (1, 2), for every (ā, b̄) ∈
{x ∈ R2 | b < bi, a+ b = ai + bi}, we have

lim
(a,b)→(ā,b̄)
(a,b)∈intDf1

∇f1(a, b) = lim
(a,b)→(ā,b̄)
(a,b)∈intDf2

∇f2(a, b) = (−0.5,−1) .

For (i, j) = (2, 3), for every (ā, b̄) ∈ {x ∈ R2 | b = bi, a +
b < ai + bi}, we have

lim
(a,b)→(ā,b̄)
(a,b)∈intDf2

∇f2(a, b) = lim
(a,b)→(ā,b̄)
(a,b)∈intDf3

∇f3(a, b) = (−0.5,−1) .

For (i, j) = (3, 4), for every (ā, b̄) ∈ {x ∈ R2 | b > bi, a +
b = ai + bi}, we have

lim
(a,b)→(ā,b̄)
(a,b)∈intDf3

∇f3(a, b) = lim
(a,b)→(ā,b̄)
(a,b)∈intDf4

∇f4(a, b) = (0.5, 1) .

For (i, j) = (4, 1), for every (ā, b̄) ∈ {x ∈ R2 | b = bi, a +
b > ai + bi}, we have

lim
(a,b)→(ā,b̄)
(a,b)∈intDf4

∇f4(a, b) = lim
(a,b)→(ā,b̄)
(a,b)∈intDf1

∇f1(a, b) = (0.5, 1) .

This completes the proof that condition (c) in the statement
of Theorem 6 is satisfied.

We can now apply Theorem 6 and obtain that the function
f := mini∈I fi is convex. This concludes the proof of the
claim because we have f ≡ cost(vi,W ). ⋄

Our problem can then be cast as the following optimization
problem:

min cost(W )

s.t. 0 ≤ b ≤ 1

0 ≤ a+ b ≤ 1,

where cost(W ) is the function from R2 to R defined by

cost(W ) :=

(
n∑

i=1

cost(vi,W )p

) 1
p

.

From Claim 1, we know that cost(vi,W ) is convex, for every
i ∈ {1, 2, . . . , n}. From Lemma 2, we know that cost(W ) is
convex as well, for every p ≥ 1.

In this optimization problem, we have two variables, a and
b, the objective function cost(W ) is convex, and the feasible
region is a quadrilateral sandwiched between balls with center
(0, 0.5) and radii 0.3 and 1.2. Theorem 4.3.13 in [Grötschel
et al., 1988] implies that this optimization problem can be
solved to any ϵ-accuracy in polynomial time, and we refer to
the statement of this result for details.

7 Discussion
We have proposed a model of social choice that evolves
around fair aggregation of continuous preferences in one di-
mension. We have discussed several of its usecases and posi-
tioned it within the literature on computational social choice.

By employing techniques from continuous optimiza-
tion, we were able to show that—even though the corre-
sponding optimization problem is generally computationally
intractable—there are special cases for which efficient exact
and approximate algorithms exist.

Here we discuss several avenues for future research:

• Proportionality: Here we considered one form of pro-
portionality w.r.t. different values of the Lp norms we
use. Considering other forms of proportionality, includ-
ing formulating corresponding axiomatic properties is a
natural future research direction. E.g., a possible adapta-
tion of Proportional Justified Representation [Fernández
et al., 2017] may be that each group of voters that is
sufficiently-large and for which the average pairwise dis-
tance is not too large shall have some upper-bounded av-
erage distance to the aggregated output.

• Stability: In some applications it is natural to aim at
some form of stability with respect to the intensity and
frequency of the changes in the aggregated output. In
the context of our model, we may thus require that the
derivative of the aggregated output is upper bounded by
some predefined value. Studying such domain restric-
tions for our model is thus of interest.

• Model variations: Other possibilities for modeling our
setting may be with different elicitation (e.g., letting
voters not only specify their ideal point for each point
in time, but more involved preferences); different util-
ity functions (e.g., corresponding to arbitrary metric on
[0, 1]); and different aggregated output (e.g., returning
several functions and not only one, i.e., a committee of
functions). Furthermore, a corresponding online model
(in which voter preferences change as a result of the
partial aggregated values) is an interesting and well-
motivated model to study.
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