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Abstract

As a typical visual art form, Chinese calligraphy
has a long history and aesthetic value. However,
current methods for generating Chinese fonts still
struggle with complex character shapes and lack
personalized writing styles. To address these is-
sues, we propose a font generation method for
Chinese Calligraphy based on diffusion model in-
corporating physical information neural network
(PINN), which is named DP-Font. Firstly, the
multi-attribute guidance is combined to guide the
generation process of the diffusion model and in-
troduce the critical constraint of stroke order in
Chinese characters, aiming to significantly improve
the quality of the generated results. We then in-
corporate physical constraints into the neural net-
work loss function, utilizing physical equations to
provide in-depth guidance and constraints on the
learning process. By learning the movement rule
of the nib and the diffusion pattern of the ink, DP-
Font can generate personalized calligraphy styles.
The generated fonts are very close to the cal-
ligraphers’ works. Compared with existing deep
learning-based techniques, DP-Font has made sig-
nificant progress in enhancing the physical plausi-
bility of the model, generating more realistic and
high-quality results.

1 Introduction
Chinese characters are one of the oldest writing systems in the
world, and their artistic expression is known as Chinese cal-
ligraphy. The calligraphy contains the diverse fonts and styles
and combines the practical and aesthetic functions of the writ-
ing. The calligraphy creation with multiple styles, such as
regular script, running script and cursive script, directly re-
flects the diversity of Chinese culture [Wang et al., 2023b].
However, beautiful handwriting would require a long time of
practice, this is a challenge for everyone’s strength and pa-
tience. With the development of artificial intelligence, the
generation model of Chinese characters has had a profound
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Figure 1: Illustration of font generation on two styles of Chinese
calligraphy fonts using DP-Font. The left and right poems are re-
spectively the five-character quatrains from ancient China. The left
one is Gongquan Liu’s style, while the right one is Zhenqing Yan’s
style. Gongquan Liu (778-865 AD) and Zhenqing Yan (709-784
AD) were famous Chinese calligraphers in Tang dynasty.

effect on art and culture. In calligraphy work and layout de-
sign, the intelligent generation model can display powerful
creativity and flexibility for various fonts.

At present the generation strategies of Chinese charac-
ter fonts can be approximately divided into two categories:
graphics-based and deep learning-based methods. Chinese
character generation based on graphics depends largely on
strokes extraction and reconstruct influenced by prior knowl-
edge. These kinds of methods are practical, but they hold a
significant computational overhead. Additionally, the gener-
ation method usually only focuses on the local structure of
the character, ignoring the overall calligraphy style. The de-
velopment of deep learning has changed this situation. The
generative adversarial network (GAN) can learn global fea-
ture of Chinese character and create (or improve) the existing
fonts. For example, Zi2zi [Tian, 2017] is the first genera-
tion model for Chinese characters that employed GAN. Af-
terwards, various GAN-based generation methods have been
proposed such as MX-Font [Park et al., 2021], DG-Font [Xie
et al., 2021], and CFGAN [Hassan et al., 2023]. Similar to
the end-to-end frameworks, the aforementioned methods can
capture the global features of the character, but the current so-
lutions cannot capture multiple local styles of Chinese char-
acter fonts and predict the global structure of an unknown
character. Many algorithms simply adopt the GAN-based
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image style transfer mechanism. However, these methods
introduce a series of problems, such as an unstable training
process for the model, inexact font, and limited fidelity of
the character. In addition, the overreliance on source domain
knowledge will result in over-fitting of the model in the tar-
get domain, particularly when large difference exists between
both domains, involving a large number of Chinese characters
[Han, 2012] (about 60,000) and multitude of fonts. In recent
years, the diffusion model [Yoon et al., 2020] has made re-
markable achievements in image generation [Rombach et al.,
2022]. Diff-Font [He et al., 2022] firstly introduces the dif-
fusion model into font generation task. It utilizes the ordi-
nal number of strokes as a constraint, which significantly im-
proves the quality of the font. However, the generation effect
is very limited regarding the spatial distribution of Chinese
characters. It is well-known that the rules for handwriting
Chinese characters have undergone a long evolution affected
by various factors, such as the movement of the nib and the
ink spread on the paper. Therefore, we hold the opinion that
modeling physical law should be conducive to the diffusion
model for font generation. In fact, the traditional diffusion
model cannot capture the complex relationships of Chinese
characters among local strokes and global structure.

To overcome these problems, the PINN [Von Rueden et
al., 2021] is a good option for capturing constraints between
strokes and the structure of Chinese characters. PINN can
combine the representation capacity of neural networks with
the law of physics equation. If the physical constraints are
introduced to the loss function, the neural network will im-
prove the font generation model, and thus, the generated re-
sults will better satisfy the handwriting rules. In our work,
PINN is a powerful tool to generate multiple fonts, due to its
sensitivity to physical laws and the flexibility of the neural
networks. The generated calligraphy works are shown in Fig-
ure 1, where the background with texture is readily available
(it is not generated). Thus, it can be seen that the generated
Chinese characters by DP-Font have a more genuine and nat-
ural vision effect.

To summarize, the primary contributions of this paper are
described as follows. Initially, we introduce a novel method
for the font generation of Chinese character based on the dif-
fusion model and PINN. The stroke order of Chinese charac-
ters is incorporated as one of the constraints to enhance the
generation of complex character shapes. Subsequently, phys-
ical constraints are incorporated into the neural network loss
function. By combining it with physical equations, the learn-
ing process is guided and constrained to augment the physical
plausibility of the model. Compared to other deep learning-
based approaches, the proposed method yields more realistic
and higher-quality generative results.

The rest of the paper is organized as follows. In section
2, we briefly summarizes the related work. The details of
the proposed DP-Font is described in section3. Section 4
presents the results of comparison experiments and ablation
experiments involving Chinese font generation. Finally, the
conclusion is drawn in section 5.

2 Related Work
2.1 Font Generation
Nowadays a lot of font generators depend on reference im-
ages to produce the fontlib including thousands of characters.
Font generation methods are mostly based on style transfer
for image-to-image, the core of which is learning the mapping
between the input image and the target image. In the learning
process, prior information can be applied to the labels of the
training data, thereby enhancing both quality and diversity.
Hence, early font generation methods mostly relied on prior
knowledge, such as the characters with new-style font, to ad-
just the models. For example, Zi2zi [Tian, 2017] and Rewrite
[Tian, 2016] utilize the one-hot encoding to perform super-
vised learning of GAN and generate new fonts. EMD [Zhang
et al., 2018] and SA-VAE [Sun et al., 2017] resolve the po-
tential features into content-related and style-related compo-
nents to capture various characteristics of Chinese charac-
ters, with SA-VAE additionally incorporating prior knowl-
edge. The component conditions can be employed to con-
strain the encoders in MX-Font [Park et al., 2021] and CG-
GAN [Kong et al., 2022] and extract features from reference
images. In addition, the unsupervised learning is also used
for font generation, for example, DG-Font [Xie et al., 2021]
is a deformable generating network that can produce more
complex fonts. Last year, some scholars studied the hybrid
model to refine the font style. CF-Font [Wang et al., 2023a]
applies the content fusion module and iterative style-vector
refinement to decouple the content and style of characters.
CFGAN [Hassan et al., 2023] and Diff-Font [He et al., 2022]
generate the realistic font images based on GAN and diffu-
sion model, respectively. However, the current methods are
difficult to satisfied both glyph reconstruction (without error
and blurriness) and style fusion (with style of reference font).

2.2 Diffusion Models
Within the domain of generative models, diffusion mod-
els stand out by employing a two-phased approach: an ini-
tial diffusion process that methodically degrades data fidelity
through Gaussian noise application, followed by a reverse dif-
fusion process that recovers the original data structure, with
the aid of Markov chains to facilitate this intricate transforma-
tion. Jascha et al. [Sohl-Dickstein et al., 2015] first clarified
the concept of diffusion probability model.

The denoising diffusion probability model [Ho et al., 2020]
improved the theory and applied UNet to predict the addi-
tional noise in the image at each diffusion time step. Dhariwal
et al. [Dhariwal and Nichol, 2021] propose a classifier guid-
ance mechanism that utilizes pre-trained classifiers to provide
gradients as guidance for generating images of target classes.
In contrast, the classifier-free diffusion guidance technique
proposed by Ho et al. [Ho and Salimans, 2022] eliminates
the need for classifiers by jointly training conditional and un-
conditional diffusion models. This approach achieves a bal-
ance between conditional and unconditional fractional func-
tions through a linear combination, ensuring their integration.
The denoising diffusion implicit model (DDIM) proposed by
Song et al. [Song et al., 2020] extends Ho’s approach to han-
dle non-Markovian cases. It provides enhanced predictive ac-
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curacy with larger step length, substantially decreasing the
number of required sampling steps from dozens to just one.
Glide [Nichol et al., 2021], dalle2 [Ramesh et al., 2022], and
stable diffusion employ pre-trained text encoders to produce
semantic latent spaces, achieving remarkable performance in
text-to-image tasks.

2.3 Physical Information Neural Networks
PINN integrates principles from physical systems with deep
learning techniques to enhance data processing performance
and pattern recognition accuracy [Raissi et al., 2019]. In con-
trast to conventional neural networks, PINN effectively in-
tegrates prior knowledge of data structures to grasp intricate
patterns. Proficient at solving partial differential equations,
PINN can be adapted for diverse applications, encompassing
Bayesian methodologies, physics-informed Generative Ad-
versarial Networks (GANs) for stochastic differential equa-
tions [Cai et al., 2021], and data-driven exploration of phys-
ical equations in intricate systems. PINN’s capacity to grasp
extended dependencies and global context in image process-
ing provides inventive solutions to intricate issues. The mech-
anism of PINN fuses the representation learning capabilities
of neural networks with an understanding of the underly-
ing physics equations. By incorporating physical constraints
into the loss function, PINN can enhance the font generation
model, ensuring that the generated outcomes conform to the
principles of handwriting movement.

3 Methodology
In this section, we introduce DP-Font in detail. First, we de-
scribe the framework of the model by adopting different gen-
eration strategies, including content, stroke order, and style
attributes (Section 3.1). Next, we design the training process
through a multi-attribute conditional diffusion model (Section
3.2). Finally, we embed the constraints of the PINN into the
diffusion model (Section 3.3).

3.1 Framework of DP-Font
As basic of diffusion model, the denoising diffusion probabil-
ity model (DDPM) consists of two main components: the for-
ward diffusion process and the reverse denoising process. Il-
lustrated in Figure 2 (Sample), the forward diffusion process
is characterized by a Markovian data corruption sequence, ex-
pressed as q(xt|xt−1). This phase involves the gradual infu-
sion of Gaussian noise into each data sample, methodically
transforming the original data distribution into a canonical
Gaussian distribution. In contrast, the reverse denoising pro-
cess involves reconstructing the data from its noisy state, de-
noted as xi (where i = 0, 1, . . . , T ). Here, pθ(·) represents
the conditional distribution of xi, effectively guiding the de-
noising trajectory.

The reverse process, denoted as pθ(xt−1|xt), epitomizes
a denoising mechanism where samples are sequentially re-
trieved from the standard Gaussian distribution. In each it-
eration, we gradually reduce a little Gaussian noise, so that
the samples gradually approach the real data distribution, es-
pecially the distribution of standard Chinese characters. This
progressive refinement culminates in acquiring samples that

are representative of their true data distribution. The aim of
this procedure is to yield samples that align closely with the
real data distribution, thus enabling effective data restoration
and denoising.

The DP-Font framework is described in Figure 2, consist-
ing of two main components. The first is the character at-
tribute encoding module, responsible for transforming char-
acter features (including content, stroke order, and style) into
the latent variable z. The second component is the DDPM,
which utilizes the latent variable z to generate the required
images. The DDPM generates character images from Gaus-
sian noise. The character attribute encoder is specifically
designed to parse three features of character images: con-
tent (denoted as c), stroke order (denoted as stk), and style
(denoted as sty). Within the encoder f , content, stroke or-
der, and style are encoded into the latent variable z, where
z = f (f1 (c) , f2 (stk) , f3 (sty)). Style and content fea-
tures are extracted with the style encoder, followed by the
pre-training of the encoder. The parameters of this encoder
are then frozen during the training of our diffusion model.

Unlike traditional image font generation techniques, our
approach treats characters with different contents as distinct
categories. For stroke order, in accordance with the ”Standard
for the Arrangement of Chinese Character Strokes” issued by
the Ministry of Education of the People’s Republic of China
on March 1, 2021, there are five most basic types of strokes
in Chinese characters, as illustrated in Figure 3a. We assign
a unique encoding to each stroke type, then each character is
encoded into a 36-dimensional vector (the maximum stroke
count in commonly used Chinese characters is 36). Each di-
mension of the vector represents the encoding corresponding
to the respective basic stroke it contains, as shown in Fig-
ure 3b. Compared to one-bit and stroke count encoding, this
stroke order encoding more effectively represents the stroke
attributes of characters. Subsequently, the stroke order vector
is expanded to align with the dimensions of content and style
embedding. Through this approach, we obtain an attribute
representation of character images, subsequently concatenat-
ing them to form the conditional z for the subsequent training
of the conditional diffusion model.

This encoding approach simplifies intricate Chinese char-
acters into sequences of numbers, making them more suitable
for computation and processing. Consequently, it facilitates a
more profound understanding of the structure and stroke rela-
tionships of Chinese characters by neural network. Through
distinctly indicating the type and order of each stroke, this
method alleviates ambiguities in the structure of Chinese
characters, thereby enhancing learning efficiency, especially
in scenarios involving complex or similar characters.

3.2 Multi-Attributes Conditional Diffusion Model
The forward process of DDPM involves a Markov chain-
based denoising procedure. Assuming T is the total number
of noise-adding steps, the initial data sample distribution is
x0 ∼ q(x0). At each step t of the forward process, Gaus-
sian noise with specific mean and standard deviation values
is added, as shown in Eq. (1):{

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
q (x1:T | x0) =

∏T
t=1 q (xt | xt−1)

(1)
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Figure 2: Framework of DP-Font. Denoising: The noise step t and the noisy Chinese character sequence xt (including the content of the
character, stroke order, and style features) conditioned on z at that noise step are fed into the diffusion model. We utilize the latent variable
z as a condition for training the DDPM, and random masks in the processing pipeline for Chinese character content and style features to
assist in classifier-free training of the model. Sample: At each step t , we predict ϵ using the denoising process based on the corresponding
conditions, and then add noise to the denoised step xt−1 using the diffusion process. This process is repeated from t=T down to t=0.
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Figure 3: Illustration of stroke order. (a) Five most basic strokes of
Chinese, (b) Illustration of character stroke order encoding.

Here, xt is the data with added noise at time t, and βt is the
manually set noise addition parameter at t. The noise sched-
ule is β1, β2,..., βT with 0<β1<β2<...<βT <1. The noise
addition can be calculated as:

xt =
√
1− βtxt − 1 +

√
βtϵ, ϵ ∼ N (0, I) (2)

Defining αt = 1 − βt and ᾱt =
∏t

s=0 αs. Under Markov’s
assumptions, the Eq. (2) iteratively becomes:

xt =
√
αtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (3)

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(4)

From Eqs. (1)-(4), for a given x0 and noise schedule, xt at
any step can be obtained directly. With a sufficiently large
T , the final noise addition result xT approximates a Gaussian
distribution, q(xT | x0) ∼ N (0, I), where I is the identity

matrix. In image generation, this forward process transforms
the original image into a noisy one.

The inverse process gradually eliminates noise to re-
construct data and is employed for data generation post-
training. In the DDPM, this process also follows a Markov
chain. Assuming the conditional probability distribution
pθ (xt−1|xt, z) is accurately determined at each step t, iter-
ative sampling in the reverse direction accomplishes the gen-
eration task. However, directly finding q (x0, z) is impracti-
cal, so a neural network parameterized by θ approximates its
distribution. It’s assumed that pθ (xt−1|xt, z) follows a Gaus-
sian distribution, with mean µθ and variance

∑
θ taking xt,

t, and z as input parameters:
pθ (xt−1 | xt) := N

(
xt−1;µθ (xt, t, z) , σ

2I
)

(5)

Here,z = f (f1 (c) , f2 (stk) , f3 (sty)) encodes content,
stroke order, and style attributes into feature vectors.

To simplify computation and ease neural network training,
variance σ2 is set as a time-dependent constant, not involved
in training. Thus, training focuses on the mean µ:

µθ (xt, t) =
1

√
αt

(
xt −

1− αt√
1− αt−1

ϵθ (xt, t, z)

)
(6)

Here, ϵθ represents noise prediction made by the diffusion
model, with UNet learning to predict ϵθ. The loss function,
Mean Square Error (MSE), quantifies the difference between
the actual and predicted noise:

Lsimple = Ex0,ϵ,z

[
∥ϵ− ϵθ (xt, t, z)∥2

]
(7)

As the algorithm is based on generating Chinese characters
under controlled conditions, these conditions can encompass
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not only the stroke order stk, but also the content c or the
style sty, among others. As illustrated in Figure 2, we in-
troduce random masking to the content c and style sty fea-
tures within the processing pipeline for classifier-free learn-
ing. This approach enables precise control over varying con-
ditions. Subsequently, the generation of Chinese characters is
facilitated by a classifier-free guidance, achieved by combin-
ing the conditional model ϵθ (xt, t, z1), z1 = (c, stk, sty)T ,
with the unconditional model ϵθ (xt, t, z2), z2 = (c,∅,∅)

T

where no style and stroke order conditions are added, during
the training process. This is expressed in the formula:

ϵ̂θ = ωϵθ(xt, t, z1) + (1− ω)ϵθ(xt, t, z2), ω ∈ [0, 1] (8)

The formula represents the predictive blending of both mod-
els to generate Chinese characters However, this approach
encounters challenges such as requiring numerous iterations
and involving complex calculations, leading to limited con-
trol over the diffusion model in the generation process. To
overcome these issues, PINN is integrated into the diffusion
model (section 3.3). PINN integrates physical laws (e.g.,
diffusion equations) to guide learning, reducing iterations
and simplifying computations, thus enhancing the diffusion
model’s efficiency. Additionally, the physical properties of
the diffusion equation help the model to simulate font char-
acteristics more realistically, reducing excessive smoothing
and retaining more natural features.

3.3 Incorporating PINN into Diffusion Model
As an advanced deep learning framework, the PINN inte-
grates neural networks with principles of physics. In the
framework, neural networks are assigned the dual responsi-
bility of not only learning data features but also incorporating
physics equations to guide and constrain the learning process.
This methodology is particularly advantageous in scenarios
where the physical process is intricate or when acquiring ex-
tensive data is challenging.

In the context of font generation, we employ diffusion
equations akin to those in thermal diffusion or fluid dynamics
to emulate the ink diffusion effect on paper, as delineated in
Eq.(9):

∂u

∂t
= D∇2u (9)

Here, u (x, y, t) represents the ink concentration at the posi-
tion (x, y) and time t, D is the diffusion coefficient, and ∇2

is the Laplace operator, indicating the second spatial deriva-
tive. The PINN losses are computed using Mean Square Error
(MSE):

LPINN =
∑

(x,y,t)

∥∥∥∥∂û∂t −D∇2û

∥∥∥∥2 (10)

This is combined with the diffusion loss Lsimple to form the
total loss function:

Ltotal = Lsimple + λLPINN (11)

In this equation, λ is a weighting coefficient that balances
the significance of different loss terms. In our experiments

(section 4), λ is empirically set to 1. Through this approach,
the diffusion model learns not just the data characteristics but
also solutions that comply with the physical diffusion pro-
cess. This not only enhances the physical authenticity of the
model but also elevates its precision in modeling complex
phenomena.

4 Experimental Results
4.1 Dataset and Experimental Setting
In the process of font generation, we have compiled a dataset
containing a variety of diverse fonts. Specifically, the dataset
includes 100 fonts, with each font containing 7,905 charac-
ters. These characters are sourced from the 2021 General
Standard Chinese Character Stroke Order Standard issued by
the National Language Commission of the Ministry of Ed-
ucation in the People’s Republic of China (PRC), ensuring
coverage of common Chinese characters. To accurately as-
sess the performance of the font recognition algorithm, a dis-
tinct test set has been created. The test set consists of 10
fonts and incorporates 200 characters distinct from those in
the main dataset. The characters in the test set were inten-
tionally chosen due to their intricate structures and multiple
strokes. All characters in our dataset are resized to a consis-
tent 80×80 pixels (image size). This normalization is crucial
to eliminate size-dependent variables, facilitating comparison
of performance with other methods.In our experiments, DP-
Font is implemented using Pytorch 3.6 running on GeForce
RTX 3090 graphics.

4.2 Evaluation Metrics
To effectively compare our font generation method with lead-
ing techniques, we utilize four evaluation metrics: Structural
Similarity Index (SSIM) [Wang et al., 2004], Root Mean
Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR),
and Frechet Inception Distance (FID) [Heusel et al., 2017].
SSIM assesses image similarity based on brightness, contrast,
and structure, reflecting the perception of the human visual
system. RMSE calculates the pixel-level similarity between
two images, providing a measure of precision. PSNR is a
metric used in image processing to quantify the quality of
a reconstructed image compared to its original version, with
higher values indicating greater similarity and better image
quality. FID measures the distributional difference between
generated and real images, focusing on texture, pattern, and
style. These metrics offer a comprehensive framework for
evaluating font generation quality, enabling us to assess the
performance of our method against existing state-of-the-art
techniques.

4.3 Comparison Experiments
The proposed DP-Font undergoes testing for comparison with
five current font generation algorithms, including FUNIT
[Liu et al., 2019], SC-Font [Jiang et al., 2019], MX-Font
[Park et al., 2021], DG-Font [Xie et al., 2021] and Diff-Font
[He et al., 2022]. (1) FUNIT: A method for image-to-image
translation which is able to use limited tag data during train-
ing and seamlessly handle the conversion between different
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FUNIT
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DG-Font
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Figure 4: The results of generating simple and complex Chinese characters using DP-Font and other five methods. Left ten columns are
simplified Chinese characters, including regular script and running script, and right ten columns are complex Chinese characters, including
Song typeface and artistic boldface. The red boxes and circles respectively point out the global and local mistakes of generated characters.
Qualitatively, the generated results by DP-Font are nearest the target fonts and little wrongly written characters.

fields (2) SC-Font: Using CNN model to learn how to trans-
fer the writing trajectory with separated strokes from a refer-
ence font style to a target font style. (3) MX-Font: MX-Font
is a multi-localized expert network for Few-Shot font genera-
tion (4) DG-Font: DG-Font introduces a feature deformation
skip connection to predict pairs of displacement maps, and
apply deformable convolution to the low-level feature maps
from the content encoder. (5) Diff-Font: Diff-Font uses con-
ditional generative diffusion model for font generation, which
differs from traditional image-to-image translation methods.

We train these algorithms using the datasets described in
section 4.1, restricting to a single reference font for gener-
ation. To evaluate these methods, we utilize the Song font,
a widely used standard font in Chinese character generation
tasks, as the source font.

Methods SSIM↑ RMSE↓ PSNR↓ FID↓
FUNIT 0.681 0.320 12.40 25.52
SC-Font 0.694 0.298 9.87 25.78
MX-Font 0.689 0.312 11.95 28.46
DG-Font 0.712 0.295 9.24 27.56
Diff-Font 0.720 0.283 8.62 24.30
DP-Font 0.735 0.279 8.34 22.34

Table 1: Quantitative comparison for generation results of Chinese
characters with other methods.

Quantitative Evaluation. Table 1 present the quantitative
comparison results of DP-Font with other current generation
methods. It is evident that our method outperforms others in
all metrics. DP-Font achieves the highest SSIM at 0.735, sig-
nifying the best image quality, it also attains the lowest scores
in RMSE (0.279), PSNR (8.34), and FID (22.34), indicating
that it is the most accurate and efficient in font generation
among the compared methods. ↑ denotes that a larger value
typically corresponds to better performance, while ↓ signifies

that a smaller value usually indicates better performance.
DP-Font has demonstrated optimal performance across

SSIM, RMSE, PSNR, and FID evaluation metrics. A particu-
larly significant observation is the notable 8.48 % improve-
ment in our method’s performance in the FID metric over
Diff-Font, highlighting its superiority.

Qualitative Evaluation. The qualitative results are illus-
trated in Figure 4. We selected four fonts, including two sim-
ple and two complex ones, along with 20 Chinese charac-
ters. This set comprises ten characters with simple strokes
and structures and ten characters with complex strokes and
structures. These characters were generated using the six
training completion methods, respectively. It can be seen
that FUNIT exhibits stroke errors for the majority of gener-
ated Chinese characters and fonts, struggling to maintain the
integrity of characters. SC-Font shows issues with missing
and redundant strokes, affecting the overall character struc-
ture. MX-Font maintains the general shape but often lacks
clarity and definiteness in the generated characters. DG-Font
demonstrates competence in simpler environments but strug-
gles to capture complex details in more challenging tasks.
Diff-Font Demonstrates competence in simpler environments
but struggles to capture complex details in more challeng-
ing tasks. The proposed DP-Font method consistently out-
performs other approaches in all cases, indicating its robust-
ness and effectiveness in generating high-quality Chinese font
style transformations.

In addition to the fonts of standard library, DP-Font can
also learn and imitate the handwriting of multiple calligra-
phers, as shown in Figure 1 and Figure 5. In Figure 1 left and
right two poems respectively are written in Gongquan Liu’s
and Zhenqing Yan’s styles. Gongquan Liu (778-865 AD) and
Zhenqing Yan (709-784 AD) were famous Chinese calligra-
phers in Tang dynasty. As target fonts, Figure 5 (a) and (c)
are two kinds of handwriting for a same poem. The origi-
nators of two fonts respectively are Zhengming Wen (1470-
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(a)                                             (b)

(c)                                             (d)

Figure 5: Illustration of calligraphic works with two styles. (a)
and (c) are the target fonts of Chinese calligraphy with Zhengming
Wen’s and Ji Zhao’s styles. (b) and (d) are the generated results from
DP-Font.

1559 AD, was a Chinese painter, calligrapher, and poet dur-
ing the Ming dynasty) and Ji Zhao (1082-1135 AD, was the
eighth emperor and very well-known artist of the Song dy-
nasty of China). Figure 5(b) and (d) are calligraphy works
generated by DP-Font. Obviously, DP-Font can learn writing
rules from different people’s handwriting, and the generated
Chinese characters have very realistic style and details.

4.4 Ablation Study
In this section, we conduct an ablation study to discuss the
effectiveness of stroke order encoding and explore the impact
of ω (guidance scales). Figure 6 shows the results of ablation
studies under different stroke conditions. The last row is the
ground truth, and the first to fourth rows are the results of DP-
Font with no stroke condition, stroke encoded with one bit,
stroke encoded with stroke count, and stroke encoded with
stroke order, respectively.

We trained four DP-Fonts on the small dataset, one without
using stroke conditions, one using stroke encoded with one

Figure 6: Qualitative results of ablation studies using different stroke
conditions.

Guidance Scale SSIM↑ RMSE↓ PSNR↓ FID↓
ω = 0.2 0.723 0.292 8.70 23.12
ω = 0.4 0.728 0.283 8.54 22.70
ω = 0.6 0.735 0.279 8.34 22.34
ω = 0.8 0.732 0.287 8.61 22.19

Table 2: Impact of different guidance scale on experimental results.

Methods SSIM↑ RMSE↓ PSNR↓ FID↓
RAW 0.699 0.332 11.64 24.91

RAW+S O 0.701 0.314 11.21 24.06
RAW+PINN 0.718 0.309 10.66 23.57

RAW+S O +PINN 0.735 0.279 8.34 22.34

Table 3: Evaluation scores of various methods in ablation experi-
ments.

bit, one using stroke encoded with stroke count, and one using
stroke encoded with stroke order. As shown in Figure 6, when
generating characters with difficult structures, the DP-Font
without explicit encoding of stroke order and quantity may
generate characters with stroke errors. The results in Table
1 show that adding stroke order encoding implicitly includes
the number of strokes, so the generated Chinese characters
have higher quality and better performance than the Diff-font.

The impact of guidance scale. By setting different con-
ditional scale, ω , which is defined in Eq.(8), we further dis-
cussed the impact of conditional and unconditional on gener-
ation. The contrast experiments are conducted on the test set
of the large dataset mentioned in Section 4.1. As shown in
Table 2, we found that setting ω = 0.6 can achieve the best
quality of generated images.

To further discuss the validity of stroke order encod-
ing and PINN, we respectively train basic diffusion model
(RAW) and its variants (RAW+S O, RAW+PINN, and
RAW+S O+PINN=DP-Font). The RAW method does not in-
corporate the stroke order coding, RAW+S O adds the feature
control condition of stroke order on top of RAW, and RAW
+PINN adds the PINN loss constraint on top of RAW. As
depicted in Table 3, the quantitative results of all evaluation
metrics demonstrate improvement when adding the stroke or-
der condition with PINN.

5 Conclusion
In this paper, we propose DP-Font, a font generation method
for Chinese Calligraphy based on diffusion model incorpo-
rated PINN. DP-Font adopts a multi-attribute approach to
guide the generation of diffusion models, incorporating stroke
order as a constraint to enhance the generated character font
results. Additionally, we integrate physical constraints into
the neural network loss term and incorporating physical equa-
tions to guide and constrain the learning process, enhancing
the model’s physical rationality. DP-Font produces more real-
istic and higher-quality generation results compared to other
deep learning-based methods. Experimental results confirm
the superiority of the proposed method among similar tech-
niques.
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