
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

21

RNS Scaling Algorithm for a New Moduli Set

{2
2n+1

+1, 2
2n+1

, 2
2n+1

-1}

Khalid Shahabdeen Mustapha
University for Development Studies

Navrongo Campus

Edem Kwedzo Bankas
University for Development Studies,
Faculty of Mathematical Sciences,
Department of Computer Science.

ABSTRACT

Scaling is one of the difficult operations in Residue Number

System (RNS) and also one of the most important units and a

necessary operation used to avoid overflow in RNS based

systems. In this paper, a scaling algorithm for a new moduli

set {22n+1 +1, 22n+1, 22n+1 - 1} using the Chinese Remainder

Theorem (CRT) is presented. In the design of digital systems,

the goal of designers is to increase performance and decrease

the amount of hardware resources. In order to achieve this, a

new moduli sets is proposed to obtain a larger dynamic range

and less complex hardware architecture. The CRT is further

simplified for the selected moduli set to reduce the hardware

complexity of the scaling algorithm. The scaling algorithm

does not introduce any scaling errors and thus is efficient.

When compared with the state of the art scaling algorithm

using the Unit- Gate model, the results show that, the

proposed scaling algorithm outperforms the state of the art

scaling algorithm in terms of dynamic range (DR), area

consumption, and delay by 98%, 18.4% and 21.7%

respectively.

General Terms

Moduli Set, Scaling Algorithm, Residue Number System,

Chinese Remainder Theorem.

Keywords

Scaler, RNS, Chinese Remainder Theorem, Moduli Set,

Dynamic Range.

1. INTRODUCTION
The advent of technology in the fields of embedded systems

which has found wide spread uses in mobile telephony and

tablet personal computers has generated the interest of many

researchers in the areas of improving power consumption,

speed and hardware resource requirements [1]. Through the

quest of these researchers, Residue Number System (RNS)

has been discovered to be the torch bearer in these fields [2].

As a result, RNS has over the years played an important role

in championing the campaign in designing digital systems that

require computational intensive arithmetic operations such as

addition, subtraction, and multiplication.

This advantage is as a result of the carry propagation

problem in binary number systems [3]. Performing

calculations in an RNS based system leads to less delay in

processing time (clock cycles), reduction in the cost of

hardware resources and power consumption [4]. In RNS the

carry propagation is limited in modular channels, while in

other number systems distribution chain of the carry is long,

which makes the process slow. Consequently in the RNS

addition, subtraction and multiplication operations are very

fast. This makes RNS to be applied in the areas of

communications, digital signal processing, computer security,

image processing, speech processing and transformation, error

detection and correction algorithms, and encoding [1], [4], [5].

Also, RNS is used in designing Inner Product Step (IPS)

processors.

However, RNS has not found wide spread usage in general

purpose computing due to the following difficult and costly to

implement arithmetic operations: sign detection, division,

reverse division, magnitude comparison, overflow detection,

moduli selection and scaling. The two latter operations are

more urgent to be solved because they are the gateway to

designing a circuit for converting numbers from residue to

binary systems. Reverse conversion is a costly and

complicated operation, and scaling circuits are used for

preventing overflow after each level of processing [6].

Complex operations are usually performed by employing

algorithms that are used in reverse conversion such as Chinese

Remainder Theorem (CRT) and Mixed Radix Conversion

(MRC). The primary and most important parameter in

designing an RNS based system is moduli set selection, in

which the numbers are relatively prime Scaling therefore

plays an important role in achieving universal application of

RNS in general purpose computing but scaling within RNS is

less efficient and this problem has long prevented wider

adoption of RNS [7]. In this paper, a scaling algorithm for a

new moduli set {22n+1 +1, 22n+1, 22n+1 – 1} is presented.

1.1 Fundamental Principles of RNS
 RNS is defined in terms of a set of relatively prime integer

set called the moduli set, such that the

 for , where gcd means the greatest

common divisor of and , while

 , is the dynamic range. The residues of a

decimal number can be obtained as
, thus X can be

represented in RNS as X= (x1, x2, x3, …., xk). This

representation is unique for any integer X [0, M-1] [8].

2. RELATED WORKS
The first scaling scheme ever to have been proposed is the one

proposed in 1967 by Szabo and Tanaka [9]. They proposed a

scalar that needed n clock cycles for n-bit moduli set.

Although the scaled residues had errors, and the scheme did

not provide correct scaled residues, it was a significant stage

in the development of RNS-based systems. In another major

study in 1973, O’keefe and Wright proposed a faster and more

efficient scalar than Szabo. Again the results were not error-

free but their approach provided results closer to the correct

scaled integers [10]. In 1978 Jullien was successful in

designing an algorithm that needed fewer clock cycles, but

provided faulty results [11]. In 1981, Taylor and Huang

proposed a design based on the MRC. It was the first time a

scaler based on the MRC was proposed [12]. Until then, all

designs were based on CRT or base-extension. The CRT-

based algorithms generally generated fractional errors due to

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

22

inherent assumptions, while the latter approach was error-free

but computationally intensive.

One year later, Taylor and Huang presented a scaler that used

a special moduli set and LUTs. However, their design

required n clock cycles to generate the scaled residues [13].

Miller and Polky proposed a design that needed (n+1) clock

cycles but the scaled residues were closer to the correct results

[14]. In other words, their design provided more accurate

scaled residues at the cost of more clock cycles. Two scaling

algorithms for the moduli set (2n-1, 2n, 2n + 1) using CRT

were proposed in 1989 [15]. The first algorithm was based on

the L-CRT algorithm for L- tuple RNS. The second algorithm

was based on 22n - q CRT using an approximation of M = 23n

and M1= 2q, q < 2n. Both algorithms came with assumptions

and errors. Later, Shenoy and Kumaresan proposed two

scaling techniques (approximate and exact), where residues

were scaled by the product of a subset of the moduli set [16].

The approximate technique used a redundant residue to

eliminate modulo-(M) operation, while the exact technique

used a modified version of CRT. The scaling error in the

approximate technique was bounded by (i=2), where i is the

number of moduli in the moduli set. Their design saved a

considerable amount of delay and generated results in only

log n clock cycles. The exact technique, however, generated

an error of at most unity, and used a redundant channel to

keep track of odd or even residues.

Ulman published a modified version of the Szabo scaler in

1993 [17], and since then, the results of all scalers have errors

less than 1.5. Another CRT- based scaling scheme was

presented in 1995 [18]. It used LUTs and log2 n clock cycles

to generate scaled residues. The aim of the design was to

achieve a precise result without using any redundant

representation of numbers. The disadvantage was its worst

case delay of n clock cycles. Two stages of look-up-cycle

scaling, namely look-up calculation and look-up generation,

were presented in [19]. The design was recommended for 5-

bit input and three moduli sets. It was cascadable to other

algorithms for larger sets of moduli and reduced the bulk

memory requirement for small moduli sets. In 2003, an

alternative CRT- based scaler for up to 16-bit dynamic range

was proposed [20]. The proposed scheme used only RNS

operations within small-word-length channels. It was suitable

for small-word-length applications and performed scaling

directly on the residue digits rather than relying on residue-to-

binary conversion. From the implementation point of view,

scaling algorithms are implemented either in LUT (look up

table) based approaches [7], [15], [16], [17], [21], [22], [23],

or adder-based approaches [5]. Generally, all the LUT-based

designs in the literature are subject to poor pipeline-ability

and high hardware complexity when the number of moduli

increases. Adder-based designs are faster and provide huge

savings in storage space. There are also other scaling circuits

that benefit from both LUTs and full adders [6]. Most scaling

schemes reported in the literature are based on LUTs, and

none of the papers discussed the order of generation of scaled

residues until 2007 [24]. Almost all publications have agreed

that LUTs are more efficient for small inputs, as in image

processing applications, while a FA-based structure is well

suited for long inputs [3]. Extensive measurements in area,

delay and hardware utilization for full-adder-based designs

have been proposed.

2.1 Mathematical Basis for Scalers
Scaling in RNS is a special type of division in which a

number is divided by a constant factor followed by truncation

or rounding. It corresponds to the division of an integer (X) by

a constant (K). It can be shown as:

 (1)

Where K is called the scaling factor, Y is the result of scaling

X by K and is the floor function.

2.2 The Chinese Remainder Theorem

(CRT)
The Chinese Remainder Theorem is a very useful theorem

used in the reverse conversion process and other operations in

RNS [25]. With well selected moduli set, the CRT guarantees

that a number within the legitimate range will have unique

representation in RNS. The unique number represented in

RNS can be derived through the use of the CRT.

Given a set of pair wise relatively prime moduli set, , ,

… and a number X whose residue representation is

(, , …….,) in the system, where
, the

number X and its residue are related by the equation below;

 (2)

Where

 and

 is the multiplicative inverse of

 with respect to
, M

 is the DR

and is the moduli set.

 Equation (2) is the Chinese Remainder Theorem (CRT) [26],

[27], and [28].

2.3 Moduli Set Selection
The choice of moduli set affects both the representational

efficiency and the complexity of the arithmetic of the

algorithm. It is therefore critical to choose the moduli set

carefully and strategically to ensure that efficiency is

guaranteed [29]. First we demonstrate that the moduli set

chosen are pairwise relatively prime.

Theorem 1:
The moduli set { contains pair

wise relatively prime numbers..

Proof:

From Euclidean theorem, we have gcd (a,b) = (b, ,
where gcd refers to greatest common divisor. Applying this

to the moduli set pair wisely will yield the following;

gcd(= gcd (,1) = 1

gcd(= gcd(, 2)= 1

gcd(=gcd (,)= 1

 Hence the moduli are relatively prime.

Example 1: Given n =1, the moduli set are {9, 8, 7}. gcd (9, 8)

= 1, gcd (9, 7) = 1 and gcd (8, 7) = 1

3. PROPOSED SCALING ALGORITHM

In RNS an integer X is represented by an N-tuple

() with respect to a set of pairwise relatively.

Hence the moduli set are relatively prime numbers

{ }, where ,
i= 1, 2, . . . ,N and

is defined as X mod . The dynamic range is the

number of representable numbers of a selected moduli set {m,

m, ….. , m} is given by:

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

23

 (3)

Based on the CRT, X is related to its residue digits by:

Where

 and

is the multiplicative inverse

of with respect to .

3.1 Formulation of Scaling Equation
The proposed scaling algorithm is designed for the - moduli

set using the above moduli set,

equation (2) can be expressed as follows:

The following axioms are used for the derivation of the

scaling equation.

Axiom 1: A B= AB

Axiom 2: m =

Axiom 3: m =

Lemma 1: Given , where K is an integer,

Proof: Based on the definition of modulo operation;

 (6)

Using Axioms 2 and 3,

Since p is divisible by

 (7)

3.2 The Scaling Process
Scaling is a special type of division. By definition, scaling an

integer variable X by a constant K can be obtained by

dividing both sides of (5) by constant K and taking the floor

value. Let Y be the integer results of the scaling operation,

we shall have:

 (8)

 (9)

 (10)

Let K be equal to = (This choice of K is crucial

because it ensures that the truncation error becomes

negligible). Substituting into equation (10), we shall

have the exact scaling equation below:

Using (11), the scaled integer can be computed directly from

the RNS representation of X.

3.3 Formulation of RNS Scaling Algorithm

From the above deductions, the complexity of the modulus

channels can be reduced with the proposed theorem.

Theorem 2:

Given the moduli set { , where

 =

 , the following holds true

= (12)

=

The proof and formulation of this theorem is presented as

follows.

Using the exact scaling equation (9), RNS scaling can be

performed in each channel independently by performing

modulo reduction in each channel. This Results in the

equation below.

Where i= 1, 2 and 3.

For and channels, where i = 1 and 3 using lemma 1 on

equation (12) we obtain:

Each independently scaled residue of equation (13) can

further be reduced respectively for and to;

For the channel, we have the following;

From equations (14) through to (16), it can be seen that there

exists a common term

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

24

. To simplify the common term, the following

theorem is proposed.

Theorem 3:

For the moduli set where;

The following holds true:

Substituting the parameters

into the common term we simplify it as;

 (20)

The least integer function , justifies the truncation in (20).

By substituting (20) into (14), (15) and (16) where
 , , and we obtain

Where , applying axioms 1, 2, 3 and

lemma 1 to (21), (22), and (23), we have the highly simplified

equations presented in theorem 2.

Illustrative Example 1: Given the moduli set

{ }, perform the scaling of an

integer X= 89 for n=1.

Solution

Given the moduli set { }; When

n=1, the moduli set is {9, 8, 7} and M= 9 ,

X=89 .

 = X mod mi for i = 1, 2 and 3 as [8, 1, 5] and

 = 3 and

 = 4.

2, 3, and 4 is the RNS representation of 11, the scaled results.

This is summarized in table 1.

Table 1. Numerical Example of Proposed Scaler for

Moduli Set {9, 8, 7}, Scaling Factor K = 8, n =1, X = 89,

and = (8, 1, 5)

=

 9 = 2

=

 = 3

=

 7 = 4

4. HARDWARE IMPLEMENTATION
The hardware realization of the proposed scaling algorithm is

discussed below. We implement the algorithm for channels

one, two and three. A general architecture is proposed for the

proposed scaling algorithm. Given the moduli set

{ , the residue digits

 relative to the moduli set are
 respectively.

For the implementation of the channel given by; y1 =

=
we shall have the following;

 =
 (24)

Since is a bit and a 2n+1 bit integers, then this

can be written as

 =

 (25)

 =

 (26)

 =

 (27)

 = , where is the

complement of .

The two numbers to be added are of different bit lengths. To

do so we ensure that they are of the same bit lengths. This can

be done by adding a zero bit at the MSB position of , and

take the one’s complement of .

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

25

The two numbers are now of the same bit length

that is bit and can be added together. The generation

of requires two carry propagate adders (CPA). The two

operands are added by the first CPA with an End

Around Carry (EAC) to produce a sum and a carry bit of 1.

The second CPA adds the sum and carry bit in
 modulo adder to produce a sum.

The two numbers are of the same bit length

(and so can be added together. To do so, the

complement of is taken, resulting in the following equation

below.

The result can thus be generated using two

operands , a CPA, and an inverter. The inverter will

generate the complement of and the CPA will add the two

operands to generate the required results.

The channel can be implemented to generate as

follows.

The negation of will require the complement of (35). This

is done below.

Now we expand equation (33) as follows:

Let , , ,
 , ,

), , and

Now we define the following properties of modulo

arithmetic proposed by [9].

Property 1: Multiplying an n-bit binary number x by r power

of two in modulo is equivalent to a circular left shift

operation.

 , where , denotes

a circular left shift of n-bit binary number x by r bits to the

left.

Property 2: =
 = where is

the one’s complement of x.

Applying properties 1 and 2 to equation (38) will yield the

following:

 =

 =

 =

 =

 =

 (43)

 =

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

26

 =

G= (46)

H = + + (47)

I = + (48)

Equation (38) can now be written as:

The implementation of channel two will require a Carry Save

Adder with End Around Carry (CSA EAC) to add G, H and I.

This will generate a sum () and a carry bit (). A Carry

Propagate Adder (CPA) will be required to add the sum and

the carry bit in modulo 22n+1 to obtain the desired result .

The proposed architecture of the algorithm is shown in figure

1.

Figure 1: Hardware architecture of proposed RNS scaling algorithm

4.1 Performance Evaluation
In order that we evaluate the performance of the proposed

scaling algorithm, it is compared with similar scaling scheme

proposed by Chip- Hong Chang and Jeremy Yung Shern Low

in 2011.

The Unit- Gate model which is used to analyze the delay and

area consumption of the Chang Scaler is adapted to do the

analysis. The model is adapted in order that we have the same

terms for unbiased comparison. The proposed algorithm is FA

based architecture. The Unit – Gate model asserts that, a two

input monotonic gate such as AND or NAND gate is said to

have one unit of area and one unit of delay. And a XOR gate

consumes two units of area and two units of delay. An

inverter is deemed to have a negligible fraction of a unit and

therefore, has zero units of area and delay. Based on the

model adapted, FA has seven units of area and four units of

delay.

The area and delay for each residue channel can

independently be evaluated by analyzing the area and time

complexity of the logic gate implementation adapted for the

hardware architecture. According to [30], the area and delay

for the diminished – one mod 2n +1 adder are 4.5n +

0.5n + 6 and 2 + 3 units respectively. From Fig.1, we

require an inverter to complement . The operands and

 are first added using a Carry Propagate Adder with End

Around Carry. A sum and a carry bit is generated and then

added by another Carry Propagate Adder with a constant carry

- in bit of 1 to yield a sum. Since an inverter has zero units of

area and delay, the focus is on the adders. The area and delay

of the first channel are: 2(4.5n +0.5n+6) and

2(2 +3) respectively. The channel two shown in Fig 1

requires 2n+1 bit CSA with EAC and modulo 22n+1 adder to

implement. The CSA requires 2n+1 FAs to be implemented

and a FA has seven units of area and four units of delay. The

CSA will therefore require 7n units of area and 4 units of

delay. The CPA will require 6n + 24n units of

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

27

area and 2 of delay. The total area for the second

channel would be 6 + 31n units. The total delay for

the same channel would be 2 +4 units of clock cycles.

Channel three will be implemented using an inverter, for the

one’s complement of one operand and a Ling modulo 22n+1 -1

adder. Based on the Ling modulo adder [31], estimated area

and delay for channel three are 3n + 12n and

2 +3 respectively. We present the decomposition

of area and delay of each channel in the tables 2 and 3

respectively.

Table 2: Estimation of Unit-Gate Model Area of Proposed

(P) and State of the Art (C) Schemes(S)

S Chan

nel

ACPA Aother ATotal

P 2(4.5n +0.5n

+6)

0 2(4.5n +0.

5n+6)

C 3n +12n 0 3n

 +12n

P 6 + 24n 7n 6 + 31n

C 6n +24n 15n 6n + 39n

P 3n +

12n

0 3n +

12n

C 4.5n

+0.5n+6

7n+6 4.5n

+7.5n+12

Table 3: Estimation of Unit-Gate Model Delay of Proposed

(P) and State of the Art(C) Schemes(S)

S Chan

nel

ACPA Aother ATotal

P 2(2 +3) 0 2(2 +3)

C 2 +3 0 2 +3

P 2 +3 4 2 +7

C 2 +3 5 2 +8

P 2 +3 0 2

+3

C 2 +3 6 2 +9

5. CONCLUSION
In this paper, an efficient RNS scaling algorithm based on the

new moduli set {22n+1 +1, 22n+1, 22n+1-1} is proposed. The full

adder based implementation is used. The proposed algorithm

has been evaluated based on dynamic range (DR), area and

delay and compared with the state of the art scheme [4]. The

proposed Algorithm outperforms the scheme in [4] in terms of

DR, area and delay with the percentages as 98%, 18.4% and

21.7% respectively in favour of the proposed algorithm.

6. REFERENCES

[1] Neha, S. 2008. An Overview of Residue Number

System. National Seminar on Devices, Circuits and

Communication.

[2] Stouraitis, T. and Paliouras, V. 2001. Considering the

Alternatives in low-power design,” Circuits and Devices

Magazine, IEEE, Vol. 17, No. 4, Pp. 22–29.

[3] Soudris, D., Dasygenis, M., Mitroglou, K., Tatas, K., and

Thanailakis 2002. A Full adder Based Methodology for

Scaling Operations in Residue Number System,

Electronics, Circuits and Systems. 9th International

Conference on Vol. 3, 891-894.

[4] Molahosseini, A. S., Navi, K., Dadkhah, C., Kavehei, O.,

and Timachi 2010. Efficient Reverse converter Designs

for the New 4- Moduli Sets and based on new CRTs

Circuits and Systems I: Regular Papers, IEEE

Transactionson Vol. 57 No. 4. 823-835.

[5] Chang, C. H. and Low, J. 2011. Simple, Fast, and Exact

RNS Scaler for the Three-Moduli Set, Circuits and

Systems I: Regular Papers, IEEE Transactions on, Vol.

58, No. 11, 2686–2697.

[6] Safari, A. and Kong, Y. 2012. Simple, fast and

synchronous hybrid scaling scheme for the 8-bit Moduli

Set, Journal of Emerging Trends in Computing and

Information Sciences, Vol. 3, No. 6, 949–956.

[7] Kong, Y. and Philip, B. 2009. Fast Scaling in the

Residue Number System, IEEE Trans. Very Large Scale

Integer (VLSI) Syst. Vol. 17 No. 3, (Mar. 2009) 443-

447.

[8] Gbolagade, K. A. 2010. Efficient Reverse Conversion in

Residue Number System Processors. PhD. Thesis Delft

University of Technology the Netherlands.

[9] Szabo N. S. and Tanaka R. I. (1967), Residue Arithmetic

and its Applications to Computer Technology. McGraw-

Hill New York, 1967, Vol. 24.

[10] O’Keefe, K. H. and Wright, J. L. 1973. Remarks on Base

Extension for Modular Arithmetic. Computers, IEEE

Transactions on, Vol. 100, No. 9, 833–835.

[11] Jullien, G. A. 1978. Residue Number Scaling and Other

Operations Using ROM Arrays, Computers, IEEE

Transactions on, Vol. 100, No. 4, 325–336.

[12] Taylor F. J. and Huang C. H (1981), a Floating-Point

Residue Arithmetic Unit. Journal of the Franklin

Institute, Vol. 311, No. 1, Pp. 33–53, 1981.

[13] Taylor, F. J. and Huang, C. H. 1982. An Auto Scale

Residue Multiplier. Computers, IEEE Transactions on,

Vol. 100, No. 4, 321–325.

[14] Miller, D. D. and Polky, J. N. 1984. An Implementation

of the LMS Algorithm in the residue number system.

Circuits and Systems, IEEE Transactions, Vol. 31, No. 5,

Pp. 452–461.

[15] Griffin, M. S. M. and Taylor, F. 1989. Efficient Scaling

in the Residue Number System, in Int. Conf. Acoust.

Speech, Signal Process, Glasgow, U.K. 1075–1078.

[16] Shenoy, M. A. P and Kumaresan, K. 1989. A Fast and

Accurate RNS Scaling Technique for high Speed Signal

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

28

Processing. IEEE Trans. Acoust. Speech, Signal Process,

Vol. 37, No. 6. (June 1989), 929 – 937.

[17] Ulman, Z. D. Czyzak, M. and Zurida, J. M. 1993.

Effective RNS Scaling Algorithm with the Chinese

Remainder Theorem Decomposition. in Proc. IEEE

Pacific Rim Conf. Commun. Computers, Signal Process.,

Victoria, BC, (May 1993), 528-531.

[18] Barsi, F. and Pinotti, M. C. 1995. Fast base extension and

precise Scaling in RNS for Look- up Table

implimentations. IEEE Trans. Systems and Process, Vol.

43, No. 10, (October 1995), 2427- 2430.

[19] Garcia, A. and Lloris, A. 1999. A look- up Scheme for

Scaling in RNS. IEEE Transactions Comput. Vol. 48,

No.7, (July1999), 748-751.

[20] Meyer-Base, U. and Stouraitis, T. 2003. New Power -of -

2 RNS Scaling Scheme for Cell-based IC Design, IEEE

Trans. Very Large Scale Integer, (VLSI) Syst., Vol. 11,

No. 2, (April 2003), 280-283.

[21] Benardson, P. 1985. Fast Memoryless, Over 64 bits,

Residue-to-Binary converter. Circuits and Systems IEEE

Transactions on Vol. 32. No. 3, (Mar. 1985), 298-300.

[22] Mohan, P. V. A. 2007. RNS -To Binary Converter for a

New Three-Moduli set. IEEE Transaction on Circuits

and Systems-II, Vol. 54 No. 9, 775-779.

[23] Dasygenis, M., Mitroglou, K., Soudris, D., and

Thanailakis, 2008. A Full Adder Based Methodology for

the Design of Scaling Operations in Residue Number

System. Circuits and Systems I: Regular Papers, IEEE

Transactions on Vol. 55, No. 2, (Mar. 2008), 546-558.

[24] Bernocchi, G. L., Cardarili, G. C., Nannarelli, A., Re M.

2007. Low Power Adaptive Filter Based on RNS

Components. Proc. IEEE International Symposium

Circuits Systems, New Orleans, LA, 3211-3214.

[25] Bankas, E. K., and Gbolagade, K. A., 2013. An Effective

New CRT Based Reverse Converter for a Novel

Moduli Set {22n+1- 1, 22n+1, 22n- 1}. International Journal

of VLSI Design and Communication Systems

(December, 2013), 4(6):1-11.

[26] Omondi, A. and Premkumar, B. 2007. Residue Number

System Theory and Implementation. Imperial College

Press.

[27] Gbolagade, K. A. and Cotofana, S.D. 2009b. A Reverse

Converter for the new 4 – Moduli set {2n+3, 2n +2, 2n+1,

2n}. Submitted to IEEE Newcastaisa Toulouse, France.

(July, 2009).

[28] Daabo, M. I. and Gbolagade, K. A. 2012. Overflow

Detection Scheme in RNS Multiplication before Forward

Convertion. Journal of computing. 4(12):13-16.

[29] Bankas, E. K., and Gbolagade, K. A., 2015. New MRC

Adder-Based Reverse Converter for the Moduli Set {2n,

22n+1 − 1, 22n+2 − 1}. Oxford Journals, Science &

Mathematics, Computer Journal Volume 58, Issue 7,

1566-1572.

[30] Dimitrakopoulos, G., Nikolos, D. G., Vergos, H. T.,

Nikolos, D., Efstathiou, C. 2005. New Architectures for

modulo 2n - 1 Adders. in Proc. IEEE Int. Conf. Electrn.,

Circuits, Syst., Gammarth, Tunisia. (Dec. 2005). 1- 4.

[31] Vergos, H. T., Efstathiou, C., and Nikolos, D. 2002.

Diminished – One Modulo 2n + 1 Adder Design. IEEE

Transaction Computers, Vol. 51, No. 12, (Dec. 2002),

1389-1399.

IJCATM : www.ijcaonline.org

