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Abstract
Physics-informed neural networks (PINNs) have
shown promising potential for solving partial dif-
ferential equations (PDEs) using deep learning.
However, PINNs face training difficulties for evo-
lutionary PDEs, particularly for dynamical systems
whose solutions exhibit multi-scale or turbulent be-
havior over time. The reason is that PINNs may vi-
olate the temporal causality property since all the
temporal features in the PINNs loss are trained
simultaneously. This paper proposes to use im-
plicit time differencing schemes to enforce tem-
poral causality, and use transfer learning to se-
quentially update the PINNs in space as surro-
gates for PDE solutions in different time frames.
The evolving PINNs are better able to capture the
varying complexities of the evolutionary equations,
while only requiring minor updates between ad-
jacent time frames. Our method is theoretically
proven to be convergent if the time step is small
and each PINN in different time frames is well-
trained. In addition, we provide state-of-the-art
(SOTA) numerical results for a variety of bench-
marks for which existing PINNs formulations may
fail or be inefficient. We demonstrate that the pro-
posed method improves the accuracy of PINNs ap-
proximation for evolutionary PDEs and improves
efficiency by a factor of 4–40x. The code is avail-
able at https://github.com/SiqiChen9/TL-DPINNs.

1 Introduction
Evolutionary partial differential equations (PDEs) are repre-
sentative of the real world, such as the Navier–Stokes equa-
tion, Cahn–Hilliard equations, wave equation, Korteweg–De
Vries equation, etc., which arise from physics, mechanics,
material science, and other computational science and engi-
neering fields [Dafermos and Pokorny, 2008]. Due to the in-
herent universal approximation capability of neural networks
and the exponential growth of data and computational re-
sources, neural network PDE solvers have recently gained
popularity [Raissi et al., 2017; Han et al., 2018; Khoo et

∗Corresponding author.

al., 2021; Yu and E, 2018; Sirignano and Spiliopoulos, 2018;
Long et al., 2018]. The most representative approach among
these neural network PDE solvers is Physics-Informed Neu-
ral Networks (PINNs) [Raissi et al., 2019]. PINNs have been
utilized effectively to solve PDE problems such as the Pois-
son equation, Burgers equation, and Navier-Stokes equation
[Raissi et al., 2019; Lu et al., 2021a; Mishra and Molinaro,
2023]. Many variants of PINNs include loss reweighting
[Wang et al., 2021a; Wang et al., 2022b; Wang et al., 2022a;
Krishnapriyan et al., 2021], novel optimization targets [Jag-
tap et al., 2020; Kharazmi et al., 2021], novel architec-
tures [Jagtap et al., 2020; Jagtap and Karniadakis, 2021;
Wang et al., 2021b] and other techniques such as transfer
learning and meta-learning [Goswami et al., 2020; Liu et al.,
2022b], have also been explored to enhance training and test
accuracy.

When we apply neural networks to solve evolutionary
PDEs, the most ubiquitously used PINN implementation at
present is the meshless, continuous-time PINN in [Raissi et
al., 2019]. However, training (i.e., optimization) is still the
primary challenge when employing this approach, particu-
larly for dynamical systems whose solutions exhibit strong
non-linearity, multi-scale features, and high sensitivity to
initial conditions, such as the Kuramoto-Sivashinsky equa-
tion and the Navier-Stokes equations in the turbulent regime.
While advanced machine learning techniques may help re-
ducing the difficulty of training [Yang et al., 2019; Hou et
al., 2022], more researchers try to find the reasons of training
failures.

Recently Wang et al. [Wang et al., 2022a] revealed that
continuous-time PINNs can violate the so-called temporal
causality property, and are therefore prone to converge to in-
correct solutions. Temporal causality requires that models
should be sufficiently trained at time t before approximating
the solution at the later time t + ∆t, while continuous-time
PINNs are trained for all time t simultaneously. To enhance
the temporal causality in the training process, they proposed
a simple re-formulation of PINNs loss functions as shown in
(1), i.e., a clever weighting technique that is inversely expo-
nentially proportional to the magnitude of cumulative resid-
ual losses from prior times. This casual PINN method has
been demonstrated to be effective for some difficult problems.
However their method is sensitive to the new causality hyper-
parameter ϵ, and the training time is substantially longer than
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Figure 1: Allen-Cahn equation: (a)Exact solution. (b)PINN solution. (c)TL-DPINN solution. (d)PINN’s temporal residual loss Lr(tn, θ),
small for later time while large for initial time, violating temporal causality principle. (e)TL-DPINN’s temporal residual loss Lr(tn, θ),
respecting temporal causality principle and keeping small for all time.

vanilla PINNs.

L(θ) = 1

Nt

Nt∑
i=1

wiL(ti, θ), with wi = exp

(
−ϵ

i−1∑
k=1

L(tk, θ)

)
.

(1)
In this paper, we introduce a new PINN implementation

technique for efficiently and precisely solving evolutionary
PDEs. Our technique relies on two key elements: (a) us-
ing discrete-time PINNs instead of continuous-time PINNs to
satisfy the principle of temporal causality. Implicit time dif-
ferencing schemes are stable and can enable solutions to be
learned from earlier times to later times, thereby making the
training process stable and accurate; and (b) utilizing trans-
fer learning to accelerate PINN training in later time frames.
In the following sections, we will show that our causality-
enhanced discrete physics-informed neural networks with
transfer learning accelerating (TL-DPINN) method is theo-
retically and numerically stable, accurate, and efficient.

Following is a summary of the contribution of the paper.
• Implicit time differencing with the transfer-learning

tuned PINN provides more accurate and robust predic-
tions of evolutionary PDEs’ solutions while retaining a
low computational cost.

• We prove theoretically the error estimation result of our
TL-DPINN method, indicating that TL-DPINN solu-
tions converge as long as the time step is small and each
PINN in different time frames is well trained.

• Through extensive numerical results, we demonstrate

that our method can attain state-of-the-art (SOTA) per-
formance among various PINN frameworks in a trade-
off between accuracy and efficiency.

2 Related Works
Discrete PINN. Raissi et al. [Raissi et al., 2019] have
applied the general form of Runge–Kutta methods with ar-
bitrary q stages to the evolutionary PDEs. However, only
an implicit Runge-Kutta scheme with q = 100 stages and
a single large time step ∆t = 0.8 are computed. Low-
order methods cannot retain their predictive accuracy for
large time steps. In our research, we demonstrate the capabil-
ity of discrete PINNs both theoretically and experimentally,
indicating that robust low-order implicit Runge-Kutta com-
bined with PINN can obtain high-precision solutions with
multiple small-sized time steps. Jagtap and Karniadakis
[Jagtap and Karniadakis, 2021] propose a generalized do-
main decomposition framework that allows for multiple sub-
networks over different subdomains to be stitched together
and trained in parallel. However, it is not causal and has
the same training issues as conventional PINNs. The im-
plicit Runge-Kutta scheme combined with PINN has been
used to solve simple ODE systems [Stiasny et al., 2021;
Moya and Lin, 2023], but not dynamic PDE systems with
multi-scale or turbulent behavior over time.
Temporal Decomposition. Diverse strategies have been
studied for enhancing PINN training by splitting the domain
into numerous small “time-slab”. Wight and Zhao [L. Wight
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and Zhao, 2021] propose an adaptive time-sampling strategy
to learn solutions from the previous small time domain to the
whole time domain. However, collocation points are costly
to add, and the computational cost rises. This time marching
strategy has been enhanced further in [Krishnapriyan et al.,
2021; Mattey and Ghosh, 2022; McClenny and Braga-Neto,
2023]. Nevertheless, causality is only enforced on the scale of
the time slabs and not inside each time slab, thus the conver-
gence can not be theoretically guaranteed. A unified frame-
work for causal sweeping strategies for PINNs is summarized
in [Penwarden et al., 2023]. Wang et al. [Wang et al., 2022a]
introduced a simple causal weight in the form of (1) to natu-
rally match the principle of temporal causality with high pre-
cision. However, this significantly increased computational
costs and did not guarantee convergence [Penwarden et al.,
2023]. Our methods can attain the same level of precision,
are theoretically convergent, and are 4 to 40 times quicker.

Transfer Learning. Transfer-learning has been previously
combined with various deep-learning models for solving
PDEs problems, such as PINN for phase-field modeling of
fracture [Goswami et al., 2020], DeepONet for PDEs under
conditional shift [Goswami et al., 2022], DNN-based PDE
solvers [Chen et al., 2021], PINN for inverse problems [Xu
et al., 2023], one-shot transfer learning of PINN [Desai et al.,
2022], and training of CNNs on multi-fidelity data [Song and
Tartakovsky, 2022]. Xu et al. [Xu et al., 2022] proposed a
transfer learning enhanced DeepONet for the long-term pre-
diction of evolution equations. However, their method neces-
sitates a substantial amount of training data from traditional
numerical methods. In contrast, our methods are physics-
informed and do not require additional training data.

3 Numerical Method
Problem Set-up Here we consider the initial-boundary
value problem for a general evolutionary parabolic differ-
ential equation. The extension to hyperbolic equations are
straightforward.

ut = N (u), x ∈ Ω, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = g(t, x), t ∈ [0, T ], x ∈ ∂Ω,

(2)

where u(t, x) denotes the hidden solution, t and x represent
temporal and spatial coordinates respectively, N (u) denotes
a differential operator (for example, N (u) = uxx for the sim-
plest Heat equation), and Ω ⊂ RD is an open, bounded do-
main with smooth boundary ∂Ω. This study assumes that the
equations are dissipative in the sense that

∫
Ω
u · N (u)dx ≤ 0

[Xu et al., 2022].
Our goal is to learn u(t, x) by neural network approxima-

tion. We briefly mention the basic background of PINN in
Section 3.1 and then describe our TL-DPINN method in Sec-
tion 3.2.

3.1 Physics-informed Neural Networks
In the original study of PINNs [Raissi et al., 2019], it approx-
imates u(t, x) to (2) using a deep neural network uθ(t, x),
where θ represents the neural network’s parameters (e.g.,

weights and biases). Consequently, the objective of a vanilla
PINN is to discover the θ that minimizes the physics-based
loss function:

L(θ) = λbLb(θ) + λuLu(θ) + λrLr(θ), (3)

where

Lb(θ) =
1

Nb

Nb∑
i=1

∥uθ(t
i
b, x

i
b)− g(tib, x

i
b)∥2, (4)

Lu(θ) =
1

Nu

Nu∑
i=1

∥uθ(0, x
i
t)− u0(x

i
t)∥2, (5)

Lr(θ) =
1

Nr

Nr∑
i=1

∥R(uθ(t
i
r, x

i
r)∥2. (6)

The tib, x
i
b, x

i
t represent the boundary and initial sampling

data for uθ(t, x), whereas tir, x
i
r represent the data points uti-

lized to calculate the residual term R(u) = ut −N (u). The
coefficients λb, λu, and λr in the loss function are utilized
to assign a different learning rate, which can be specified
by humans or automatically adjusted during training[Wang
et al., 2021a; Wang et al., 2022b]. We note that the Lb

term can be further omitted if we apply hard constraint in
the PINN’s design [Lu et al., 2021b; Liu et al., 2022a;
Sukumar and Srivastava, 2022].

As demonstrated in [Wang et al., 2022a], the vanilla PINN
may violate the principle of temporal causality, as the residual
loss at the later time may be minimized even if the predictions
at previous times are incorrect. Figure 1 demonstrates the
training result for solving the Allen-Chan equation, confirm-
ing this phenomenon. For conventional PINN, the residual
loss Lr is large near the initial state and small for the later
time while the learned solution is incorrect. Comparatively,
our method’s residual remains small for all t ∈ [0, 1] and cap-
tures the solution with high precision.

3.2 Causality-enhanced Discrete PINN
Discrete PINN. Since the continuous-time PINN violates
temporal causality, we shift to numerical temporal differenc-
ing schemes that naturally respect temporal causality. Given
a time step ∆t, assume we have computed un(x) to approxi-
mate the solution u(n∆t, x) to (2), then we consider finding
un+1(x) by the Crank-Nicolson time differencing scheme:

un+1(x)− un(x)

∆t
= N

[
un+1(x) + un(x)

2

]
. (7)

Instead of solving (2) in the whole space-temporal domain
directly, our goal is to solve (7) from one step to the next
in the space domain: u0(x) 7→ u1(x) 7→ · · · 7→ un(x) 7→
un+1(x) 7→ · · · , so that the evolutionary dynamics can be
captured over a long time horizon.

Next, we apply PINN to solve (7). It is also called
discrete PINN in [Raissi et al., 2019] when the Crank-
Nicolson scheme is replaced by implicit high-order Runge-
Kutta schemes. Assuming we have obtained a neural net-
work uθn(x) to approximate u(n∆t, x) in (2), we compute
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uθn+1(x) by finding another new θn+1 that minimize the loss
functions :

Ln+1(θn+1) =
λb

Nb

Nb∑
i=1

∣∣∣uθn+1(x
i
b)− g(xi

b)
∣∣∣2 + λr

Nr
·

Nr∑
i=1

∣∣∣∣uθn+1(xi
r)− uθn(x

i
r)

∆t
−N

[
uθn+1(xi

r) + uθn(x
i
r)

2

]∣∣∣∣2 .
(8)

These multiple PINNs uθn(x) take x as input and output the
solution values at different timestamps.

Remark 1. We remark that there exist alternative options for
time differencing beyond the second-order Crank-Nicolson
scheme. Several implicit Runge-Kutta schemes, including
the first-order backward Euler scheme and the fourth-order
Gauss-Legendre scheme, have been found to be effective. The
second-order Crank-Nicolson scheme is favored due to its op-
timal trade-off between computational efficiency and numeri-
cal accuracy. A comprehensive exposition of these techniques
is available in Appendix A.2 of [Chen et al., 2023].

Transfer Learning. The transfer learning methodology is
utilized to expedite the training procedure between two ad-
jacent PINNs. All the PINNs uθn(x) share the same neu-
ral network architectures with different parameters θn. For
a small time step ∆t, there are little difference between the
two adjacent PINNs uθn(x) and uθn+1(x). So the parameters
θn+1 to be trained are very close to the trained parameters
θn. When training uθn+1(x), it is sufficient to initialize the
weight parameters θn+1 as the well trained parameters θn.
Alternatively freezing a significant portion of the well-trained
uθn(x) and solely updating the weights in several hidden lay-
ers through the application of a comparable physics-informed
loss function (8) are also considerable. We did experiments to
fine tune all the network parameters as well as fine tuning the
last 1/2/3 layers of the network in the ablation study Section
5.5.

To be more precise, we first approximate the initial con-
dition u0(x) by the neural network uθ0(x), then learn
uθ1(x), uθ2(x), . . . sequentially by transfer learning. We fine
tune the well-trained parameters θn to accelerate searching
the optimized parameters θn+1. The general structure of our
TL-DPINN method is illustrated in Algorithm 1.

4 Theoretical Result
In this section, we analyze the TL-DPINN method and give
an error estimate result to approximate the evolutionary dif-
ferential equation (2). We have two reasonable assumptions
as follows.

Assumption 1. The equation (2) is dissipative, i.e.
∫
Ω
u ·

N (u)dx ≤ 0 for all u(t, x). Moreover, if N is nonlinear,
then

∫
Ω
(u1 − u2) · (N (u1)−N (u2))dx ≤ 0 for all u1(t, x)

and u2(t, x).

Assumption 2. The solution u(t, x) to (2) and the neural net-
work solution uθn(x) to (8) are all smooth and bounded, as
well as their high order derivatives.

Algorithm 1: The training procedure of our TL-
DPINN method

Input : Target evolutionary PDE (2); initial network
uθ; end time T

Output: The predicted model uθn(x) at each
timestamp tn

1 Set hyper-parameters: timestamps number Nt,
number of maximum training iterations M0,M1,
learning rate η, threshold value ϵ ;

2 Step (a): learn uθ0(x) by neural network ;
3 for i = 1, 2, ...,M0 do
4 Compute the mean square error loss L0(θ0);
5 Update the parameter θ0 via gradient descent

θ0i+1 = θ0i − η∇L0(θ0i ) ;

6 Step (b): denote θ0∗ = θ0M0
and learn

uθ1(x), ..., uθn(x), ... sequentially by transfer
learning ;

7 for n = 0, 1, 2, ..., Nt − 1 do
8 Set θn+1

0 = θn∗ ;
9 for i = 1, 2, ...,M1 do

10 Compute loss Ln+1
i (θn+1

i ) by (8) ;
11 Update the parameter θn+1 via gradient

descent θn+1
i+1 = θn+1

i − η∇Ln+1(θn+1
i ) ;

12 if |Ln+1(θn+1
i+1 )− Ln+1(θn+1

i )| < ϵ then
13 denote θn+1

∗ = θn+1
i and break ;

14 Return the optimized neural network parameters
θ1∗, θ

2
∗, ..., θ

Nt
∗ .

The first assumption is to guarantee that the solution is not
increasing over time. Consider the L2 norm ∥u(t, ·)∥2 =∫
Ω
u(t, x)2dx, we multiply (2) by u and integrate in x to get

1
2

d
dt ∥u∥

2
(t) =

∫
Ω
u · Nudx ≤ 0, so ∥u(t, ·)∥ ≤ ∥u0∥ for

all t > 0. For the simplest Heat equation with N (u) = uxx,
it is easy to verify that

∫
Ω
u · N (u)dx = −

∫
Ω
|ux|2dx ≤ 0,

satisfying Assumption 1.
The second assumption can be verified by the standard reg-

ularity estimate result of PDEs [Evans, 2022], and we omit it
here for brevity.

Denote the symbol τ = ∆t and tn = nτ , we show that the
error can be strictly controlled by the time step τ , the training
loss value Ln and the collocation points number Nr.

Theorem 1. With the assumptions (1) and (2) hold, then the
error between the solution u(tn, x) to (2) and the neural net-
work solution uθn(x) to (8), i.e., en(x) = u(tn, x)− uθn(x),
can be estimated in the L2 norm by

∥en∥ ≤ C
√
1 + tn(τ

2+ max
1≤i≤n

√
Li+N

1
4
r ), n = 1, ..., Nt,

(9)
where C is a bounded constant depend on u(tn, x) and
uθn(x).

The proof of Theorem 1 can be found in Appendix A.3 of
[Chen et al., 2023].
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Method RD Eq. AC Eq. KS Eq. NS Eq.
L2 error time L2 error time L2 error time L2 error time

Original PINN 4.17e-02 1397 8.23e-01 1412 1.00e+00 - 1.32e+00 -
Adaptive sampling 1.65e-02 1561 8.64e-03 1460 9.98e-01 6901 8.45e-01 25385

Self-attention 1.14e-02 1450 1.05e-01 1770 8.22e-01 5415 9.28e-01 21296
Time marching 3.98e-03 3215 2.01e-02 3715 8.02e-01 5527 8.85e-01 26200
Causal PINN 3.99e-05 7358 1.66e-03 9264 4.16e-02 22029 4.73e-02 5 days

TL-DPINN1 (ours) 1.82e-05 1463 5.92e-04 2328 7.17e-03 5050 3.44e-02 12440
TL-DPINN2 (ours) 9.34e-05 748 9.82e-04 1100 3.55e-02 5171 3.66e-02 56875

Table 1: A comparison of the relative L2 error and training time (seconds) for different PDEs.

Equations Depth Width Features M Nt Nr Max epochs (M0,M1) ϵ

RD Eq. 4 128 10 200 512 (10000,1000) 1e-9
AC Eq. 4 128 10 200 512 (10000,2000) 1e-10
KS Eq. 3 256 5 250 500 (10000,3000) 1e-8
NS Eq. 4 128 5 100 100 (10000,5000) 1e-5

Table 2: Detailed experimental settings of Section 5.

5 Computational Results
This section compares the accuracy and training effi-
ciency of the TL-DPINN approach to existing PINN meth-
ods using various key evolutionary PDEs, including the
Reaction-Diffusion (RD) equation, Allen-Cahn (AC) equa-
tion, Kuramoto–Sivashinsky (KS) equation, Navier-Stokes
(NS) equation. All the code is implemented in JAX [Bradbury
et al., 2018], a framework that is gaining popularity in scien-
tific computing and deep learning. In all examples, the activa-
tion function is tanh(·) and the optimizer is Adam [Kingma
and Ba, 2014]. The Fourier feature embedding and modified
fully-connected neural networks used in [Wang et al., 2022a]
are discussed in Appendix A.4 of [Chen et al., 2023].

Baselines. The Crank-Nicolson time differencing is de-
noted as TL-DPINN1, while the Gauss-Legendre time dif-
ferencing is denoted as TL-DPINN2. Our study involves a
comparison of these methods with several robust baselines:
1) original PINN [Raissi et al., 2019]; 2) adaptive sampling
[L. Wight and Zhao, 2021]; 3) self-attention [McClenny and
Braga-Neto, 2023]; 4) time marching [Mattey and Ghosh,
2022] and 5) causal PINN [Wang et al., 2022a] Table 1 sum-
marizes a comparison of the relative L2 error and running
time (seconds) for different equations by different methods.
We note that all neural networks are trained on an NVIDIA
GeForce RTX 3080 Ti graphics card.

Error Metric. To quantify the performance of our meth-
ods, we apply a relative L2 norm over the spatial-temporal
domain:

relative L2 error =

√√√√∑Nt

n=1

∑Nr

i=1 |uθn(xi)− u(tn, xi)|2∑Nt

n=1

∑Nr

i=1 u(tn, xi)2

(10)

Neural Networks and Training Parameters. In all exam-
ples, the Fourier feature embedding is applied and the mod-

ified MLP is used. Adam optimizer with an initial learning
rate of 0.001 and exponential rate decay is used. More de-
tails about the hyper-parameters of neural networks and the
hyper-parameters of Algorithm 1 are presented in Table 2.

For the configuration of other five baselines, all of
them have a neural network size with the same width and
1 deeper depth than that in Table 2. The collocation
points number for all five baselines are configured to be
Nt × Nr in Table 2. For example, a continuous origi-
nal PINN has size [2, 128, 128, 128, 128, 128, 1] and 200 ×
512 collocation points on the space-time domain to com-
pute the loss, then each discrete PINN has the smaller size
[1, 128, 128, 128, 128, 1] and much smaller collocation points
512 on space domain. The total parameters and computation
of 200 discrete PINNs and the computation on the loss calcu-
lation are about the same with a single continuous PINN. In
this configuration, we can sure that the comparison between
our TL-DPINNs and other five baselines is fair, showing the
discrete PINNs are efficient for practical applications.

5.1 Reaction-Diffusion Equation
This study begins with the Reaction-Diffusion (RD) equa-
tion, which is significant to nonlinear physics, chemistry, and
developmental biology. We consider the one-dimensional
Reaction-Diffusion equation with the following form: ut = d1uxx + d2u

2, t ∈ [0, 1], x ∈ [−1, 1],
u(0, x) = sin(2πx)(1 + cos(2πx)),
u(t,−1) = u(t, 1) = 0,

(11)

where d1 = d2 = 0.01. The solution changes slowly
over time, and Table 1 demonstrates that all methods suc-
ceed with small relative L2 norm error in this instance.
Our methods enhance accuracy by 2˜3 orders of magnitude
compared to other PINN frameworks [Raissi et al., 2019;
L. Wight and Zhao, 2021; McClenny and Braga-Neto, 2023;
Mattey and Ghosh, 2022] even with less training time. We
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see that our method TL-DPINN1 is more accurate than causal
PINN [Wang et al., 2022a] with much less computational
time. We acknowledge that our methods TL-DPINN2 may
be slightly less accurate than causal PINN, but the training
time is only nearly 1/10 of their method. In fact, the Causal
PINN method can only achieve a relative L2 error of 1.13e-
01 if we stop early at the training time of our methods ( 748
seconds). Figure 2 shows the predicted solution against the
reference solution, and our proposed method achieves a rela-
tive L2 error of 1.82e-05. More computational results of the
RD equation are provided in Appendix A.5 of [Chen et al.,
2023].

Figure 2: Comparison between the reference and predicted solutions
for the Reaction-Diffusion equation, and the L2 error is 1.82e− 05.

5.2 Allen-Cahn Equation
We consider the one-dimensional Allen-Cahn (AC) equation,
a benchmark problem for PINN training [L. Wight and Zhao,
2021; Mattey and Ghosh, 2022; Wang et al., 2022a]: ut = γ1uxx + γ2u(1− u2), t ∈ [0, 1], x ∈ [−1, 1],

u(x, 0) = u0(x),
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1).

(12)

where γ1 = 0.0001, γ2 = 5 and u0(x) = x2 cos(πx). For
the original PINN, the Allen-Cahn equation is hard to solve,
but our approach performs well in accuracy and training effi-
ciency. Figure 1 compares the predicted solution to the refer-
ence solution. Our technique achieves a relative L2 error of
5.92e-04. Figure 3 shows how the L2 error evolves and how
many training epochs are needed at different timestamps. The
L2 error increases as the AC equation develops more compli-
cated. Each timestamp’s training epoch is small across the
time domain, reducing training time. More computational re-
sults of the AC equation are provided in [Chen et al., 2023].

(a) Relative L2 errors (b) Training epochs

Figure 3: Training results for the Allen-Cahn equation.

5.3 Kuramoto–Sivashinsky Equation
The Kuramoto-Sivashinsky (KS) equation is used to model
the diffusive–thermal instabilities in a laminar flame front.
Existing PINN frameworks are challenging to solve the KS
equation as the solution exhibits fast transit and chaotic be-
haviors [Raissi, 2018]. The KS equation takes the form{

ut + αuux + βuxx + γuxxxx = 0,
u(0, x) = u0(x),

(13)

with periodic boundary conditions. Here α = 5, β = 0.5,
γ = 0.005, and the initial condition u0(x) = − sin(πx). Fig-
ure 4 visualizes the predicted solution against the reference
solution, and our proposed method achieves a relative L2 er-
ror of 7.17e-03. From t = 0.4, the reference solution begins
to quickly transition, and our method is able to capture this
feature. More computational results of the KS equation are
provided in Appendix A.7 of [Chen et al., 2023].

Figure 4: Comparison between the reference and predicted solutions
for the Kuramoto–Sivashinsky equation, and the L2 error is 7.17e−
03.

5.4 Navier-Stokes Equation
We consider the 2D Navier-Stokes (NS) equation in the
velocity-vorticity form [Wang et al., 2022a] wt + u · ∇w = 1

Re∆w, in [0,T]× Ω,
∇ · u = 0, in [0,T]× Ω,
w(0, x, y) = w0(x, y), in Ω.

(14)

with periodic boundary conditions. Here, u = (u, v) repre-
sents the flow velocity field, w = ∇ × u represents the vor-
ticity, and Re is the Reynolds number. In addition, Ω is set to
[0, 2π]2 and Re is set to 100. Figure 5 presents the predicted
solution of w(t, x, y) compared to the reference solution. Our
proposed method can obtain a result similar to that in [Wang
et al., 2022a], while the training time is only 1/58 of their
method. More computational results of the NS equation are
provided in Appendix A.8 of [Chen et al., 2023].

Figure 5: Comparison between the reference and predicted solutions
of w(t, x, y) for the Navier-Stokes equation at t = 1.0, and the L2

error is 3.44e− 02.
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Method RD Eq. AC Eq.
L2 error time L2 error time

Causal PINN 3.73e-05 ± 4.66e-06 7207 ± 219 1.51e-03 ± 2.12e-04 9060 ± 341
TL-DPINN1 1.76e-05 ± 1.06e-06 1463 ± 53 6.08e-04 ± 3.06e-05 2328 ± 89
TL-DPINN2 9.89e-05 ± 8.94e-06 811 ± 122 9.29e-04 ± 8.06e-05 1291 ± 178

Table 3: Repeated test.

Method Training efficiency (epochs/sec.)
Reaction-Diffusion Allen-Cahn Kuramoto-Sivashinsky Navier-Stokes

Casual PINN 61.70 52.33 26.24 2.77
TL-DPINN1 439.37 384.47 259.20 8.32
TL-DPINN2 276.40 239.52 127.55 6.37

Table 4: A comparison of training efficiency for different equations.

5.5 Ablation Study
We conduct ablation studies on the relatively simpler RD Eq.
and AC Eq. to ablate the main designs in our algorithm.
Time Differencing Scheme Study. Numerous time differ-
encing schemes have been developed in the last decades. We
list some commonly used schemes in [Chen et al., 2023].
We do experiments on different time differencing schemes to
validate that implicit time differencing schemes (2nd Crank-
Nicolson or 4th Gauss-Legendre) are more stable and lead to
better performance. The results are given in Table 5.

Method RD Eq. AC Eq.
L2 error time L2 error time

Forward Euler 1.32e-03 208 9.57e-03 304
Backward Euler 2.74e-03 206 1.64e-02 444

2nd RK 1.97e-03 761 1.17e-03 1054
4th RK 2.11e-03 1187 1.31e-03 1779

TL-DPINN1 1.82e-05 1463 5.92e-04 2328
TL-DPINN2 9.34e-05 748 9.82e-04 1100

Table 5: Time differencing scheme study.

Transfer Learning Study. To see weather the transfer
learning part is effective, we do ablation studies without us-
ing transfer learning. Besides, we also do experiments to fine
tune the last 1/2/3 layers of the network. The results are given
in Table 6. We can see that transfer learning is effective both
in the efficiency and accuracy of our method.
Repeated Test. To further demonstrate the well-
performance of our TL-DPINN method through accuracy
and efficiency, we do 5 random runs for RD and AC Eq. by
casual PINN and our method for comparison. The results are
given in Table 3.

5.6 Training Efficiency
Table 4 illustrates how the computation efficiency is affected
by different time discretization methods on different equa-
tions. In addition, the casual PINN method is also compared.

Method RD Eq. AC Eq.
L2 error time L2 error time

Without TL 4.01e-04 5880 1.35e-02 9170
last layer 3.31e-04 638 1.01e-02 3624

last 2 layers 3.22e-04 221 1.01e-02 4029
last 3 layers 4.08e-04 232 1.01e-02 4685

TL-DPINN1 1.82e-05 1463 5.92e-04 2328
TL-DPINN2 9.34e-05 748 9.82e-04 1100

Table 6: Transfer learning study.

All neural networks are trained on an NVIDIA GeForce RTX
3080 Ti graphics card. We note that the total training epochs
of our methods are not fixed due to the stopping criterion (see
Algorithm 1). The training efficiency in Table 4 is consistent
with the training time in Table 1.

6 Conclusion

In this paper, we propose a method for solving evolutionary
partial differential equations via causality-enhanced discrete
physics-informed neural networks with transfer learning ac-
celerating (TL-DPINN). The discrete PINNs were thought to
be time-consuming and seldom applied in the PINNs litera-
ture. We contribute to the PINN community by rediscovering
the well performance of the discrete PINNs applied to solve
evolutionary PDEs, both theoretically and numerically. Our
method first employs a classical numerical implicit time dif-
ferencing scheme to produce a series of stable propagation
equations in space, and then applies PINN approximation to
sequentially solve. Transfer learning is used to reduce com-
putational costs while maintaining precision. We demonstrate
the convergence property, accuracy, and computational effec-
tiveness of our TL-DPINN method both theoretically and nu-
merically. Our proposed method achieves state-of-the-art re-
sults among different PINN frameworks while significantly
reducing the computational cost.
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