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Abstract
Spiking Neural Networks (SNNs) mimic the
information-processing mechanisms of the human
brain and are highly energy-efficient, making them
well-suited for low-power edge devices. However,
the pursuit of accuracy in current studies leads to
large, long-timestep SNNs, conflicting with the re-
source constraints of these devices. In order to
design lightweight and efficient SNNs, we pro-
pose a new approach named LitE-SNN that in-
corporates both spatial and temporal compression
into the automated network design process. Spa-
tially, we present a novel Compressive Convolution
block (CompConv) to expand the search space to
support pruning and mixed-precision quantization.
Temporally, we are the first to propose a compres-
sive timestep search to identify the optimal num-
ber of timesteps under specific computation cost
constraints. Finally, we formulate a joint optimiza-
tion to simultaneously learn the architecture param-
eters and spatial-temporal compression strategies to
achieve high performance while minimizing mem-
ory and computation costs. Experimental results
on CIFAR-10, CIFAR-100, and Google Speech
Command datasets demonstrate our proposed LitE-
SNNs can achieve competitive or even higher ac-
curacy with remarkably smaller model sizes and
fewer computation costs.

1 Introduction
Spiking Neural Networks (SNNs) have gained great atten-
tion in recent years [Liu et al., 2020; Zhang et al., 2021;
Hu et al., 2021; Hu et al., 2023; Wang et al., 2023; Wei
et al., 2024] due to their ability to mimic the information-
processing mechanisms of the human brain. They use the
timing of the signals (spikes) to communicate between neu-
ronal units. A unit in SNNs is only active when it receives or
emits a spike, enabling event-driven processing and high en-
ergy efficiency. The received spikes are weight-accumulated

∗Corresponding author

into the membrane potential using only accumulate (AC) op-
erations, which consume much lower energy than the stan-
dard energy-intensive multiply-accumulate (MAC) strategy
in Artificial Neural Networks (ANNs) [Farabet et al., 2012].
The processing mechanism of SNN can be realized in neuro-
morphic hardware, such as Truenorth [Merolla et al., 2014],
Loihi [Davies et al., 2018], Darwin [Ma et al., 2024], etc.

The energy efficiency advantages of SNNs make them
well-suited for deployment on low-power edge devices.
These devices typically have significant resource constraints,
such as limited memory capacity and computing resources.
Yet, achieving high accuracy with SNN often requires large
networks and extended processing timesteps, as they provide
superior feature learning and more nuanced data representa-
tion. However, this approach increases the demands on mem-
ory and computation, which poses challenges for deployment
on resource-constrained devices and undermines the potential
advantages of SNNs.

Neural architecture search (NAS) aims to automate the
neural network design under specific resource constraints.
Recent studies have applied NAS to SNN to enable flexible
and effective network design and have demonstrated better
performance compared to manually designed SNN architec-
tures. However, most of these works do not consider re-
source constraints in the search process [Na et al., 2022;
Che et al., 2022] and only aim at improving the accuracy.
While Kim et al. consider the number of spikes, thereby
reducing communication overhead [Kim et al., 2022a], this
metric alone is insufficient for a comprehensive evaluation of
resource consumption. To better evaluate resource utilization,
we use model size for assessing memory footprint, which is
also related to memory access energy, and computation com-
plexity for measuring computational cost. These metrics of-
fer more direct and comprehensive indicators of memory and
computing resource demands [Zhang et al., 2016].

To design a lightweight and efficient SNN characterized
by small model size and low computation complexity as well
as high performance, we incorporate compression within the
NAS framework. Existing model compression techniques, in-
cluding pruning and quantization, reduce the number of pa-
rameters and the number of bits used to represent each pa-
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rameter, respectively, benefiting memory footprint, power ef-
ficiency and computational complexity. However, existing
SNN pruning and quantization works are all based on fixed
architectures, leaving open the question of how to integrate
them into evolving SNN architectures in search process. In
addition to spatial domain, SNNs uniquely feature a temporal
domain that decides time iterations (also known as timesteps).
By compressing these iterations, we can directly reduce com-
putational operations and save energy. As current SNN-based
NAS methods all originate from ANNs and lack temporal
considerations, the potential of implementing the compres-
sive timesteps in NAS has not yet been exploited.

In this paper, we introduce a novel approach named LitE-
SNN that incorporates both spatial and temporal compres-
sion into the automated network design process, aimed at
designing SNNs with compact models and lower computa-
tional complexity. Spatially, we propose a Compressive Con-
volution block (CompConv) that expands the search space to
incorporate pruning and quantization. Considering the vari-
able synaptic formats in neuromorphic hardware, CompConv
supports mixed-precision quantization to make the network
design more flexible and efficient. Meanwhile, we utilize
the shared weights and shared pruning masks to reduce the
computation introduced by mixed-precision. Temporally, we
propose a compressive timestep search that is tailored for the
temporal domain of SNNs. Given the computational cost
constraint, the model can find the optimal timesteps in ac-
cordance with the architecture and spatial compression. Fi-
nally, we formulate a multi-objective joint optimization that
simultaneously determines the network architecture and com-
pression strategies. This joint optimization ensures a cohe-
sive optimization of these factors, avoiding local optimal and
suboptimal global solutions resulting from multiple single-
objective optimizations. We conduct the experiments on two
image datasets CIFAR-10, CIFAR-100 and a speech dataset
Google Speech Command. Experimental results show that
our proposed LitE-SNNs achieve competitive accuracy with
remarkably smaller model sizes and fewer computation costs.
Furthermore, we validate the effectiveness of our LitE-SNNs
in balancing accuracy with resource cost and the superiority
of our joint optimization. Finally, we conduct energy analysis
to further confirm the energy efficiency of LitE-SNNs.

2 Related Work
This section reviews current developments in neural archi-
tecture search (NAS) and model compression. NAS aims to
automatically design neural architectures that achieve opti-
mal performance using limited resources. Model compres-
sion aims to achieve lightweight neural networks with com-
parable performance, including pruning and quantization, etc.

2.1 Neural Architecture Search
In ANNs, NAS networks have surpassed manually designed
architectures on many tasks such as image classification [Liu
et al., 2019; Cai et al., 2019]. In the SNN domain, [Na et
al., 2022] presented a spike-aware NAS framework involv-
ing direct supernet training and an evolutionary search algo-
rithm with spike-aware fitness. However, this approach is

confined to exploring a few predefined blocks, limiting the
potential to discover optimal designs beyond them. [Kim et
al., 2022a] selected the architecture that can represent diverse
spike activation patterns across different data samples. [Che
et al., 2022] proposed a spike-based differentiable hierarchi-
cal search based on the DARTS [Liu et al., 2019] framework.
The SNNs designed by these two works are more flexible and
have better accuracy, however, their focus is solely on the ac-
curacy aspect, neglecting critical factors like resource costs.
Moreover, they do not consider the time domain during the
search process, which is an important aspect of SNN.

2.2 Model Compression
Pruning involves removing unnecessary connections to re-
duce the number of parameters and computational needs. In
ANNs, many existing studies employed important scores-
based pruning [Sehwag et al., 2020], which involves train-
ing importance scores for each weight and masking less im-
portant weights. In SNNs, [Chen et al., 2021] proposed a
gradient-based rewiring method to learn the connectivity and
weight parameters of SNNs. [Chen et al., 2022] addressed
the pruning of deep SNNs by modeling the state transition
of dendritic spine. [Kim et al., 2022b] introduced the lottery
ticket hypothesis-based pruning for sparse deep SNNs.

Quantization reduces the number of bits used to represent
each parameter to reduce the memory footprint and computa-
tion complexity. Some ANN-based works [Cai et al., 2017;
Cai and Vasconcelos, 2020] set the quantizer based on the
weight and activation distribution. [Rueckauer et al., 2017]
converted the binary ANN to obtain a binary SNN. [Srini-
vasan and Roy, 2019] used STDP to learn the one-bit weight
synapses. However, these SNN methods apply uniform bit-
width, neglecting the different sensitivities of different filters.
[Lui and Neftci, 2021] employed a layer-wise Hessian trace
analysis for mixed-precision quantization, allocating the bit-
width per layer, but limited to a three-layer shallow network.

There are several works that consider both pruning and
quantization. [Deng et al., 2021] adapted alternating di-
rection method of multipliers (ADMM) optimization with
spatio-temporal backpropagation for SNN pruning and quan-
tization. However, this approach is performed sequentially
and may lead to suboptimal results, e.g., the best network ar-
chitecture for the dense and full-precision model is not neces-
sarily the optimal one after pruning and quantization [Wang
et al., 2020]. [Rathi et al., 2018] presented a joint pruned
and quantized SNN with STDP-based learning, but it is lim-
ited to a fixed and shallow (two layers) structure. Current
SNN research lacks a comprehensive approach that simulta-
neously considers the neural architecture design, pruning and
quantization. Therefore, we need a solution to jointly opti-
mize these aspects. Similar work in ANN needs to train a
large supernet and distill a number of smaller sub-networks,
followed by training the accuracy predictors and evolutionary
search [Wang et al., 2020]. The whole training process takes
100 GPU days on V100 GPU. Considering that SNNs usually
require more training time than ANNs [Kim et al., 2022a], it
is not practical to utilize this approach for SNNs.

In the time domain, [Li et al., 2023] dynamically de-
termines the number of timesteps during inference on an
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input-dependent basis. While this work effectively reduces
timesteps, it is limited to the inference stage and cannot be
optimized together with other training parameters, which also
makes it unsuitable for use in NAS. In this paper, we will
jointly optimize the pruning, mixed-precision quantization,
and timestep compression through the NAS framework.

3 Method
In this section, we first introduce the preliminary knowledge
of spiking neurons and architecture search space, then present
our proposed spatial and temporal compression search, and
finally explain the spatial-temporal joint optimization.

3.1 Preliminary
We choose a widely used spiking neural model Leaky
Integrate-and-Fire (LIF) [Zheng et al., 2021] to describe the
neural behavior, which can be written as:

ut,ni = τdecayu
t−1,n
i (1− yt−1,n

i ) +
∑
j

Wn
i,jy

t,n−1
j (1)

where τdecay denotes the membrane decay constant, Wij is
the synaptic weight between the j-th neuron (or feature map)
and the i-th neuron (or feature map). If the membrane poten-
tial at timestamp t of the neuron in n-th layer ut,n is larger
than the threshold Vth, the output spike yt,ni is set to 1; other-
wise it is set to 0. Our method builds upon the search space
of spikeDHS [Che et al., 2022], which is a spiking-based dif-
ferentiable hierarchical search framework that can find best-
performed architectures for SNNs. The search space consists
of a number of cells and each cell (depicted in Figure 1(a)) is
defined as a repeated and searchable unit with N nodes (de-
picted in Figure 1(b)), {xi}N . Each cell receives input from
two previous cells and forms its output by concatenating all
outputs of its nodes. Each node can be described by:

xj = f(
∑
i<j

oi,j(xi)) (2)

where f is a spiking neuron taking the sum of all operations
as input, o(i,j) is the operation associated with the directed
edge connecting node i and j. During search, each edge is
represented by a weighted average of candidate operations.
The information flow connecting node i and node j becomes:

ō(i,j)(x) =
∑
o∈Oi,j

exp
(
α
(i,j)
o

)∑
o∈Oi,j exp

(
α
(i,j)
o

) · o(x) (3)
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Figure 1: Hierarchical search space. (a) Cell structure search space
with 3 nodes. (b) Within one node, two candidate operations are
summed filtered by a sign function.

where Oi,j denotes the operation space on edge (i, j) and
α
(i,j)
o is the weight of operation o, which is a trainable contin-

uous variable. After search, a discrete architecture is selected
by replacing each mixed operation ō(i,j) with the most likely
operation oi,j that has max

o∈O(i,j)
α
(i,j)
o .

3.2 Compressive Convolution (CompConv)
To design lightweight and efficient SNNs, in this work, we
incorporate compression techniques into the neural archi-
tecture search to take advantage of the efficiency and flex-
ibility of automatic network design. To this end, we pro-
pose a novel compressive convolutional block (CompConv)
to replace the standard convolution (green block in Figure
1) to enable the search of compressive SNNs. Neuromor-
phic hardware like Loihi is capable of supporting sparse
kernels and variable synaptic formats [Davies et al., 2018;
Davies and others, 2021], which inspired us to utilize weight
pruning and mixed-precision quantization for compression.

As shown in Figure 2(a), a naive solution to integrate
mixed-precision quantization with pruning is to organize each
bit-width quantization operation and the corresponding prun-
ing mask into a separate branch and update each branch indi-
vidually, which can be described

W (j)
q = Qj(W

(j)) (4)

e(j)(W ) =W (j)
q ⊙mask(j) (5)

ē(W ) =

len(B)∑
j

exp
(
β(j)

)∑len(B)
j exp

(
β(j)

)e(j)(W ) (6)

Woutput = ē(W ) (7)

whereW (j) represents the weight tensor of j-th branch,Qj is
a quantization function that follows [Cai et al., 2017], which
quantizes the input value by the j-th candidate bitwidth.
mask(j) is a binary matrix where each element indicates
whether the weights have been pruned (assigned a 0) or re-
tained (assigned a 1) of j-th branch. The pruning method
follows the [Sehwag et al., 2020]. W (j)

q and e(j)(W ) repre-
sent the quantized weights and operation of j-th branch re-
spectively. β(j) is the weight of j-th operation and B denotes
the bit-width candidate space. However, this approach signif-
icantly increases the computation, as we need to update the
weights and mask for each individual branch. Additionally, it
has been found in [Cai and Vasconcelos, 2020] that branches
with low β values receive few gradients, potentially leading
to the under-trained of weights and mask.

In contrast, our CompConv provides a more efficient so-
lution by sharing the weights and pruning mask among all
branches within a block. As depicted in Figure 2(b), we first
quantize W with different bit-width in different branches to
get Wq and then perform pruning mask on the weighted av-
erage of Wq . The Equation (4-7) can be rewritten as

W (j)
q = Qj(W ) (8)

e(j)(W ) =W (j)
q (9)
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Figure 2: (a) A naive solution that integrates mixed-quantization with pruning. (b) Our proposed CompConv for a more efficient integration.
(c) Visualization of the distribution of W , ē(W ), and Woutput with pruning rates. (d) Our proposed timestep search solution.

ē(W ) =

len(B)∑
j

exp
(
β(j)

)∑len(B)
j exp

(
β(j)

)e(j)(W ) (10)

Woutput = ē(W )⊙mask (11)
where we remove the W (j) and mask(j) in each branch and
utilize universal shared W and mask instead. This modifi-
cation allows the gradient to be fully applied to the W and
mask, eliminating the possibility of underfitting and simpli-
fying the search space. Overall, our proposed CompConv of-
fers a more efficient solution for achieving compression with
mixed-precision quantization and pruning in the search space
of automatic lightweight SNN designs.

Figure 2(c) illustrates the distributions of W , ē(W ), and
Woutput with pruning. W displays a symmetric, continuous
distribution with a diminishing central peak. ē(W ), quantized
at 2-bit and 4-bit precision, follows a similar discrete pattern.
The pruning rate curve indicates that weights with smaller
absolute values are pruned more for their lower importance,
resulting in Woutput having higher values on the sides and
lower at the center and far sides.

3.3 Compressive Timestep Search
The selection of timesteps in SNNs is crucial, as it influ-
ences the network’s ability to process temporal information.
A longer timestep can improve accuracy but comes with in-
creased computational cost due to the necessity for more time
iterations. Conversely, a shorter timestep may reduce compu-
tational cost but potentially at the expense of temporal detail
and accuracy. Recognizing this, our work focuses on incor-
porating the timestep selection into the search process to au-
tomatically balance computational cost with performance.

To assess the computational operations associated with dif-
ferent timesteps, we follow the convention of the neuromor-
phic computing community to use the total synaptic opera-
tions (SynOps) metric [Wu et al., 2021], defined as:

SynOps = (1− p%)khkwCinCoutHWS (12)
where p is the pruning rate, kh and kw are the kernel height
and width, Cin and Cout the input and output channel sizes,
H and W the height and width of the feature map. S is the
average spike rate, which is originally defined as

S =
T∑
t

s(t) (13)

where T is the total time length, s(t) indicates the average
spike rate per neuron at the t-th timestep. We observe that
the number of timesteps affects the spike rate S and, con-
sequently, the network’s computational cost. As shown in
Figure 2(d), to enable this search, we consider a range of can-
didate timestep counts {1, 2, . . . , T} and modify the Equation
(13) by introducing trainable weights for each timestep count:

S =
T∑
t

(
exp
(
ψ(t)

)∑T
t exp

(
ψ(t)

) t∑
t′

s(t
′)

)
(14)

where ψ(t) is the weight of having t timesteps, exp(ψ(t))∑T
t exp(ψ

(t))

is the relative weight with the total sum equaling 1. For illus-
tration, consider a scenario where the total time length T is
6 with relative weights for each timestep t ∈ {1, 2, 3, 4, 5, 6}
as [0, 0, 0, 0, 0.6, 0.4]. Here, the spike rate S includes the sum
of spike rates for the first 5 timesteps plus 40% from the 6th.
If weights change to [0, 0, 0, 0, 0, 1], S equals the sum across
all timesteps, matching Equation (13). The trained weights
ψ evaluate the impact of timestep selection on network per-
formance. We will introduce how to balance network perfor-
mance against computational cost in Section 3.4

3.4 Loss Function and Joint Optimization
Algorithm

The objective of LitE-SNN is to identify SNNs that are both
lightweight and efficient, achieving high performance while
minimizing memory and computation costs. This can natu-
rally be formulated as a multi-objective optimization prob-
lem. We formulate the following loss function:

Loss = LossCE + λ1LossMEM + λ2LossCOMP (15)

where the coefficients λ1 and λ2 serve as regulariza-
tion parameters that control the trade-off among LossCE ,
LossMEM and LossCOMP . The first term LossCE repre-
sents the cross-entropy (CE) loss, responsible for evaluating
the predictive accuracy of the SNN. Following [Che et al.,
2022], the original definition of LossCE is:

LossCE = CE(T ) = CE

(
1

T

T∑
t=1

O(t), y

)
, (16)
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where O(t) denotes the output of the SNN and y represents
the target label. But asLossCE is also influenced by the num-
ber of timesteps, we rewrite it as:

LossCE =
T∑
t

exp
(
ψ(t)

)∑T
t exp

(
ψ(t)

) · CE(t) (17)

The second term LossMEM quantifies the memory usage of
the network, which is measured by the model size:

LossMEM = bwkhkwCinCout(1− p%) (18)

where bw is the bit-width of the network weights. During
search, the bw is a weighted average of candidate bit-width
and can be calculated as

bw =

len(B)∑
j

exp
(
β(j)

)∑len(B)
j exp

(
β(j)

) · q(j) (19)

where qj denotes the j-th bitwidth candidate. The third term
LossCOMP assesses the computational cost, which is af-
fected not only by the SynOps but also by the operational
precision [Cai and Vasconcelos, 2020]. Therefore, we define
this term as bit-SynOps, reflecting the computational com-
plexity of the model. The corresponding equation is:

LossCOMP = Bit-SynOps = bwSynOps (20)

The joint optimization comprises two steps for each iter-
ation. First, we conduct the first forward pass and update
the weights, which constitute the foundational components
of the network. Then, a second forward pass is conducted us-
ing the updated weights and we simultaneously update β and
mask within our CompConv, as well as the ψ and architec-
ture parameters α. Both two steps apply the loss function in
Equation (15). Our joint optimization ensures cohesive and
efficient optimization, avoiding local optimal and suboptimal
global solutions resulting from multiple single-objective op-
timizations [Wang et al., 2020].

After search, we decode the cell structure (in Figure 1(a))
by retaining the two strongest incoming edges for each node
and select the node operation (in Figure 1(b)) with the
strongest edge, where the strength of edge is determined by
α. The bit-width (in Figure 2(b)) chosen for each cell is de-
coded by the branch with the highest weight β. We also select
the number of timesteps with the highest weight ψ (in Figure
2(d)). During the retraining, we use the auxiliary loss as in
[Che et al., 2022]. The weights and masks are retrained to
adapt to single-branch network. We adopt the surrogate gra-
dient to direct train the SNN and use the Dspike function [Li
et al., 2021] to approximate the derivative of spike activity.

4 Experiments
This section compares our model’s performance and effi-
ciency with current benchmarks and optimization methods
and evaluates the effectiveness of parameters λ1 and λ2.

4.1 Experimental Settings
Datasets. We evaluate our proposed LitE-SNN on two image
datasets: CIFAR-10 [Krizhevsky et al., 2009], CIFAR-100

CIFAR GSC
Layer channel × feature size channel × feature size

stem (CCIFAR)× (32× 32) (CGSC)× (40× 98)

Cell1 (CCIFAR)× (32× 32) (CGSC)× (40× 98)
Cell2 (CCIFAR)× (32× 32) (CGSC)× (40× 98)
Cell3 (2× CCIFAR)× (16× 16) (2× CGSC)× (20× 49)
Cell4 (2× CCIFAR)× (16× 16) (2× CGSC)× (20× 49)
Cell5 (2× CCIFAR)× (16× 16) (4× CGSC)× (10× 25)
Cell6 (4× CCIFAR)× (8× 8) (4× CGSC)× (10× 25)
Cell7 (4× CCIFAR)× (8× 8) -
Cell8 (4× CCIFAR)× (8× 8) -

Pooling (4× CCIFAR)× (1× 1) (4× CGSC)× (1× 1)
FC 10 / 100 12

Table 1: Network backbone for CIFAR and GSC datasets.

[Krizhevsky et al., 2009]. We also choose an audio dataset
Google Speech Command (GSC) [Warden, 2018] which rep-
resents the keyword-spotting task commonly deployed on
edge devices for quick responses.

CIFAR-10 has 60,000 images of 10 classes with a size of
32×32. Among them, there are 50,000 training images and
10,000 testing images. CIFAR-100 has the same configura-
tions as CIFAR-10, except it contains 100 classes. We split
the dataset into 9,000 training samples and 1,000 test sam-
ples. The pre-processing method we use on these two datasets
is the same as [Che et al., 2022].

GSC has 35 words spoken by 2,618 speakers. Following
the pre-processing method used in [Yang et al., 2022], we
split the dataset into 12 classes, which include 10 keywords
and two additional classes. We apply Mel Frequency Cep-
strum Coefficient (MFCC) to extract acoustic features. The
sampling frequency is 16kHz, the frame length and shift are
set to 30ms and 10ms, and the filter channel is defined as 40.
Hyperparameters. We implement our LitE-SNN using Py-
torch on NVIDIA GeForce RTX 3080 (10G) GPUs. During
the architecture search, we conduct 50 epochs with a batch
size of 30. We use the SGD optimizer with momentum 0.9
and a learning rate of 0.025 to update network weights w and
employ the Adam optimizer with a learning rate of 3e−4 to
update β, mask, and α. During the retraining, we train for
200 epochs with a batch size of 50, using the SGD optimizer
with momentum 0.9 and a cosine learning rate of 0.025. The
neuron parameters τdecay and Vreset are set to 0.2 and 0 re-
spectively. The threshold Vth is initialized to 0.5. The tem-
perature parameter in Dspike function is set to 3 and the set-
tings of other parameters follow [Che et al., 2022].
Architecture. The architecture backbone is reported in Ta-
ble 1. The stem layer has a structure of Conv-Spike-BN
with a kernel size of 3 × 3. The initial channel counts are
denoted as CCIFAR and CGSC for CIFAR and GSC datasets,
with respective values of 48 and 16 during the search. For
the rest of the network, we employ 8 searchable cells on CI-
FAR dataset and 6 searchable cells on GSC dataset. The final
two layers are a global pooling and a fully-connected layer.
Each of the searchable cells has 4 nodes with each node con-
taining two candidate operations: Conv 3×3 and skip. In
this paper, the bit-width candidate space is set as {1, 2, 4}.
For image datasets, we search on CIFAR-10 and then retrain
on target datasets including CIFAR-10 and CIFAR-100. For
audio dataset GSC, we use the architecture searched on its
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CIFAR-10 CIFAR-100

Model Acc. Model Size Bit-SynOps Bitwidth. #Timesteps Acc. Model Size Bit-SynOps Bitwidth. #Timesteps
(%) (MB) (M) (b) (%) (MB) (M) (b)

[Rueckauer et al., 2017] 83.35 0.27 - 1 4 -

[Srinivasan and Roy, 2019] 66.23 2.10 - 1 25 -

[Chen et al., 2021] 92.54 41.73 847 32 (FP) 8 69.36 11.60 1179 32 (FP) 8
92.50 17.68 638 32 (FP) 8 67.47 2.56 882 32 (FP) 8

[Deng et al., 2021] 87.84 8.62 - 3 8 57.83 5.75 - 3 8
87.59 2.87 - 3 8 55.95 2.87 - 1 8

[Kim et al., 2022b] 93.50 12.02 950 32 (FP) 5 71.45 12.02 663 32 (FP) 5
93.46 2.88 560 32 (FP) 5 71.00 2.88 517 32 (FP) 5

[Chen et al., 2022] 92.49 3.28 1290 32 (FP) 8 -90.21 1.10 1245 32 (FP) 8

[Kim et al., 2022a] 94.12 199.72 16504 32 (FP) 8 73.04 82.84 39243 32 (FP) 5
93.73 168.24 13203 32 (FP) 5 70.06 77.60 27735 32 (FP) 5

[Na et al., 2022] 93.15 83.68 18739 32 (FP) 8 69.16 42.76 19547 32 (FP) 892.54 21.76 12787 32 (FP) 8

[Che et al., 2022] 95.50 56.00 41781 32 (FP) 6 76.25 56.00 51577 32 (FP) 6
95.36 56.00 40564 32 (FP) 6 76.03 48.00 50270 32 (FP) 6

[Xu et al., 2023] 93.41 44.68 - 32 (FP) 4 -

[Shen et al., 2023] 91.09 25.12 - 32 (FP) 2 73.48 25.12 - 32 (FP) 4

[Yan et al., 2024] 94.64 93.88 13184 32 (FP) 3 74.78 110.20 16544 32 (FP) 3
94.27 64.72 8640 32 (FP) 3 73.21 69.28 11136 32 (FP) 3

Our Work (large) 95.60±0.24 3.60 2863 searched searched (6) 77.10±0.04 3.62 3590 searched searched (6)
Our Work (medium) 94.52±0.05 1.23 913 searched searched (5) 74.51±0.35 1.27 1110 searched searched (5)
Our Work (small) 91.98±0.15 0.55 298 searched searched (4) 69.55±0.11 0.59 372 searched searched (4)

Table 2: Performance comparison with the state-of-the-art lightweight SNNs on CIFAR10 and CIFAR100 datasets.

own. During retraining, CCIFAR is increased to 144 to extract
more features from raw data. To compare with state-of-the-art
SNNs which span a wide range of model size and Bit-SynOps
on CIFAR, we set three scales of LitE-SNNs. Large scale
uses the λ1, λ2 and p of 0, 0 and 50; medium scale employs
5e−10, 5e−14 and 80; and small scale adopt 1e−9, 1e−13 and
90. On GSC, we use λ1, λ2 and p of 1e−9, 1e−13 and 70.

4.2 Comparison with Existing SNNs
Table 21 presents a comprehensive comparison between our
proposed LitE-SNNs and other state-of-the-art lightweight
SNNs on CIFAR10 and CIFAR-100 datasets. Our large-
scale LitE-SNN achieves state-of-the-art accuracy on CIFAR-
10 and CIFAR-100 datasets while maintaining a remarkably
compact model size of 3.60MB and 3.62MB and relatively
fewer BitSynOps of 2863M and 3590M. We can see that,
this compressed SNN achieves superior accuracy compared
with the baseline model without compression [Che et al.,
2022]. This result reveals the potential of compression to
remove noisy and irrelevant connections to enhance the abil-
ity to capture valuable information. Our small-scale LitE-
SNN has a model size of only 0.55MB and Bit-SynOps of
298M, smaller than all other models except the model size of
[Rueckauer et al., 2017] on CIFAR-10 dataset. Nevertheless,
it achieves a competitive accuracy of 91.98%, outperforming
[Rueckauer et al., 2017] by a big margin of 8.63%. Notice
that [Chen et al., 2021], [Kim et al., 2022b] and [Chen et al.,

1The results of comparison SNNs are from original papers, or (if
not provided) from our experiments using publicly available code
from the paper. If the original paper reported multiple results, we
list two results with the highest accuracy in the table.

Model Acc. Model Size Bit-SynOps Bitwidth. #Timesteps
(%) (MB) (M) (b)

[Yılmaz et al., 2020] 75.20 0.47 - 32 (FP) 10
[Orchard et al., 2021] 88.97 0.95 - 32 (FP) -
[Yang et al., 2022] 92.90 0.36 768 32 (FP) 32

Our Work 94.14±0.06 0.30 37 searched searched (3)

Table 3: Performance comparison with other SNNs on Google
Speech Command dataset.

2022] also maintain a good performance with relatively small
model size and Bit-SynOps. This is because they employ
effective pruning methods to reduce the number of parame-
ters. Despite this, under similar model sizes or Bit-SynOps,
our LitE-SNNs still achieve higher accuracy. For example,
on CIFAR-10 dataset, our medium-scale LitE-SNN achieves
94.52% accuracy with a 1.23MB model, surpassing [Kim et
al., 2022b] by 1% while being 1.6MB smaller. The results of
our timestep search are also shown in Table 2. From large-
scale to small-scale LitE-SNN, we observe that the optimal
number of timesteps decreases from 6 to 4. This is because
the increased λ1 and λ2 values in the search impose stricter
resource limits. Consequently, the network tends to select a
smaller number of timesteps to minimize calculations.

On the GSC dataset, as reported in Table 3, our model gets
an accuracy of 94.14% with a compact model size of 0.3M
and Bit-SynOps of only 37M, which outperforms all the com-
parison methods in terms of accuracy and resource cost. It is
worth noting that the model sizes of other compared methods
are all less than 1MB. This is because GSC belongs to the
keyword-spotting task that tends to run on the portable de-
vice. For such tasks, it is important to employ smaller models
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Figure 3: Ablation study of λ1 and λ2.

Model Acc. Model Size Bit-SynOps Design Cost
(%) (MB) (M) (GPU days)

Sequential Optimization

A + P + Q + T (large) 94.73 3.43 2426 7.04
A + P + Q + T (medium) 92.76 1.40 1001 7.04

A + P + Q + T (small) 85.99 0.73 505 7.04

Joint Optimization

LitE-SNN (large) 95.60 3.60 2863 5.01
LitE-SNN (medium) 94.52 1.23 913 4.99

LitE-SNN (small) 91.98 0.55 298 4.48

Table 4: Performance comparison of our joint optimization with se-
quential optimization.

to minimize power consumption and speed up the response.

4.3 Effectiveness of λ1 and λ2
We vary λ1 and λ2 in Equation (15) and validate its effect on
the trade-off between accuracy and resource costs in the LitE-
SNN on CIFAR-10 dataset. The other parameters maintain
the same setting as our small-scale LitE-SNN.

Figure 3 illustrates that increasing λ1 and λ2 leads to
stricter resource limits, resulting in a trend of smaller network
sizes and fewer Bit-SynOps, but at the expense of accuracy.
Notably, λ1 (the memory coefficient) and λ2 (the computa-
tional cost coefficient) have interconnected effects on model
size and Bit-SynOps. For instance, a rise in λ2 alone, al-
tering the network’s search setting from (1e-9, 0) to (1e-9,
1e-13), impacts both Bit-SynOps and model size. This is be-
cause the constraint on Bit-SynOps limits model size, reduc-
ing both metrics. Similarly, adjusting the settings from (1e-9,
1e-13) to (5e-9, 1e-13) also decreases both model size and
Bit-SynOps. The search results demonstrate that λ1 and λ2
can trade-off between accuracy and computational cost, while
also coordinating changes in model size and Bit-SynOps.

4.4 Comparison with Sequential Optimization
In this section, we conduct a comparative analysis between
our LitE-SNNs and the SNNs optimized using the sequen-
tial scheme on CIFAR-10 dataset to validate the effective-
ness of our joint optimization scheme. The comparison mod-
els are derived by sequentially performing neural architec-
ture search (A), pruning (P), quantization (Q) and timestep
selection (T). The methods used in each step follow the cor-
responding scales of LitE-SNNs.

As shown in Table 4, the three versions of LitE-SNN con-
sistently outperform models that are derived from sequen-
tial optimization, achieving higher accuracy with comparable
model sizes and Bit-SynOps. Since each step in sequential
models applies the same methods as LitE-SNNs, their infe-
rior accuracy and longer design time demonstrate the effec-
tiveness of our joint optimization. It is worth noting that the
small-scale sequential model suffers a substantial accuracy

Model #Addition(M) #Multiplication(M) Energy (mJ)

ANN (large) 970.12 970.12 4.46
ANN (medium) 413.53 413.53 1.90
ANN (small) 221.63 221.63 1.02

AutoSNN [Na et al., 2022] 585.60 28.31 0.63
SpikeDHS [Che et al., 2022] 1305.65 23.89 1.26
LitE-SNN (large) 705.01 11.94 0.68
LitE-SNN (medium) 271.41 4.78 0.26
LitE-SNN (small) 129.74 2.39 0.13

Table 5: Energy cost comparison for a single forward.

loss. This can be attributed to its high sparsity of 90%, mak-
ing it sensitive to parameter adjustments. Small changes in
parameter values due to subsequent quantization can signif-
icantly impact the network. Whereas our joint optimization
considers the intertwined effects of various compressive fac-
tors, thereby effectively mitigating accuracy degradation.

4.5 Energy Consumption
In this section, we estimate the theoretical energy consump-
tion of our LitE-SNN using the common approach in the
neuromorphic community [Rathi and Roy, 2021; Li et al.,
2021]. The energy is measured in 45nm CMOS technology
[Horowitz, 2014], where the addition operation and multipli-
cation operation cost 0.9 pJ and 3.7 pJ energy respectively.
These energy values are based on 32-bit floating-point oper-
ations. Since our model uses quantization to a smaller bit
width, the reported energy values for our model are overesti-
mates compared to those of other models.

Table 5 presents the energy consumption of our LitE-SNNs
and corresponding ANN counterparts with the same net-
work architecture. Our LitE-SNNs with three scales respec-
tively consume over 6× lower energy compared with ANN.
Compared with our baseline model SpikeDHS, LitE-SNNs
achieve an energy reduction of more than 0.58mJ. We also
compare our results with AutoSNN, which focuses on de-
signing energy-efficient SNNs. Its energy consumption is
comparable with our large-scale LitE-SNN, larger than our
small and medium-scale LitE-SNNs. We acknowledge that
energy consumption is not only from computation but also
from memory access, a topic beyond the scope of our study
as it is more about hardware design. Nevertheless, it’s worth
noting that our model’s smaller size and lower bit-width can
contribute to reducing access-related energy consumption.

5 Conclusion
In this paper, we propose the LitE-SNN to integrate spatio-
temporal compression into the automatic network design. We
present the CompConv that expands the search space to sup-
port pruning and mixed-precision quantization. Meanwhile,
we propose the compressive timestep search to identify the
optimal number of timesteps to process SNNs. We also for-
mulate a joint optimization algorithm to learn these compres-
sion strategies and architecture parameters. Experimental re-
sults show that our LitE-SNN exhibits competitive accuracy,
compact model size, and fewer computation costs, making it
an attractive choice for deployment on resource-constrained
edge devices and opening new possibilities for the practical
implementation of SNNs in real-world applications.
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