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Abstract
Recent sketch synthesis methods have demon-
strated the capability of generating lifelike out-
comes. However, these methods directly encode
the entire sketches making it challenging to decou-
ple the strokes from the sketches and have difficulty
in controlling local sketch synthesis, e.g., stroke
editing. Besides, the sketch editing task encoun-
ters the issue of accurately positioning the edited
strokes, because users may not be able to draw
on the exact position, and the same stroke may
appear in various locations in different sketches.
We propose SketchEdit to realize flexible edit-
ing of sketches at the stroke-level for the first
time. To tackle the challenge of decoupling strokes,
SketchEdit divides a drawing sequence of a sketch
into a series of strokes based on the pen state, aligns
the stroke segments to have the same starting po-
sition, and learns the embeddings of every stroke
by a proposed stroke encoder. Moreover, we over-
come the problem of stroke placement via a dif-
fusion process, which progressively generates the
locations for the strokes to be synthesized, using
the stroke features as the guiding condition. Ex-
periments demonstrate that SketchEdit is effective
for stroke-level sketch editing and sketch recon-
struction. The source code is publicly available at
https://github.com/CMACH508/SketchEdit/.

1 Introduction
People may draw sketches to express their abstract concepts
for the real world, and humans possess an extraordinary abil-
ity to create imaginative sketches. The objective of sketch
synthesis is to mimic the human drawing process through
machines, and the task is challenging due to the sketch’s ab-
stractness, sparsity, and lack of details. Recently, efforts have
been made to learn efficient sketch representations and gen-
erate realistic sketches, such as Sketch-RNN [Ha and Eck,
2017], SketchHealer [Su et al., 2020], SketchLattice [Qi et
al., 2021] and SP-gra2seq [Zang et al., 2023a].
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Figure 1: (Arrow left) Original sketches. (Arrow right) Edited
sketches generated by our model. From left to right are: (1) A ‘fin’ is
added to the fish. (2) A sheep’s body replaces the body of a cat. (3)
The wings of an angel replace the ears of a pig. The edited strokes
are from the latent space of our model and the QuickDraw dataset.

However, whilst existing methods [Zang et al., 2021;
Zang et al., 2023b; Wang et al., 2023] exhibit effective con-
trol on generating sketches with certain global properties,
they are unable to perform finer control on strokes. For ex-
ample, researchers have focused on synthesizing sketches of
particular categories, such as generating a “cat”, but have dif-
ficulty in manipulating the shape of certain parts (e.g., the
body) of the “cat”. Furthermore, during the sketch creation
process, users may incorporate fresh strokes or choose strokes
for multiple revisions based on inspiration. This paper at-
tempts to present a framework, which generates imaginative
editing outcomes and may assist in the heuristic education of
children, to mimic human sketch editing at the stroke-level as
in Figure 1.

To achieve stroke-level editing, it is a key obstacle to pin-
point the strokes that require editing. For the conventional
method [Ha and Eck, 2017] using a sequence of points to
represent sketches, although the segments determined by the
pen states can be directly used as strokes, the lengths of
the obtained strokes are not the same, which is not con-
venient for editing the strokes and updating the sketch se-
quence. Rasterizing a sketch into an image is a common op-
eration in sketch studies [Chen et al., 2017; Yu et al., 2015;
Yu et al., 2016]. However, these image-based methods lost
details of the drawing order and the way sketches are drawn,
making it more difficult to get the stroke information. Re-
cently, the work [Qu et al., 2023] provided an effective way to
break down the sketch sequence into strokes for downstream
tasks, where the stroke segments are padded to be of the same
length. Inspired by this idea, we develop a stroke encoder to
encode each stroke separately, without exchanging informa-
tion with another stroke. This approach provides the flexibil-
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ity to select strokes and edit them in the latent space of the
encoder while minimizing the impact on the content of the
rest part of the sketch.

Another challenge for stroke-level editing is how to appro-
priately place the strokes after the editing is done. As given
in the second box of Figure 1, if we replace the cat’s body
with the sheep’s body, the cat’s head moves from the right to
the left side of the image. If the cat’s head is still in its orig-
inal position, the generated sketch will be unrealistic. Here,
we develop a diffusion model [Ho et al., 2020] for accurate
stroke placement. The diffusion model generates the stroke
locations progressively through the denoising process, based
on the features of all strokes to be synthesized. The diffu-
sion model extends beyond the generation of single-category
sketches, enabling the creation of more diverse results, e.g.,
a pig with wing-like ears. Furthermore, we fuse the stroke
embeddings with the generated stroke locations and devise a
sequence decoder to synthesize the final manipulated sketch.
The stroke encoder and the sequence decoder are jointly pre-
trained under the autoencoder paradigm, with an extra image
decoder to learn the local structure of sketches.

In summary, we propose a novel sketch editing method
called SketchEdit and our contributions are as follows: (i)
We develop the traditional task of sketch synthesis into a
more controllable sketch editing task at the stroke-level for
the first time. The proposed SketchEdit achieves this pur-
pose well and enables the generation of creative sketches. (ii)
We present a fresh perspective on the placement of sketch
strokes without labeling, where strokes are synthesized akin
to assembling building blocks. Given a set of base strokes,
we first generate meaningful placements for them, and then
combine the strokes into a meaningful sketch. (iii) Experi-
ments show that our method performs significantly better than
the state-of-the-art sketch generation models for the task of
sketch reconstruction. This guarantees that the edited sketch
effectively retains the visual properties of the original sketch
for sketch editing at the stroke-level.

2 Related Work
Sketch generation. Sketching, as a practical communica-
tion tool and medium for emotional expression, is impres-
sive and expressive [Xu et al., 2022; Ribeiro et al., 2020;
Alaniz et al., 2022]. Its related generative tasks have at-
tracted the interest of researchers [Zhou et al., 2018; Das
et al., 2021; Pourreza et al., 2023]. An essential work to
this is Sketch-RNN [Ha and Eck, 2017], which is facili-
tating research into deep learning for the imitation of hu-
man drawing. Although Sketch-RNN is capable of accu-
rately capturing the connection between drawing points, it
falls short in perceiving the local structural information of im-
ages. Therefore, the subsequent methods [Chen et al., 2017;
Song et al., 2018] convert the sequence of sketches into ras-
terized images and introduce Convolutional Neural Networks
(CNNs) as a replacement or supplement to the RNN en-
coder. To improve the representational capabilities of the
models, graph neural networks (GNNs) are introduced on top
of the image representation [Su et al., 2020; Qi et al., 2022;
Qi et al., 2021; Zang et al., 2023a]. These methods construct

graphs by temporal proximity, spatial proximity, or synony-
mous proximity. Another methods to improve performance
are to use a Gaussian Mixture Model (GMM) to model the
latent space [Zang et al., 2021; Zang et al., 2023b] or de-
sign a Lmser-based network to learn stable sketch representa-
tions [Li et al., 2024]. These models have struggled to de-
couple specific strokes, so our SketchEdit takes strokes as
input rather than images or drawing points. There is also
a similar class to our methodology, which views sketches
as being comprised of multiple parts and requires label-
ing the components of the sketch, such as the head of a
bird [Ge et al., 2020]. However, due to the manual label-
ing being costly, our method is geared towards unlabeled
and more basic strokes. Recently, some studies utilized a
parametric representation of sketches [Vinker et al., 2022;
Xing et al., 2023] for easy generation. These approaches
lack an important feature of sketching, which is the ability
to maintain the order in which human strokes are drawn.

Diffusion models. Diffusion models [Sohl-Dickstein et al.,
2015] have led to a boom in research, particularly in the field
of image synthesis [Ho et al., 2020; Dhariwal and Nichol,
2021]. Text-to-image (T2I) generation is a widely recognized
application of diffusion models, which enables the rapid gen-
eration of artwork by providing prompts as a cue to large
models [Ramesh et al., 2021; Rombach et al., 2022]. How-
ever, certain information remains difficult to convey solely
through text, leading to the emergence of visual cues as con-
ditions for diffusion models. Sketches are an effective tool
for responding to structural information and are therefore re-
garded as control conditions by PITI [Voynov et al., 2023],
ControlNet [Zhang and Agrawala, 2023], T2I-Adapter [Mou
et al., 2023], and other methods. Recently some diffusion
models [Wang et al., 2023; Das et al., 2023] about sketches
have been proposed, which focus on modeling the points of
the sketch rather than the stroke locations. Our approach dif-
fers from these pure diffusion models used for sketch gener-
ation in that SketchEdit is able to utilize the highly semantic
latent space of the AE paradigm for flexible stroke editing.

3 Methodology
SketchEdit is constructed based on diffusion model to edit
sketches at the stroke-level. The key step is to generate the
locations of the strokes. This is achieved by the reverse de-
noising process of the diffusion model conditioned on stroke
embeddings, as shown in Figure 2(a). The SketchEdit decou-
ples sketch into several strokes without position information,
allowing the user to conveniently select strokes for editing.
Strokes and generated locations are eventually fed into a se-
quence decoder to synthesis the edited sketch. The pipeline
of editing sketches are illustrated in Figure 2(b).

3.1 Sketch Representation
A sketch is represented by a sequence of Lp points, i.e., τ =
(p1,p2, ...,pLp

). Each point pi is a vector containing five
elements. The first two are the coordinates of the absolute
position, while the last three use the one-hot vector format
to represent the three pen states of lift, touch, and the end of
sketch. To proceed in the stroke-level, the sketch sequence
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Figure 2: The overview of the proposed SketchEdit. (a) Denoising process conditional on strokes. Essentially, the goal is to reorganize strokes
with confusing positions into meaningful sketches. (b) The pipeline for sketch editing by our method. The edited strokes are replaced at the
input (or in the latent space) against the target strokes, and then the inverse denoising process is used to obtain meaningful stroke positions
from the random noise. (c) Pre-training the stroke encoder and the sequence decoder which are used to generate stroke embeddings and
synthesis target sketches for sketch editing task.

is broken down into a series of strokes, i.e., (s1, s2, ..., sLs),
where Ls denotes the number of strokes. We use (x,y) =
[(x1, y1), (x2, y2), . . . , (xLs

, yLs
)] to record the locations of

the strokes, which are the coordinates of the first point of the
stroke. In this paper, we also define the normalized stroke
sequence s̃i by subtracting the location (xi, yi) of the stroke
from the coordinates of all the points in the stroke.

3.2 Diffusion Model for Generating Locations
Forward process. Given a set of stroke locations (x,y)0 ∼
q((x,y)0), we apply the Markov diffusion process in DDPMs
[Ho et al., 2020] here. The noise sampled from Gaussian
distribution is gradually added to x and y:

q((x,y)1:T |(x,y)0) = q((x,y)0)
T∏
t=1

q((x,y)t|(x,y)t−1),

q((x,y)t|(x,y)t−1) = N ((x,y)t;
√
1− βt(x,y)t−1, βtI),

(1)

where βt represents the noise schedule at time t.
Reverse process. The reverse process aims to recreate the
true locations from a Gaussian noise input (x,y)T . Similar
with the DDPMs [Ho et al., 2020], A U-Net [Ronneberger
et al., 2015] like network is utilized to predict the noise
ϵθ((x,y)t, t). However, stroke locations have no explicit se-
mantic information, so it is necessary to introduce strokes as a
condition. Thus, the network for predicting noise is modified
to ϵθ((x,y)t, t, s̃). To decrease computational complexity
and leverage high-level semantic information, as illustrated
in Figure 2, we utilize the stroke embeddings z̃ as the condi-
tion rather than the strokes s̃. The reverse denoising process
can be formalized as:

pθ((x,y)t−1|(x,y)t, z̃) = N ((x,y)t−1;µθ((x,y)t, t, z̃),σ
2
t I),

µθ((x,y)t, t, z̃) =
1

αt
((x,y)t −

βt√
1− ᾱt

ϵθ((x,y)t, t, z̃)),
(2)

where αt = 1 − βt and ᾱt =
∏t
i=1 αi. In practice, we use

the DDIM-based [Song et al., 2020] generation process for
accelerated sampling.

3.3 Editing Freehand Sketches at the Stroke-level
In this subsection, we provide the process of editing sketch
at the stroke-level. First, users pick the stroke s̃i they want
to edit from the sketch τ . The edited stroke ŝi can either be
drawn by the users or selected from the stroke gallery to re-
place s̃i. Taking the angle shown in Figure 2(b) as an exam-
ple, we have obtained the strokes ŝ(s̃1, s̃2, s̃3, ŝ4, s̃5) after
editing. Then, the stroke encoder calculates the stroke em-
beddings ẑ(z̃1, z̃2, z̃3, ẑ4, z̃5). As the encoding process does
not involve the exchange of stroke information, stroke substi-
tution in the latent space, such as replacing z̃4 with ẑ4, is also
possible.

Next, we apply the reverse process of diffusion model to
denoise random noise (x̂, ŷ)T conditional on ẑ, resulting in
generated stroke locations (x̂, ŷ)0. Finally, the stroke embed-
dings ẑ and the stroke locations (x̂, ŷ)0 are fed into the token
mixture block and sequence decoder to synthesis the target
sketch τ̂ .

3.4 Constructing the Stroke Encoder, the
Sequence Decoder, and the Image Decoder

After converting the sketch sequence to the normalized stroke
representation, the resulting tensor s̃ ∈ RLs×Ln×5 is ob-
tained, where Ln is the number of points in a stroke. A
position-sensitive block must act as the backbone of the
stroke encoder to extract features form s̃ because significant
changes in the shape of the stroke occur when any two points
in the sequence are interchanged. Token-based MLPs [Tol-
stikhin et al., 2021] fulfil this requirement, and thus we con-
sider gMLP [Liu et al., 2021] as the basic component. Since
we do not wish for any exchange of information to occur dur-
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ing the encoding stage between the strokes, we can intuitively
treat the first dimension of s̃ as the batch size.

Several layers are used to extract the stroke embeddings
z̃. Firstly, each point in a stroke is treated as a token,
which then interacts through the network with other points.
Next, these tokens are summed for aggregation to get z̃enc ∈
RLs×dmodel1 , where dmodel1 denotes the dimension of the to-
kens. The stroke embeddings z̃ ∈ RLs×dmodel2 are calculated
as followings:

µ̃, σ̃ = flinear(z̃enc), µ̃, σ̃ ∈ RLs×dmodel2 ,

z̃ = µ̃+ σ̃ × ϵenc, ϵenc ∼ G(0, I),
(3)

where flinear(·) and dmodel2 represents a linear projection
and the dimension of stroke embeddings, respectively. The
reparameterization trick [Kingma and Welling, 2013] em-
ployed in Equation (3) serves to effectively constrain the la-
tent space, resulting in improved continuity.

Then, we map the stroke locations (x,y) ∈ RLs×2 to the
location embeddings zloc ∈ RLs×dmodel2 . The summation
of z̃ and zloc is fed into a token mixture block to mixture
the information of different strokes. The resulting zmix ∈
RLs×dmodel2 is subsequently sent to both the sequence de-
coder and the image decoder. The decoders utilize spatial pro-
jection to increase the number of tokens before reconstruct-
ing either the sequence τ̃ (p̃1, p̃2, ..., p̃Lp

) or the image Ĩ .
The backbone of token mixing block and sequence decoder
is gMLP, while the image decoder is built based on CNNs.
Thanks to the powerful global capture capability of gMLP,
we can decode all sequence points simultaneously, rather
than using the autoregressive approach [Ha and Eck, 2017;
Chen et al., 2017; Su et al., 2020]. This still result in good
reconstruction outcomes.

3.5 Two-stage Training
Pre-training the stroke encoder, the sequence decoder,
and the image decoder. After completing end-to-end train-
ing, the stroke encoder and the sequence decoder can effec-
tively reconstruct sketches. There are three training objec-
tives. The first is for the output of the sequence decoder,
where our goal is to minimize the negative log-likelihood
function of the generated probability distribution:

Lseq = −Euϕ(z̃|S̃) log vξ(τ̃ |z̃, (x,y)). (4)

The training goal in Sketch-RNN [Ha and Eck, 2017] also
pursues this aim, with the difference being the absolute or rel-
ative coordinates modeling. Second, for calculating the im-
age reconstruction loss Limg , we utilize the traditional mean
square error (MSE). Finally, to improve the representational
power of the model [Zang et al., 2021; Zang et al., 2023b],
GMM modeling is carried out in the encoder’s latent space.
We initialize K Gaussian components and the appropriate
number is determined automatically with the aid of RPCL
[Xu et al., 1993]. The corresponding loss function is formal-
ized as follows:

LGMM =

Ls∑
i=1

KL(uϕ(z̃i, k|s̃i)||oψ(z̃i, k)), (5)

where z̃i is the stroke embedding correspond to the stroke si
and the KL term is calculated as in [Jiang et al., 2016]. The
parameters of the GMM are learned by an EM-like algorithm,
details of which can be found in [Zang et al., 2021]. In sum-
mary, the overall objective is:

LAE = Lseq + Limg + λLGMM , (6)

where λ is a hyperparameter and we set it to 0.0001 in prac-
tice.
Training the diffusion model. In this stage, the previously
trained parameters of the stroke encoder and the sequence de-
coder are fixed, and the following are the training objectives
of the diffusion model:

min
θ

E||ϵ− ϵθ((x,y)t, t, z̃))||22. (7)

4 Experiment
4.1 Preparation
Dataset. Two datasets are selected from the largest sketch
dataset QuickDraw [Ha and Eck, 2017] for experiments. DS1
is a 17-category dataset [Su et al., 2020; Qi et al., 2022].
The specific categories are: airplane, angel, alarm clock, ap-
ple, butterfly, belt, bus, cake, cat, clock, eye, fish, pig, sheep,
spider, umbrella, the Great Wall of China. These categories
are common in life and the instances in the categories are
globally similar in appearance. DS2 [Zang et al., 2021] is a
multi-style and comparatively small dataset for synthesized
sketches, comprising five categories: bee, bus, flower, giraffe,
and pig. Each category contains 70000 sketches for training
and 2500 sketches for testing.
Implementation details. The AdamW optimizer
[Loshchilov and Hutter, 2017] is applied to train the
proposed model with parameters β1 = 0.9, β2 = 0.999,
ϵ = 10−8 and weight decay = 0.01. We use the CosineAn-
nealingLR scheduler [Smith and Topin, 2019] with the peak
learning rates are 0.002 and 0.0005 for the pre-trained model
and the diffusion model, respectively. We set drop path
rate to 0.1. All the sketch is padded to the same length, i.e.
Lp = 180. Each sketch is break down into Ls = 25 strokes
and each stroke contains 96 points. For the pre-trained
network, we train it with 15 epochs and the batch size is
200. There are 8 gMLP blocks in the stroke encoder with
dmodel1 = 96 and dffn1 = 384. The token mixture block
and the sequence decoder includes 2 and 12 gMLP blocks,
respectively. We set dmodel2 = 128 and dffn2 = 512 for
these blocks. We train the U-Net of the diffusion model
with 40 epochs with the batch size is 768. The encoder and
the decoder both consist of 12 gMLP blocks. The dmodel
and dffn in these blocks are 96 and 384, respectively.
We consider the linear noise schedule for the model with
βt ∈ (0.0001, 0.02). We take 60 steps for DDIM sampling
in default and truncate the stroke locations at (−1, 1) for
better performance. More implementation details are in the
Supplementary material.
Baselines. We consider 3 types of models as the baselines.
Sketch-RNN [Ha and Eck, 2017] employs a VAE [Kingma
and Welling, 2013] framework to learn sketch representa-
tions from sequences. Sketch-pix2seq [Chen et al., 2017] and
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RPCL-pix2seq [Zang et al., 2021] take sketch images as input
to learn local structural information form sketches. Based on
the rasterized sketch images, SketchHealer [Su et al., 2020],
SketchLattice [Qi et al., 2021], and SP-gra2seq [Zang et al.,
2023a] introduce the graphs for better representations.

Metrics. To evaluate the performance of the SketchEdit, we
select Rec [Zang et al., 2021], FID [Heusel et al., 2017],
LPIPS [Zhang et al., 2018], and CLIP Score [Radford et al.,
2021; Hessel et al., 2021] as the metrics. To classify whether
the recreated sketches belong to the original category, two
sketch-a-nets [Yu et al., 2015] are trained on DS1 and DS2,
respectively. Rec is the success rate of recognition named by
[Zang et al., 2021]. The CLIP Score in this paper specifically
measures the similarity between the generated sketch and the
original sketch.

4.2 Editing Sketches at the Stroke-level
Stroke-level sketch editing involves modifying distinct
strokes while minimizing the impact on the overall structure.
In this subsection, we provide qualitative analysis and some
applications related to the stroke-level sketch editing, includ-
ing stroke replacement, interpolation between strokes, and
stroke addition.

Figure 3: Examples of stroke replacement. The strokes in the first
column of each row are replaced by strokes from the same color
box in the second column. The third column is the results after the
strokes have been replaced. The sketches in the middle are syn-
thesized based on the third column of sketches as input. The final
column depicts the outcome of our technique. SketchEdit(w ol) de-
notes generating sketches with original locations.

Replacing strokes. Sketches typically consist of various
basic shapes and strokes from other sketches can be conve-
niently reused to edit the intended sketch, as illustrated in Fig-
ure 3 and Figure 4. The recycled shapes may comprise con-
stituents from the identical class with clearly defined mean-
ings, for example, an airplane fuselage, an umbrella handle,
and so on. Apart from that, SketchEdit enables a sensible
synthesis of strokes from different categories of sketches.
Some examples are provided in Figure 3, for instance, the
alarm clock’s bells have been replaced by apple stems, and
the SketchEdit has found a “logical” place for the apple stem.
Since the stroke encoder encodes only the structure of the
strokes and extracts features with high-level semantics while
avoiding the influence of sketch position information, the re-
sulting stroke embeddings are of high-quality. This assists the

diffusion model in learning stroke position relationships in a
more effective manner and enables the sequence decoder to
efficiently generate after incorporating position information.
Figure 3 also gives the synthesis results of the other methods
and our technique of using the original locations. The meth-
ods of comparison encode the entirety of the sketch, and mis-
placed strokes can significantly impact the synthesis, making
it difficult to generate recognizable sketches. Editing sketches
to produce creative results using existing basic shapes can be
challenging if the adverse impact of the initial stroke position
on the outcome is not reduced. Our objective in normalizing
strokes and implementing a diffusion model is specifically to
address this issue. Although our sub-method cannot produce
high-quality sketches utilizing the initial stroke placements,
it expertly preserves the visual features of each individual
stroke. Effective stroke reconstruction is a crucial require-
ment for stroke-level editing, ensuring minimal alteration to
the overall sketch structure. More reconstruction-related con-
tent will be discussed in the next subsection.

Figure 4: Stroke interpolation results. Boxes of the same color in
each row denote the respective modified strokes. Creative sketches
can be generated through the interpolation between strokes in the la-
tent space and the locations of strokes are produced by our diffusion
model.

Interpolating between strokes. Figure 4 provides some
examples of interpolation between strokes. For edited
strokes, the transition from source to target is smooth as the
stroke encoder acquires a well-organized and impact latent
space. During the process of interpolation, some stroke po-
sitions experience a perturbation, e.g., the cats move up and
down slightly. This effect is partly attributed to a degree of
randomness, which is caused by the initial Gaussian noise of
the inverse process in the diffusion model [Ho et al., 2020],
and the sampling production of the sequences [Ha and Eck,
2017]. This randomness does not typically affect the overall
structure of the edited sketch, and only has negative conse-
quences in certain instances, as exemplified by the bees illus-
trated in Figure 4.

Adding new strokes. In our method, the way to adding new
strokes to a sketch is similar with stroke replacement. Ini-
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Figure 5: Adding strokes to sketches. Boxes of the same color in
each column denote the corresponding referenced strokes and added
strokes.

tially, the first n padded strokes are replaced with the target
strokes in the input field or in the latent space. The new stroke
set is then used to generate the stroke locations and the edited
sketch. Figure 5 shows the results of adding strokes. The
diffusion model generates reasonable locations for the added
strokes, an interesting example of which is the clock in the
sixth column. In the referenced sketch, the stroke ‘1’ and the
stroke ‘2’ are used as a whole to represent the clock scale
‘12’. However, in the original sketch, there is not sufficient
space to include scale ‘12’, and therefore the two strokes are
more appropriately represented as scale ‘1’ and scale ‘2’, re-
spectively. Reusing the strokes from the original sketch, our
method can also respond effectively. For example, the nos-
trils of the pig in the penultimate column are reused, and the
diffusion model predicts them to the location of the eyes.

4.3 Sketch Reconstruction
Sketch reconstruction (also called controllable sketch synthe-
sis [Zang et al., 2021; Zang et al., 2023a]) requires the model
to recreate the sketch τ̃ from the input τ . High-quality sketch
reconstruction is essential to maintaining a consistent visual
appearance between the edited sketch and the original sketch.
In this subsection, we compare the SketchEdit with other
sketch synthesis methods. It should be noticed that, when we
use the original locations of the strokes rather than the gen-
erated locations for SketchEdit, the comparison becomes fair,
because the inputs to the baselines are full sketches (includ-
ing stroke locations). In this subsection, SketchEdit(w ol)
denotes that SketchEdit recreates sketches with original lo-
cations instead of generated locations.
Qualitative analysis. Figure 6 presents the qualitative com-
parisons. Compared to other approaches, SketchEdit(w ol) is
capable of reconstructing sketches with high-quality, with-
out introducing additional noisy strokes, while preserving
the structural patterns of the sketches. To prevent generated
sketches from changing category, the model must first learn
an accurate representation of the category-level. A failure
case is that Sketch-pix2seq [Chen et al., 2017] reconstructs
the last column of the Great Wall into a belt. Capturing struc-
tural information at the instance-level is a challenging under-
taking. While nearly all the competitors reproduced ”cakes”
as ”cakes”, the generated results displayed significant struc-
tural changes. Furthermore, the existence of multiple styles
within the same sketch category poses a challenge to sketch
reconstruction. The proposed SketchEdit(w ol) shows signif-
icant preservation of detail about sketch instances, which is
the basis for our sketch editing task. When we reconstructed

Figure 6: The exemplary result of reconstructed sketches by the pro-
posed SketchEdit and other models. The categories from left to right
are alarm clock, butterfly, belt, cake, cat, sheep, and the Great Wall
of China.

the sketch using the completed SketchEdit, the results are
slightly degraded, mainly reflecting the subtle movement of
some of the strokes. Nevertheless, SketchEdit is still superior
to baselines in terms of visualization.

Dataset Model Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)

DS1

Sketch-RNN 64.51% 6.87 0.33 91.82
Sketch-pix2seq 66.99% 42.03 0.34 90.04
RPCL-pix2seq 69.86% 44.09 0.32 90.37
SketchLattice 48.88% 48.70 0.44 87.06
SketchHealer 76.76% 21.62 0.32 92.15
SP-gra2seq 76.60% 21.92 0.33 92.01

SketchEdit(w ol) 84.3284.3284.32% 3.123.123.12 0.110.110.11 96.7396.7396.73
SketchEdit 80.15% 3.58 0.29 94.73

DS2

Sketch-RNN 77.74% 10.45 0.40 90.29
Sketch-pix2seq 88.36% 42.78 0.37 90.22
RPCL-pix2seq 90.66% 27.32 0.35 90.80
SketchLattice 77.54% 50.92 0.45 87.80
SketchHealer 90.93% 24.43 0.36 91.28
SP-gra2seq 91.12% 21.69 0.37 91.15

SketchEdit(w ol) 93.4293.4293.42% 5.885.885.88 0.190.190.19 94.2594.2594.25
SketchEdit 87.22% 7.64 0.36 92.20

Table 1: The performance for sketch reconstruction.

Quantitative analysis. Table 1 reports the sketch recon-
struction performance of the proposed method and its com-
petitors. SketchEdit(w ol) significantly outperforms other
methods across all metrics. The proposed method cap-
tures global dependencies in sketch sequences more effi-
ciently, while the proposed sequence decoder addresses the
challenge of stacked layers in RNN and the deeper net-
work improves reconstruction results. However, due to the
data-driven nature of the gMLP block, it lacks adequate
inductive bias, resulting in a less prominent advantage of
SketchEdit(w ol) on the smaller DS2 compared to DS 1. Sim-
ilar to the results of the qualitative analysis, the metrics for
SketchEdit, which employs generated locations for synthesiz-
ing sketches, decreased in comparison to SketchEdit(w ol).
On DS1, SketchEdit outperforms the other methods signifi-
cantly, whereas on DS2, it is able to achieve comparable re-
sults. For Sketch-RNN [Ha and Eck, 2017], the FID met-
rics and other metrics present a distinct phenomenon because
there exists a considerable domain gap between the sequences
and the images, resulting in a disparity between the distribu-
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tions learned by the image-based approach and the sequence
sketches.

4.4 Ablation Study
In this subsection, we discuss the sampling process, model
components, and why the diffusion model was chosen. We
conduct the ablation study on DS1.
Sampling process. The DDIM [Song et al., 2020] sam-
pling method features a hyperparameter η. If η = 0, the
inverse process is deterministic sampling. Conversely, if
η = 1, the inverse process involves the original DDPM [Ho et
al., 2020] generation process. Both scenarios are examined,
alongside an evaluation of the impact of truncating stroke lo-
cations in the sampling process. Table 2 reports the recon-
struction performance for different sampling settings. When
the positions are not truncated at each sampling step, η = 1
gives better results than deterministic sampling for the same
step. This issue may arise if the initial stroke generation oc-
curs outside the canvas area. DDIM sampling is significantly
impacted by this phenomenon and faces challenges in pro-
ducing satisfactory outcomes, therefore, limiting stroke posi-
tion can be considered a viable solution. We observe that a
sampling of 10 steps gives better results than a sampling of
5 steps, with additional steps having possible negative con-
sequences. Due to the sensitivity and lack of semantic infor-
mation in the sketch stroke locations, the predicted noise by
U-Net may not be entirely accurate. Further steps may lead
to an accumulation of errors which could negatively impact
performance.

Settings Performance
Steps η L.T. Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)

1 - - 11.26% 54.71 0.57 87.92
5 1 × 79.84% 3.78 0.28 94.69

10 1 × 80.16% 3.62 0.28 94.72
30 1 × 79.20% 3.65 0.29 94.66
60 1 × 79.62% 3.79 0.29 94.59
5 1 ✓ 80.19% 3.79 0.27 94.71

10 1 ✓ 80.44% 3.61 0.28 94.74
30 1 ✓ 79.72% 3.68 0.29 94.69
60 1 ✓ 79.01% 3.76 0.29 94.61
5 0 × 79.73% 3.82 0.28 94.65

10 0 × 79.66% 3.70 0.28 94.66
30 0 × 78.24% 3.82 0.29 94.55
60 0 × 77.68% 3.98 0.30 94.46
5 0 ✓ 80.22% 3.76 0.27 94.72

10 0 ✓ 80.82% 3.58 0.27 94.79
30 0 ✓ 80.47% 3.53 0.28 94.77
60 0 ✓ 80.15% 3.58 0.28 94.73

MLP - - 78.95% 4.40 0.28 94.53

Table 2: Sketch reconstruction performance based on the generated
locations by diffusion models for different sampling settings. ‘L.T.’
denotes location truncation.

Why diffusion model? To demonstrate the effectiveness of
the diffusion model, we train an MLP to directly predict the
stroke locations as a competitor. Its architecture is identical
to the noise predictor’s U-Net and we fixed the noise input
and time step to ‘0’. Compared with MLP, the autoregressive
generation process of the diffusion model is better suited to

capturing the structural relationship between sketch strokes,
resulting in a more effective approximation of the original
stroke position distribution. As shown in Table 2, the great-
est discrepancy between the MLP and diffusion models is in
the FID metric. This implies that MLP finds it challenging to
accurately anticipate appropriate locations via stroke embed-
dings to produce sketches resembling human creations.
Model components. The role of components for pre-
trained models is evaluated. No image decoder is included
and no token mixture block is shared between the two de-
coders denoted by SketchEdit(wo i) and SketchEdit(wo s),
respectively. Table 3 reports the results of the mod-
els containing different components. SketchEdit(full) and
SketchEdit(wo s) with image encoders have performance ad-
vantages over SketchEdit(wo i). This is because the use of
image reconstruction allows the network to learn shape infor-
mation and spatial relationships. Similarly, SketchEdit(wo s)
would make learning image-related information difficult for
the token mixture block at the sequence decoder. As
shown in Figure 7, some strokes overlap in the results pro-
duced by SketchEdit(wo s) and SketchEdit(wo i) which re-
duces the quality of the recreated sketch. In addition,
SketchEdit(full) has marginally fewer parameters compared
to SketchEdit(wo s) as it only employs a single token mix-
ture block.

Model Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)

O.L.
SketchEdit(wo i) 83.56% 3.80 0.13 96.34
SketchEdit(wo s) 84.20% 3.21 0.12 96.45
SketchEdit(full) 84.3284.3284.32% 3.123.123.12 0.110.110.11 96.7396.7396.73

G.L.
SketchEdit(wo i) 79.50% 4.22 0.28 94.51
SketchEdit(wo s) 79.62% 3.75 0.29 94.55
SketchEdit(full) 80.1580.1580.15% 3.583.583.58 0.290.290.29 94.7394.7394.73

Table 3: The performance for sketch reconstruction with the origi-
nal locations and the generated locations. ‘O.L.’ and ‘G.L.’ denote
original locations and generated locations, respectively.

Figure 7: Comparison of recreated sketches across various models.

5 Conclusion
In this paper, we develop the traditional sketch synthesis task
to the more controllable sketch editing task at the stroke-
level and propose the SketchEdit to realize it. We have fo-
cused on decoupling independent strokes from sketches to
enable editing operations at the stroke-level. The core of our
methodology is to employ the diffusion model to acquire rea-
sonable positions and recreate meaningful sketches based on
the strokes. Experimental results demonstrate that SketchEdit
can edit sketches without altering categories and facilitate the
production of innovative sketches across various categories.
Meanwhile, SketchEdit which efficiently preserves the spatial
structure of sketches and supports the parallel reconstruction
of sketch sequences, surpasses the state-of-the-art methods
significantly in preserving visual features of sketches.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4467



Acknowledgements
This work was supported by the Shanghai Municipal Sci-
ence and Technology Major Project, China (Grant No.
2021SHZDZX0102), and by the National Natural Science
Foundation of China (62172273). Shikui Tu and Lei Xu are
co-corresponding authors.

References
[Alaniz et al., 2022] Stephan Alaniz, Massimiliano Mancini,

Anjan Dutta, Diego Marcos, and Zeynep Akata. Ab-
stracting sketches through simple primitives. In European
Conference on Computer Vision, pages 396–412. Springer,
2022.

[Chen et al., 2017] Yajing Chen, Shikui Tu, Yuqi Yi, and Lei
Xu. Sketch-pix2seq: a model to generate sketches of mul-
tiple categories. arXiv preprint arXiv:1709.04121, 2017.

[Das et al., 2021] Ayan Das, Yongxin Yang, Timothy M
Hospedales, Tao Xiang, and Yi-Zhe Song. Cloud2curve:
Generation and vectorization of parametric sketches. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7088–7097, 2021.

[Das et al., 2023] Ayan Das, Yongxin Yang, Timothy M
Hospedales, Tao Xiang, and Yi-Zhe Song. Chirodiff:
Modelling chirographic data with diffusion models. In The
Eleventh International Conference on Learning Represen-
tations, 2023.

[Dhariwal and Nichol, 2021] Prafulla Dhariwal and Alexan-
der Nichol. Diffusion models beat gans on image synthe-
sis. Advances in neural information processing systems,
34:8780–8794, 2021.

[Ge et al., 2020] Songwei Ge, Vedanuj Goswami, Larry Zit-
nick, and Devi Parikh. Creative sketch generation. In
International Conference on Learning Representations,
2020.

[Ha and Eck, 2017] David Ha and Douglas Eck. A neu-
ral representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

[Hessel et al., 2021] Jack Hessel, Ari Holtzman, Maxwell
Forbes, Ronan Le Bras, and Yejin Choi. Clipscore:
A reference-free evaluation metric for image captioning.
arXiv preprint arXiv:2104.08718, 2021.

[Heusel et al., 2017] Martin Heusel, Hubert Ramsauer,
Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851,
2020.

[Jiang et al., 2016] Zhuxi Jiang, Yin Zheng, Huachun Tan,
Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: An unsupervised and generative approach to
clustering. arXiv preprint arXiv:1611.05148, 2016.

[Kingma and Welling, 2013] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[Li et al., 2024] Tengjie Li, Sicong Zang, Shikui Tu, and Lei
Xu. Lmser-pix2seq: Learning stable sketch representa-
tions for sketch healing. Computer Vision and Image Un-
derstanding, 240:103931, 2024.

[Liu et al., 2021] Hanxiao Liu, Zihang Dai, David So, and
Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[Mou et al., 2023] Chong Mou, Xintao Wang, Liangbin Xie,
Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more control-
lable ability for text-to-image diffusion models. arXiv
preprint arXiv:2302.08453, 2023.

[Pourreza et al., 2023] Reza Pourreza, Apratim Bhat-
tacharyya, Sunny Panchal, Mingu Lee, Pulkit Madan, and
Roland Memisevic. Painter: Teaching auto-regressive
language models to draw sketches. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 305–314, 2023.

[Qi et al., 2021] Yonggang Qi, Guoyao Su, Pinaki Nath
Chowdhury, Mingkang Li, and Yi-Zhe Song. Sketchlat-
tice: Latticed representation for sketch manipulation. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 953–961, 2021.

[Qi et al., 2022] Yonggang Qi, Guoyao Su, Qiang Wang,
Jie Yang, Kaiyue Pang, and Yi-Zhe Song. Generative
sketch healing. International Journal of Computer Vision,
130(8):2006–2021, 2022.

[Qu et al., 2023] Zhiyu Qu, Yulia Gryaditskaya, Ke Li,
Kaiyue Pang, Tao Xiang, and Yi-Zhe Song. Sketchxai: A
first look at explainability for human sketches. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23327–23337, 2023.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[Ramesh et al., 2021] Aditya Ramesh, Mikhail Pavlov,
Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image
generation. In International Conference on Machine
Learning, pages 8821–8831. PMLR, 2021.

[Ribeiro et al., 2020] Leo Sampaio Ferraz Ribeiro, Tu Bui,
John Collomosse, and Moacir Ponti. Sketchformer:
Transformer-based representation for sketched structure.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 14153–14162, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4468



[Rombach et al., 2022] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 10684–10695, 2022.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, pages 234–
241. Springer, 2015.

[Smith and Topin, 2019] Leslie N Smith and Nicholay
Topin. Super-convergence: Very fast training of neural
networks using large learning rates. In Artificial intelli-
gence and machine learning for multi-domain operations
applications, volume 11006, pages 369–386. SPIE, 2019.

[Sohl-Dickstein et al., 2015] Jascha Sohl-Dickstein, Eric
Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermody-
namics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

[Song et al., 2018] Jifei Song, Kaiyue Pang, Yi-Zhe Song,
Tao Xiang, and Timothy M Hospedales. Learning to
sketch with shortcut cycle consistency. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 801–810, 2018.

[Song et al., 2020] Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[Su et al., 2020] Guoyao Su, Yonggang Qi, Kaiyue Pang, Jie
Yang, and Yi-Zhe Song. Sketchhealer a graph-to-sequence
network for recreating partial human sketches. In Proceed-
ings of The 31st British Machine Vision Virtual Conference
(BMVC 2020), pages 1–14. British Machine Vision Asso-
ciation, 2020.

[Tolstikhin et al., 2021] Ilya O Tolstikhin, Neil Houlsby,
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Thomas Unterthiner, Jessica Yung, Andreas Steiner,
Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural infor-
mation processing systems, 34:24261–24272, 2021.

[Vinker et al., 2022] Yael Vinker, Ehsan Pajouheshgar, Jes-
sica Y Bo, Roman Christian Bachmann, Amit Haim
Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel
Shamir. Clipasso: Semantically-aware object sketching.
ACM Transactions on Graphics (TOG), 41(4):1–11, 2022.

[Voynov et al., 2023] Andrey Voynov, Kfir Aberman, and
Daniel Cohen-Or. Sketch-guided text-to-image diffusion
models. In ACM SIGGRAPH 2023 Conference Proceed-
ings, pages 1–11, 2023.

[Wang et al., 2023] Qiang Wang, Haoge Deng, Yonggang
Qi, Da Li, and Yi-Zhe Song. Sketchknitter: Vectorized
sketch generation with diffusion models. In The Eleventh

International Conference on Learning Representations,
2023.

[Xing et al., 2023] Ximing Xing, Chuang Wang, Haitao
Zhou, Jing Zhang, Qian Yu, and Dong Xu. Diffsketcher:
Text guided vector sketch synthesis through latent diffu-
sion models. arXiv preprint arXiv:2306.14685, 2023.

[Xu et al., 1993] Lei Xu, Adam Krzyzak, and Erkki Oja. Ri-
val penalized competitive learning for clustering analysis,
rbf net, and curve detection. IEEE Transactions on Neural
networks, 4(4):636–649, 1993.

[Xu et al., 2022] Peng Xu, Timothy M Hospedales, Qiyue
Yin, Yi-Zhe Song, Tao Xiang, and Liang Wang. Deep
learning for free-hand sketch: A survey. IEEE transactions
on pattern analysis and machine intelligence, 45(1):285–
312, 2022.

[Yu et al., 2015] Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao
Xiang, and Timothy Hospedales. Sketch-a-net that beats
humans. arXiv preprint arXiv:1501.07873, 2015.

[Yu et al., 2016] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xi-
ang, Timothy M Hospedales, and Chen-Change Loy.
Sketch me that shoe. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
799–807, 2016.

[Zang et al., 2021] Sicong Zang, Shikui Tu, and Lei Xu.
Controllable stroke-based sketch synthesis from a self-
organized latent space. Neural Networks, 137:138–150,
2021.

[Zang et al., 2023a] Sicong Zang, Shikui Tu, and Lei Xu.
Linking sketch patches by learning synonymous proxim-
ity for graphic sketch representation. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 11096–
11103, 2023.

[Zang et al., 2023b] Sicong Zang, Shikui Tu, and Lei Xu.
Self-organizing a latent hierarchy of sketch patterns for
controllable sketch synthesis. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2023.

[Zhang and Agrawala, 2023] Lvmin Zhang and Maneesh
Agrawala. Adding conditional control to text-to-image dif-
fusion models. arXiv preprint arXiv:2302.05543, 2023.

[Zhang et al., 2018] Richard Zhang, Phillip Isola, Alexei A
Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 586–595, 2018.

[Zhou et al., 2018] Tao Zhou, Chen Fang, Zhaowen Wang,
Jimei Yang, Byungmoon Kim, Zhili Chen, Jonathan
Brandt, and Demetri Terzopoulos. Learning to doodle with
deep q networks and demonstrated strokes. In British Ma-
chine Vision Conference, page 4, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4469


	Introduction
	Related Work
	Methodology
	Sketch Representation
	Diffusion Model for Generating Locations
	Editing Freehand Sketches at the Stroke-level
	Constructing the Stroke Encoder, the Sequence Decoder, and the Image Decoder
	Two-stage Training

	Experiment
	Preparation
	Editing Sketches at the Stroke-level
	Sketch Reconstruction
	Ablation Study

	Conclusion

