
Abstract 
360° video streaming has seen tremendous growth 
in past years. However, our measurement reveals a 
dilemma that severely limits QoE. On the one hand, 
viewport prediction requires the shortest possible 
prediction distance for high predicting accuracy; On 
the other hand, video transmission requires more 
buffered data to compensate for bandwidth fluctua-
tions otherwise substantial playback rebuffering 
would be incurred. Since no existing method can 
break this dilemma, the QoE optimization was nat-
urally bottlenecked. This work tackles this challenge 
by developing QUTA – a novel learning-based 
streaming system. Specifically, our measurement 
shows that three kinds of internal streaming param-
eters have significant impacts on the prediction dis-
tance, namely, download pause, data rate threshold, 
and playback rate. On top of this, we design a new 
long-term-planning (LTP) learning method that 
tunes the parameters dynamically based on the net-
work and streaming context. Evaluations with large-
scale streaming trace data show that QUTA not only 
improves the prediction accuracy and QoE by up to 
68.4% but also exhibits strong robustness. 

1 Introduction 
In recent years, the notion of Metaverse has become very hot 
where one attractive application is 360° panorama video 
streaming [Yaqoob et al. 2020]. Unlike the 2D videos without 
any interactivity, 360° videos allow viewers to change view-
ports freely during the 3D video playback to obtain an im-
mersive experience. Due to the huge market demand, the ma-
jor streaming vendors have all launched the 360° video ser-
vices, e.g., YouTube, Facebook, and Netflix.  

Given the 360° panorama scenes, the frame resolution is 
typically 4K or higher. However, transmitting such high-res-
olution videos over the Internet is far from trivial, especially 
under the mobile network with substantial bandwidth fluctu-
ations. Moreover, since the viewer can only watch a portion 
of the panoramic scene (i.e., within the viewport, c.f. Fig. 1), 

delivering the entire frame in equally high quality would in-
evitably result in large wasted bandwidth such that Quality-
of-Experience (QoE) is limited. Therefore, in practice, the 
goal for transmitting 360° videos is to maximize the video 
quality inside the viewport while reducing the quality outside 
to reach high transmission efficiency. To this end, on the 
server side, the video frame is cropped into different spatial 
tiles, each of which is encoded into multiple bitrate levels 
(Fig. 1). At runtime, the client periodically predicts viewers’ 
future viewport and downloads the in-viewport tiles at the 
highest possible bitrate while the outside tiles are at low bi-
trate, and then pieces them together in the buffer for playback. 

Dilemma. Theoretically, the above design can maximize 
the QoE. However, we measured some state-of-the-art view-
port prediction algorithms in real streaming environments 
and found that the prediction accuracy is far from optimal. 
The reason is that these algorithms extract the historical view-
ports from the already played video segments and then make 
predictions for future pre-download segments (see Fig. 2). In 
the streaming context, the buffered video lengthens the pre-
diction distance and thus weakens the viewport correlation. 
Consequently, the historical viewport cannot guide the pre-
dictions well and the tile bitrate cannot be assigned accurately, 
leading to severe limitations in video quality and QoE. 
Guided by this insight, one may turn to reducing the predic-
tion distance to address the problem. This method did im-
prove the accuracy. However, the shorter prediction distance 
indicates less buffered data, which leads to much rebuffering 
and large QoE degradations due to the fluctuating network.  

A Deep Reinforcement Learning Approach to Balance 
 Viewport Prediction and Video Transmission in 360° Video Streaming 

 
Guanghui Zhang1 and Jing Guo2 

1Shandong University 
2The Hong Kong Polytechnic University 

gh.zhang@sdu.edu.cn, guojing_jane@foxmail.com 

 
Figure 1: The architecture of 360° video streaming. 
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In recent years, several 360° streaming algorithms were 
proposed but none of them can break the above dilemma, so 
the QoE optimization has naturally been bottlenecked (a 
comprehensive related work review is in §2 ). This paper tack-
les this challenge by developing QUTA, a novel learning-
based streaming system that is capable of coordinating the 
viewport prediction and the video transmission well. Evalua-
tions show that QUTA not only improves the viewport pre-
diction and QoE by up to 68.4% but also exhibits strong ro-
bustness. In summary, this work makes four contributions:  
▪ This is the first work so far to comprehensively investigate 
the aforementioned dilemma in 360° video streaming. Our 
measurement demonstrates that this problem is real and 
pressing, but difficult to solve in the current platform. 
▪ We found that three kinds of internal streaming parameters 
have large impacts on the prediction distance: 1) download 
pause, i.e., making the video download periodically pause at 
the segment interval; 2) data rate threshold, i.e., matching the 
sum data rate of the video tiles to the throughput dynamics; 
3) playback rate control. On top of this, we formulated an op-
timization problem to maximize QoE by tuning the parameter 
values. (§3.1) 
▪ In the 360° streaming context, an intelligent model is 
needed to solve this optimization problem consecutively for 
all the video segments. Since the three parameters are all in 
continuous-valued domains, we applied Continuous Control 
Deep Reinforcement Learning (CC-DRL) [Lillicrap et al. 
2015] for the parameter decisions. However, we found that 
the state-of-the-art CC-DRL method [Fujimoto et al. 2018] is 
very short-sighted, merely using single-step future planning. 
At each epoch, it only greedily computes the Q-value of the 
next (one) segment, which leads to suboptimal training per-
formance in the streaming context with consecutive decision-
making for all segments. To this end, we improved the train-
ing method and proposed a long-term-planning scheme to 
predict the Q-value of the next multi-step segments, which 
greatly improves the training efficacy. We call this new train-
ing method as “LTP” in this work. (§3.2) 
▪ This work validates the performance of QUTA via large-
scale data-driven emulations. We not only evaluated QUTA’s 
streaming performance and robustness but also looked deeply 
into the underlying parameter decisions to analyze the root 
cause of its superiority. (§4) 

2 Related Work 
In this section, we will review the recent studies relevant to 
this paper. Interested readers can also refer to a recent survey 
paper [Yaqoob et al., 2020]. 

Bitrate Adaptation and Allocation. Under the DASH 
standard [Stockhammer et al., 2011], bitrate adaptation has 
been a hot research topic in the field of conventional 2D video 
streaming. Compared to the 2D streaming merely making bi-
trate decisions for video segments, the 360° streaming algo-
rithm is more fine-grained, where it first predicts the future 
viewport motions and then separately determines the bitrate 
of each video tile based on the prediction results. 

[Qian et al., 2018] conducted subjective experiments on 
real viewers and collected their viewport motion trajectories. 
Based on the experimental analysis, they developed an online 
system Flare which includes a viewport prediction algorithm 
based on real-time viewports and a bitrate allocation strategy 
built on optimization problem solving; [Guan et al., 2019] 
discovered several new features that affect the perceptual 
quality of the 360° videos (e.g., viewport motion speed), and 
on this basis, they developed a new visual perception model 
to guide bitrate allocation; [Zhang et al., 2021] found that the 
size of the video tile has a significant impact on the streaming 
performance. For example, reducing the tile size decreases 
the accuracy of viewport prediction, leading to video quality 
degradation, while upsizing increases the data size to fetch 
and thus could incur more rebuffering. Driven by this finding, 
they proposed an adaptive scheme that dynamically adjusts 
the tile size according to the accuracy of the viewport predic-
tion and then assigns bitrates on the changing tiles.  

Another branch of work is built on deep reinforcement 
learning (DRL). [Zhang et al., 2019] proposed the first DRL-
based algorithm that uses LSTM (Long Short-Term Memory) 
networks to predict future viewport changes, and then allo-
cate bitrate via an Actor-Critic network; [Wu et al., 2021] 
found that the current DRL-based approaches are typically 
trained with a solo QoE function, but in practice, different 
viewers could have different QoE preferences. If the adopted 
QoE function does not match the viewer’s actual preference, 
then the service quality would be significantly degraded. To 
this end, they proposed PAAS (Preference Aware Adaptive 
360° Video Streaming), which offers a multi-objective DRL 
setup that uses a preference-aware Deep Q-learning algo-
rithm to implement a training agent under the dynamic QoE 
preferences and enforce the agents to execute preference-de-
pendent bitrate allocation. [Lu et al., 2022] developed a meta-
learning-based framework that uses efficient meta-network 
designs to capture the commonality among the viewers with 
different viewing patterns and QoE preferences. [Shi et al., 
2022] proposed Sophon, which leverages saliency-aware 
prefetch and super-resolution model to address the challenge 
of insufficient computing resources and dynamic user 
preferences. 

Viewport Prediction. Viewport prediction plays a deci-
sive role in the performance of the 360° video streaming sys-
tem. Therefore, in recent years, many research works have 
been conducted to improve the prediction accuracy. 

The majority of the existing prediction algorithms are 
driven by viewers' past viewports. For example, [Nasrabadi 
et al., 2020] proposed a clustering-based method that segre-
gates the collected viewport trajectories into different clusters 
and then performs feature extraction. At runtime, it will 

 
Figure 2: Illustration of viewport prediction. 
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match each viewer into different clusters and then make pre-
dictions according to the cluster features; [Xu et al., 2019] 
developed a DHP method (DRL-based Head-movement Pre-
diction), which has an offline and an online phase. In the of-
fline DHP, multiple DRL workflows are run simultaneously 
to learn the features of different viewport trajectories. Then 
the system outputs viewport hotspot maps which will guide 
viewport prediction in the online DHP. 

In addition to the past viewports, researchers found that the 
video content also plays a key role in affecting the future 
viewport motion, so, if the hot video content can be well de-
tected, then the viewport prediction will be greatly facilitated. 
Based on this motivation, [Nguyen et al., 2018] developed 
PanoSalNet, a system that trains a convolutional neural net-
work (CNN) to detect hot contents in 360° videos and then 
quantifies them via the saliency map. In addition, this work 
also trains an LSTM network to perform viewport prediction 
based on the saliency map as well as the past viewports; 
Thereafter, [Xu et al., 2018] and [Rondon et al., 2021] further 
improved the LSTM network in PanoSalNet and achieved 
significant accuracy improvements. In another study, [Cho-
pra et al., 2021] found that the viewport usually changes with 
the major objective movement in the video content (e.g., the 
athletes in a sports event). Based on this finding, they devel-
oped PARIMA which attempts to identify the major objec-
tives in the content and then predicts future viewports by 
tracking their movement trajectories; [Wang et al., 2022] de-
veloped SalientVR that only relies on the saliency maps for 
the prediction and completely abandons the use of the histor-
ical viewport trajectory. 

Problem: As presented in §1, all the existing algorithms 
of 360° video streaming suffer from a dilemma that signifi-
cantly limits the QoE performance. Specifically, on the one 
hand, the viewport prediction requires the shortest possible 
prediction distance for high accuracy, but the buffered video 
data lengthens the prediction distance and weakens the view-
port correlation; On the other hand, the video delivery re-
quires more buffered data to compensate for the bandwidth 
fluctuations otherwise substantial rebuffering events would 
be incurred. In §3, we will show how the proposed QUTA 
solves this problem. 

3 Methodology 
In this section, we will introduce QUTA. In §3.1, three pa-
rameters are proposed to control the prediction distance. In 
§3.2, a new learning method is proposed for determining the 
parameter values in the video streaming context. 

3.1 Internal Streaming Parameter 
How to control the predication distance? As discussed in §1 
~ §2, the prediction distance has a strong positive correlation 
with the buffering. In video streaming, the buffered data orig-
inates from the video download so one can regulate the down-
load speed to control the prediction distance. Furthermore, 
the video download and the playback are two synchronized 
processes in streaming, so one can also regulate the playback 
speed. These insights inspire us to propose the following: 

Video download pause. The mechanism is to periodically 
pause the video download via setting a sleeping time σk be-
fore requesting each segment k. Meanwhile, the playback is 
still going on so the buffer level would drop. Thus, control-
ling the sleep time can control the buffer. Specifically, ignor-
ing the network latency, let tk and fk be the starting and com-
pletion time for transferring segment k. Let bk be the buffer 
occupancy at time fk. Via tuning σk, we can schedule the start-
ing time to transmit the next segment at tk+1: 

 1
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,  
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Discussion: One may wonder whether the frequent down-
load pause will leave a large amount of bandwidth idle and 
then the bandwidth utilization will be greatly reduced. The 
answer is no, because the bandwidth is typically in a multi-
user competition state. Once the base station detects any idle 
usage, it will immediately allocate the resources to other us-
ers to balance the whole service quality [Mao et al. 2017].  

Data rate allocation. Theoretically, if the total video data 
rate (i.e., the sum bitrate of all the tiles) is exactly equal to the 
throughput during streaming, then the buffer level can be kept 
in a dynamic equilibrium because the download time equals 
the playback time. If one further turns up (down) the data rate, 
then the download time will accordingly increase (decrease) 
and the buffer level will decrease (increase). Therefore, this 
inspires us to manage the data rate. 

In 360° video streaming, each segment k is cropped into 
multiple spatial tiles t=0,1,…,T-1, and each tile is encoded 
into multiple bitrate versions rk,t. Before the download, the 
player makes bitrate decisions for each tile, denoted by func-
tion G(.), which assigns the highest possible bitrate to the pre-
dicted in-viewport tiles (flag ξk,t=1) and a low bitrate to out-
side tiles (flag ξk,t=0). Upon this workflow, we defined a new 
parameter μk (called data rate threshold): 

 , , ,{ | } ( , ),  s.t. k t k k t k t kt
r t G r  


    (2) 

where the sum bitrate of all the tiles in segment k is limited 
within μk. As a result, by tuning μk, the system is able to man-
age the video download time. 

Playback rate control. We denote the buffer level before 
requesting segment k as bk. After downloading k, the buffer 
level (denoted by bk+1) will become 

 ( )1 max ,0 + = −  +  k k k k kb b l  (3) 

where ρk is the playback rate of segment k, τk is the time spent 
on downloading k, lk is the segment physical duration. Intui-
tively, turning up ρk will result in more buffered data to be 
consumed during downloading segment k, and conversely, 
turning down ρk will increase the buffer. 

Subjective test for playback rate change: Tuning the play-
back rate for the 360° videos has been widely adopted by 
many commercial platforms such as YouTube, Netflix, etc. 
Interested readers can visit [YouTube Instance 2023] to ex-
perience an actual instance. In practice, the streaming vendor 
would like to make the rate changes imperceptible to the 
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viewers (the normal rate is ×1.0) to avoid QoE degradation. 
To this end, we recruited 100+ real viewers to test the effects 
of the rate change. We selected five 360° videos from 
YouTube with different genres and then iteratively assigned 
them to each viewer. From the normal rate ×1.0, we gradually 
turned up/down the rate each minute (within ×0.5 ~ ×1.5). 
The viewers were asked for feedback whenever detecting a 
rate change. Finally, we found that only a rate change larger 
than ±20% can be detected. Other research work offered sim-
ilar observations [Nguyen et al. 2022]. Therefore, we defined 
a maximum change limit κmax on the playback rate deviation: 
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where κmax is set to 20% in this work, i.e., βk is in×0.8 ~ ×1.2. 

3.2 Long-Term-Planning Model Training 
The fundamental purpose of this work is to optimize the QoE. 
To this end, we formulate an optimization problem where the 
objective function is to maximize QoE wk via consecutively 
deciding σk, μk, ρk (see §3.1) for all the video segments 
k=1,2,…,K in one streaming session: 
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where QoE wk can be quantified by any QoE function like 
(13), and the optimization constraints follow (1) ~ (4).  

Why CC-DRL? In practice, however, solving the above 
problem is challenging. First, the computation overhead is 
not negligible because the decision for σk, μk and ρk is consec-
utively made on each segment k so the video player needs to 

solve a complex nonlinear optimization problem at each time 
step (epoch) online. Second, there is no direct solver for this 
nonlinear problem so one may need to use an external solver, 
which leads to deployment issues. In comparison, DRL meth-
ods offer an offline-online combinational solving method 
where most of the complexities can be consolidated in the of-
fline training, leaving a simple model for online decision-
making. Moreover, σk, μk, ρk are in continuous (real-valued) 
action domains, so in QUTA, we applied Continuous Control 
Deep Reinforcement Learning (CC-DRL) [Lillicrap et al. 
2015] to train the parameter decision model. 

The challenge to adopt CC-DRL. However, we found 
that the state-of-the-art CC-DRL, e.g., TD3 [Fujimoto et al. 
2018], is very short-sighted, merely using single-step future 
planning to calculate the Q value of only the next (one) step 
segment, which makes the training difficult to converge un-
der the consecutive decisions in the streaming context. To 
this end, we improved this existing method by proposing a 
long-term planning strategy to predict the Q value of the next 
multi-step segments. We called this new method as LTP 
which greatly improves the training convergence speed and 
stability. Its core procedure is illustrated in Fig. 3. The details 
are in the following. 

Input States. On requesting segment k, the neural network 
captures the environmental features by taking in a list of input 
states sk. In this work, we defined two states: State 0 is called 
throughput-vector which consists of g samples, i.e., Ck = <ck-

1, ck-1, …, ck-g>, where each sample quantifies the mean 
throughput in downloading one of the past g segments, i.e., 
k-g ~ k-1; State 1 is called buffer-vector which consists of h 
samples, i.e., Bk = <bk-1, bk-2,…, bk-h>, where each sample rep-
resents the instant buffer level on requesting one of the past h 
segments, i.e., k-h ~ k-1. 

Neural Network. The decision model consists of six neu-
ral networks (Fig. 3), namely, Actor πϕ with neuron weight ϕ, 
two Critic Qθ1 and Qθ2 with weight θ1 and θ2, Target Actor 
πϕ’, and two Target Critic Qθ1’ and Qθ2’. Note that only Actor 
πϕ performs the parameter decisions and interacts with the 
streaming environment, and the remaining five are all train-
ing assistants. We will detail the training later.  

Output Action. Actor πϕ has three output ports, i.e., {σk, 
μk, ρk}, collectively denoted by ak. They are all continuous 
values with unlimited ranges, i.e., ak∈R. To limit ak into an 
available range [amin, amax], we defined a linear mapping: 
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where the output is the final action of segment k, and (ak)0.01 
denotes keeping two decimal places to facilitate the practical 
system implementation. 

Environment. In this work, to speed up the training, we 
leverage virtual streaming [Mao et al. 2017] to emulate the 
streaming environment where the neural network is executed 
in a simulated environment replayed by network traces and 
video traces (c.f. §4.1). 

 

Figure 3: An illustration of the training method: LTP training is 
based on the decisions for historical segment i, i+1 … i+n. Actor 
inputs state si and outputs action ai. Target actor inputs state si+n 
and outputs action ai+n. Critic 1(2) input si and ai, and output Q-
value Q1(2). Target Critic 1(2) input si+n and ai+n, and output target 
Q-value Q1’(2’). Rewards wi, wi+1 … wi+n are evaluated in the en-
vironment, and y is the multiple-step discount reward. Critic 1(2) 
is updated based on TD errors. Actor is updated based on Q1. 
Target networks are updated based on the corresponding learned 
networks. The training details are described in §3.2. 
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Training. At first, whenever receiving state sk, Actor πϕ 
will make action ak for segment k: ak ← πФ(sk)+δ where δ is 
a random exploration noise, and ak will be mapped to the 
available range according to policy (6). The system then ap-
plies ak in streaming segment k via the environment, and re-
ward wk is calculated according to the resulting streaming 
performance to express the goodness of the last decision. 
Since QUTA targets optimizing QoE, the reward wk can be 
quantified by any QoE function like (13). After downloading 
segment k, state sk is translated to sk+1 due to the model’s in-
teraction with the environment. The transition tuple (sk, ak, wk, 
sk+1) will be gathered and stored in a resource pool ψ.  

Long-Term Planning: At each epoch, the system samples 
a mini-batch of M transition queues {Πm | m=1…M} from ψ 
where each queue Πm contains a sequence of n transition tu-
ples sorted by the order of the streaming segments: 

( ) ( ), , , , 1 , , , , 1, , , , , , , ,m m i m i m i m i m i n m i n m i n m i ns a w s s a w s+ + + + + +  

 (7) 
where the segment index is from i to i+n and the initial one 
is randomly chosen. The two Critics Qθ1 and Qθ2 will be up-
dated separately based on the M transition queues by tuning 
their neural weights θε=1,2 to achieve a minimum TD (tem-
poral difference) error [Sutton et al. 1988]: 

 ( )( )
21

1,2 , , min ,m m im m iarg M P Q s a
  

−

= =  −  (8) 

where Pm is an expectation for the Q value which is calculated 
by target reward ym and target Q value (output by two Target 
Critics Qθ1’ and Qθ2’ separately): 

( ) ( ) 1' 2 ', ,, ,min , , ,m i n m i n m i nm m m i nP y Q s a Q s a  + ++ += +  (9) 

where am,i+n is the target action for the last segment i+n out-
put by Target Actor πϕ’, γ is the discount factor, and the target 
reward ym is a discount combination of the rewards in all the 
transitions from (7): 

 0 1 1
, , 1 ,  n

m m i m i m i ny w w w   −

+ += + +  +  (10) 

It is worth noting that the Q value estimation is the most 
remarkable improvement of the LTP training beyond the ex-
isting methods, which is a long-term planning strategy to pre-
dict the target Q of the next multiple-step segments instead of 
the short-sighted single step [Fujimoto et al. 2018]. This 
greatly improves the training convergence speed and stability. 

Actor πϕ is updated at a lower frequency than Critics, 
which is at a fixed step number of d (e.g., =2). Each update 
follows the deterministic policy gradient: 

 ( ) ( ) ( )
,

1
1 , , ,,

m i m i m i m im aJ M Q s a s   −

 =     (11) 

The rule behind this update is to find the optimal policy πϕ by 
tuning the neural weight ϕ to maximize the expected return 
J(ϕ), and Eq. (11) takes only one step toward this direction. 
The neuron weights of all the target networks (i.e., Target 
Critic θ’ε=1,2, and Target Actor ϕ’) are then updated via 
EWMA policy (exponential weighted moving average). This 
makes the target neuron weights slowly track the newly 

learned networks (i.e., Critic θε=1,2, and Actor ϕ) so that the 
TD error remains small to keep the training steady. 

4 Performance Evaluation 
In this section, we conducted data-driven emulations to com-
pare QUTA to the state-of-the-art algorithms to see the per-
formance improvements. 

4.1 Experimental Setup 
We modified an existing emulator [Emulator, 2021] devel-
oped by [Rondon et al. 2021]. The setup is the following:  

Video Trace. We used the video trace offered by the em-
ulator which includes 4,275 viewport trajectories captured 
from 75 videos (each video was watched by 57 viewers). The 
viewport position is quantified as 3-dimensional spherical co-
ordinates. We split each video into a sequence of 1s-long seg-
ments where each frame is cropped into 10×10 tiles. The en-
coding bitrate follows the setting of [YouTube 2023].  

Network Trace. The network condition is emulated by 
TCP throughput traces captured from real networks. We em-
ployed three trace sources #1 ~ #3, including 60,000+ stream-
ing sessions [TCP Trace 2023]. Based on the mean 
throughput and variations (c.f. Table 1), we marked them as 
“poor”, “medium”, and “good” networks respectively.  

Viewport Prediction Baseline. Three cutting-edge view-
port prediction algorithms are evaluated: 1) Flare [Qian et al. 
2018] is only based on historical viewport; 2) SalientVR 
[Wang et al. 2022] only takes in saliency maps extracted from 
video content; 3) TRACK [Rondon et al. 2021] incorporates 
both historical viewport and video content. Upon the view-
port prediction, we adopted a common pyramid-based bitrate 
allocation scheme [Chopra et al. 2021]. 

Evaluation Metric. 1) Prediction accuracy:  

 ii
K 


=  (12) 

where θi is a 0/1 flag that indicates whether the prediction for 
video tile i is correct (=1) or not (=0), and K is the total tile 
number in each frame;  

2) QoE performance [Wu et al. 2021]: 

 ,0 ,1 ,2 ,30.5 0.5 5k k k k kw w w w w= −  −  −   (13) 

where k is the segment index, wk,0~ wk,3 are four QoE metrics: 
wk,0 – average tile bitrate (quality) within the viewport: 

 ( ),0 , , ,k k i k i k ii i
w r  

 
=    (14) 

where rk,i is the bitrate of tile i, and ξk,i is a 0/1 flag indicating 
whether tile i is actually viewed (=1) or not (=0);  

wk,1 – spatial quality variation (over the in-viewport tiles): 

Features #1 #2 #3 
Mean throughput (Mbps) 3.97 6.43 10.4 

Throughput variation  0.74 0.58 0.42 
Network condition Poor Medium Good 

Table 1: Characters of Network Traces 
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 ( ),1 , ,0 , ,k k i k k i k ii i
w r w  

 
= −    (15) 

wk,2 – temporal quality variations (to the last segment): 

 ,2 ,0 1,0k k kw w w −= −  (16) 

wk,3 – rebuffering duration: 

 ( ),3 max ,0k k k kw b =  −    (17) 

where τk is the download time of segment k, ρk is the playback 
rate, and bk is the buffer level on requesting segment k.  

QUTA Settings. The neural network model of QUTA ap-
plies sliding windows to receive input states (§3.2). We de-
fined the throughput-vector with g=8 window size which is 
passed to a CNN with 128 filters. Similarly, the buffer-vector 
has a h=8 window size which is passed to a CNN with 128 
filters. Then the outputs of the CNNs will be aggregated and 
passed to two hidden layers, each with 128 neurons. We used 
the optimizer Adam with a learning rate of 10−4 for all the 
networks. The tuning range of the three internal streaming 
parameters, i.e., sleeping time σ, data rate threshold μ, and 
playback rate ρ, are 0.1s~3s, 0.2Mbps~12Mbps, and 0.8~1.2, 
respectively. More discussions about the neural settings and 
the ablation experiments are shown in §4.4. In QUTA, 60% 
of the trace data are for training and 40% are for testing. 

4.2 Optimizing Viewport Prediction 
In this section, we applied QUTA to optimize the viewport 
prediction algorithms, Flare, SalientVR, and TRACK. We 
compared QUTA with two variant schemes: 1) The original 
version that eliminates the buffer control; 2) Hard-limit that 
places a fixed-duration buffer capacity (set it to 3s according 
to [Qian et al. 2018]) to limit the prediction distance. In Fig. 
4, we compare QoE (4-a), viewing video quality (4-b), pre-
diction accuracy (4-c), and rebuffering (4-d).  

Flare and TRACK have similar performance patterns. Spe-
cifically, the hard-limit scheme can effectively improve their 
QoE over the original version (4-a). This is because the pre-
diction distance is limited within 3s which improves the pre-
diction accuracy (4-c) and viewing quality (4-b). However, 
this fixed capacity cannot be dynamically adjusted for differ-
ent network conditions and thus leads to far more rebuffering 
events (4-d). In comparison, QUTA achieves the best QoE 

over the three schemes. This benefits from its ability to make 
long-term parameter decisions based on the dynamic stream-
ing context (c.f. §3.2).  

The performance of SalientVR is different from Flare and 
TRACK. Its QoE under the original scheme is even better 
than that under the hard-limit (4-a). This is reasonable be-
cause SalientVR relies solely on the video content to make 
the predictions so its accuracy cannot be improved even if the 
prediction distance is limited (4-c). At the same time, setting 
a hard limit to the buffer incurs more rebuffering (4-d), lead-
ing to QoE degradations. In comparison, QUTA can still im-
prove its QoE, which is due to the ability to dynamically ad-
just the data rate threshold based on the network conditions 
(c.f. §3.1). 

We further evaluated the dynamics of QoE across three 
throughput trace sources which are denoted by as “good”, 
“medium”, and “poor” networks based on the average 
throughput and variations (c.f. Table 1). The performance is 
summarized in Table 2. It is clear that QUTA achieves con-
sistently better QoE than the other two over all the three net-
works. The QoE improvement is up to 25.8%~68.4%. This 
demonstrates that QUTA is highly robust. As long as enough 
network throughput data is provided in the training to allow 
sufficient learning, QUTA is able to operate stably in the en-
vironment with large feature differences. 

4.3 Comparison to Streaming Algorithms 
We further compared QUTA to three state-of-the-art 360° 
video streaming algorithms, namely,  
▪ DLR360, based on Policy Gradient [Zhang et al. 2019]; 
▪ PAAS, based on Deep Q Network [Wu et al. 2021]; 
▪ Meta, based on Meta-Learning [Lu et al. 2022]. 

In Fig. 5-left, we compare the normalized QoE (N-QoE) of 
the four algorithms. As can be seen, QUTA significantly out-
performs the other three with an average QoE improvement 
from 20.5% to 29.9%. By contrast, Meta performs the worst 
where the QoE is only 77% of QUTA. To quantify the main 
contribution from the QoE metrics, we further evaluated the 
viewing video quality and rebuffering in Fig. 5-right. We ob-
served that QUTA achieves the highest average video quality 
(=PAAS) and the least amount of rebuffering. 

To further analyze the QoE in different network conditions, 
we evaluated the algorithms on the three trace sources, i.e., 
poor, medium, and good, and drew the CDF distribution for 
per-session QoE in Fig. 6. We observed that DRL360 per-
forms worst in the poor network, indicating that it is very sen-
sitive to the throughput fluctuations. Meta achieves the low-
est QoE in the medium and good networks because its model 
is unable to fully utilize the high-level bandwidth. In compar-
ison, QUTA performs best in all the three sources. 

Networks Original Hard-limit QUTA Improve (%) 
Poor 0.13±0.03 0.15±0.03 0.20±0.04 53.8 / 33.3 

Medium  1.52±0.31 2.04±0.35 2.56±0.40 68.4 / 25.8 
Good 2.41±0.43 3.09±0.51 4.05±0.77 68.0 / 31.1 

Table 2: QoE and Improvement over Different Networks 

 

 
Figure 4: Comparison of QoE (↑), viewing video quality (↑),  

prediction accuracy (↑), and rebuffering (↓). 
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The superior performance of QUTA can be summarized in 
threefold: 1) All the design factors of QUTA focus on coor-
dinating the viewport prediction and video delivery so that it 
manages to break the QoE optimization dilemma in 360° 
video streaming; 2) QUTA is trained by LTP where the 
trained model is able to perform long-term planning decisions 
to pursue the global optimum; 3) Unlike other algorithms, 
QUTA is a generalized framework that can incorporate any 
existing best-performing logic (e.g., viewport prediction, bi-
trate adaptation, etc.), which liberates the maximum perfor-
mance potential. 

4.4 LTP Training and Parameter Decisions 
The offline training taken by LTP plays a decisive role in 
QUTA’s superior performance. To evaluate its efficiency, we 
compared the training QoE to two existing CC-DRL methods: 
TD3 [Fujimoto et al 2018] and DDPG [Lillicrap et al. 2015] 
in Fig. 7-left and -middle, and to two discrete-action DRL 
methods: A3C [Mnih et al. 2016] and DQN [Mnih et al. 2015] 
in Fig. 7-right. First, compared to TD3 and DDPG, LTP 
achieves a more stable training QoE, which is due to its future 
long-term Q-value estimation to pursue a global optimum at 
each time step (epoch). By contrast, both TD3 and DDPG use 
short-sighted single-step planning, leading to the QoE having 
noticeably sharp fluctuations and hard to converge especially 
under the poor network condition (see Fig. 7-left).  

Second, since A3C and DQN are both in discrete action 
domains, we tuned the number of action ports to see the effect. 
As shown in Fig. 7-right, while they can keep a relatively 
high QoE with a small number of action ports, their perfor-
mance drops dramatically as the port number increases. This 
is due to the fine-grained discretization for the action domain 
that makes the learning agent difficult to explore the action 
space efficiently. On the whole, their performance falls short 
of LTP in all the cases, even in the best-performing case with 
a small port number, because the coarse-grained action dis-
cretization discards a lot of important decision information. 

Next, we conducted ablation studies to investigate the in-
dividual contributions from tuning the three parameters, 
namely, σ – sleeping time, μ – data rate threshold, ρ – play-
back rate. Specifically, we investigate the significance of: (a) 
tuning one only while freezing the other two; (b) simultane-
ously tuning two and freezing the rest one, e.g., tuning both μ 
and ρ is denoted by “μ+ρ”; (c) tuning all the three, i.e., the 
full version of QUTA, denoted by “All”. The available tuning 
range of the three parameters is shown in §4.1. Fig. 8 com-
pares the normalized QoE which offers two observations. 
First, enabling more parameters gives better performance. 
This demonstrates that each of them offers a unique contribu-
tion; Second, in all the cases where the μ is tuned, the QoE 
performance is typically better than the counterparts, which 
suggests that the data rate allocation has higher efficacy than 
the other two parameters.  

Starting with the default setting, we further varied the neu-
ral settings to understand their impact on the system. The first 
is the number of neurons/filters in FCN/ CNN. As shown in 
Fig. 9-left, the QoE keeps increasing from 32 to 128 (the de-
fault) and then starts to drop. Next, we tuned the sample num-
ber of the input states (see §3.2). Fig. 9-right shows that the 
neural network with the default state number, i.e., 8, yields 
the best result while a smaller or larger value would drop the 
QoE performance. 

5 Conclusion 
This study reveals a severe dilemma in the existing 360° 
video streaming system, which bottlenecks the QoE optimi-
zation significantly. Motivated by this challenge, we pro-
posed QUTA, a novel learning-based streaming system that 
is capable of coordinating the viewport prediction and the 
video transmission well. As a result, QUTA not only achieves 
substantial QoE improvement but also has strong robustness 
over the various network environments. Therefore, it fills an 
important gap in the 360° video streaming and opens a new 
paradigm for future high-quality services. 

 

Figure 5: Comparison of QoE (↑), viewing video quality (↑), 
and rebuffering (↓) over streaming algorithms. 

 

Figure 6: The CDF distribution of QoE over different  
network conditions (poor, medium, and good). 

Better Better Better

 

Figure 7: The training QoE over different DRL methods. 

 

Figure 8: Ablation study  
(σ–sleeping time, μ–data rate 
threshold, ρ–playback rate). 

 

Figure 9: Sensitivity analysis on 
neural settings (* denotes the 

default setting). 
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