
  

  
Abstract—Application of substitution approach (fossil fuels 

heat and power production duty essential in high CO2 emissions 
is replaced by low-emissions based geothermal source in the 
same process at the same intensity) in CO2 emission reduction 
potential analysis for proposed cogeneration Ďurkov power 
station project is presented in the paper. Project can contribute 
with yearly 49 891 tCO2 of gross (a sum of 26 811 tCO2 from a 
heat and 23 080 tCO2 from a power production) or 49 587 tCO2 
of real carbon dioxide savings. According to 40-years projected 
lifespan, achievable cumulative gross savings can reach 1,995 
MtCO2 or 1,99 MtCO2 of real carbon dioxide bulk mitigated. 

 
Index Terms—Carbon dioxide savings, Ďurkov power station 

project, geothermal energy, implementation approach. 
 

I. INTRODUCTION 
Recent concern in environmental aspects of increasing 

energy demand, responding to global scientific and public 
consensus on disturbances in natural CO2 cycle, triggers 
actions and policies regarding renewable energy sources 
introduction into primary energy mix worldwide. 

Pioneer studies in 1965 – 1969 defined the Ďurkov area as 
the most appropriate for geothermal power production in 
Slovakia [1]. However, there is no project that operates 
nowadays. Besides high T.D.S. content in brine, conflicts of 
interests or technical limitations, any existence of geothermal 
power station reflects typical feature of complex projects – 
high investment costs and initial economical uncertainties [2]. 
CO2 savings derived environmental subsidies become 
relevant in project economical considerations. 

Submission evaluates CO2 mitigation potential applying 
substitution approach for a cogeneration based – ORC 
geothermal power plant project in the Ďurkov area. Presented 
results can contribute on forthcoming enviro-economical 
studies once the project applies for global CO2 credits market. 
Authors try to explain methodology and provide essential 
basement and implications for preliminary environmental 
and cost-effectiveness analysis in akin projects worldwide. 
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II. KOŠICE BASIN – CLIMATE AND PRIMARY ENERGY MIX 

A. Climate 
Located in the SE part of the East Slovakian Basin, the 

Košice Basin is dominant in climate conditions of warm 
regions, split into moderately humid (south) and moderately 
dry subregions (north), all surrounded from the east and west 
with moderately warm, humid, highland-type subregion [3] 
(Fig. 1), defining 220 heating days and 9.5 °C mean annual 
temperature [4]. 

 
Fig. 1. The Košice Basin – schematic sketch and climatic regions. 

B. Primary Energy Mix – Electricity and Heat Supply 
Slovak Republic, high-advanced economy is still fossil 

fuels oriented, regarding a heat and electricity supply for 
industry or municipalities, where renewables cover 19,8 % of 
power and less than 7 % of heat production only (Table I) [5]. 
In the Košice Basin, considering district urban heat and 
power supply, fossil fuels control the whole market (Table II) 
[6].  
TABLE I: PRIMARY ENERGY MIX – HEAT AND POWER SUPPLY (SLOVAKIA) 

Primary energy Black coal N. Gas Oil Renewables
Heat 23 % 53 % 12 % 7 % 
Power 15 % 6 % 1 % 19,8 % 

TABLE II: PRIMARY ENERGY MIX – HEAT AND POWER SUPPLY (KOŠICE B.) 

Primary energy Black coal N. Gas Oil Renewables
Heat 85 % 15 % - - 
Power 60 % 28 % 12 % - 

III. ĎURKOV GEOTHERMAL POWER STATION PROJECT 
Geothermal sources in the Ďurkov area associate with 

Mesozoic carbonates at depths of 1250 – 2600 m [7], where 
temperature varies 100 – 150 °C (trend increases SE-wards). 
By now, three wells (GTD-1, GTD-2, GTD 3) are in a trial 
operation [8] identifying high saline fluids with total 
dissolved solids at 20 – 35 g.l-1 and 0,07 g.l-1 of free CO2 [9]. 
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Recent power station project plans to operate geothermal 
power plant with 2 exploitation (GTD-2, GTD-3) and 1 
reinjection (GTD-1) wells at total 115 kg.s-1 extraction rate 
and wellhead pressure of 1,4 MPa [10].  Call for energy 
efficiency improvements predefined the project to operate as 
cogenerating – a power production waste heat is then used in 
optimized district heating grid. High geothermal salinity 
limits the station to operate as binary (Organic Rankine Cycle 
based). While in a regard to national directives the power 
production counts the whole year, the district heating is 
optimized for 220 days – a number that corresponds to 
required mean temperature interval of -13°C to +13 °C.  

Output parameters are outdoor temperature and 
comfortable indoor temperature in the district heating 
controlled thus vary in time as extracted brine mass diverts 
for bypass to provide preheating high enough for a heat 
supply. While at minimum critical temperature (Tout = -13 °C) 
the heat potential duty reaches 15 844 kWth and power 
turbine output counts 1 654 kWe, at maximum temperature 
(Tout = 13 °C) the heat output decreases to 6 628 kWth and 
power produced in the turbine turns to 3100 kWe (tab. III) 
However, turbine of installed power output over 3 394 kWe is 
required according to maximum output calculated for Tout of 
2 – 4 °C [11]. 
TABLE III: POWER PLANT PROJECT – OUTPUT DESIGN CRITERIA VS. TOUT 

Tout (°C) Heat output (kWth) Power output (kWe)
-13 15 884 1 654 
0 10 764 3 358 
3 9 788 3 394 

13 6 628 3 100 
17 - 2 840 

 
Based on efficiency analysis of turbine inlet pressures and 

power output, a most proper working fluid for power turbine 
is n-Pentane, even of considerably higher costs in 
comparison to other fluids (e.g. Isobutane). N-Pentane allows 
the turbine to keep stable efficiency of 85 %. District heating 
system uses fresh water as a working fluid in a cycle [12]. 

If we accept a system to operate constant as a base-load, 
power capacity of 26,1 GWhe and heat capacity of 83 GWhth 
are yearly obtainable for a public supply. Later in 
calculations, both outputs enter relations for CO2 reduction – 
mitigation evaluation as energy duty. 

 

IV. METHODOLOGY 
Several methods for CO2 emission reduction evaluation 

are introduced into praxis nowadays – e.g. [13], [14], mostly 
derived from peak-load analysis and substitution. The 
Ďurkov project, however, operates as base-load. 
Consequently, here is the reduction understood as a 
mitigation process [4], resulting from emittive fossil fuels 
substitution either in a heat and power production by low 
emittive renewable – geothermal, in the same process at the 
same intensity [15]. 

Let us state the gross savings (CO2g) in combined heat and 
power production are bound to covered energy duty (Qed), 
local primary energy mix (Ppem) defining substitution rate for 
each fossil fuel, and fossil fuels emission factor (EFff) – (1) 

                  ( )∑= ffpemedg EFPQCO ..2       (1) 

where: CO2g – yearly gross savings (tCO2.yr-1), Qhp – heat 
and power duty (TJ.yr-1 or MWe.yr-1), Ppem – primary energy 
mix proportion (-), EFff – carbon dioxide emission factor of 
fossil fuels (tCO2.TJ-1 or tCO2.MWe-1). 

Operation of geothermal power plant defines emissions 
produced – CO2p (2) during its run, controlled by duty of both 
processes (Qed) and emission factor of geothermal fluid 
(EFgeo) calculated from hydrogeochemical sampling: 

                         ( )∑= geoedp EFQCO .2       (2) 

where: CO2p – yearly CO2 produced at the station (tCO2.yr-1), 
Qhp – heat and power duty (TJ.yr-1 or MWe.yr-1), EFgeo – 
emission factor of geothermal source (tCO2.TJ-1 or 
tCO2.MWe-1)  

Subtraction of CO2 produced from gross savings itinerary 
results in yearly real carbon dioxide savings – CO2r (3): 

                             pgr COCOCO 222 −=       (3) 

where: CO2r – yearly real carbon dioxide savings (tCO2.yr-1), 
CO2g – yearly gross CO2 savings (tCO2.yr-1), CO2p – yearly 
CO2 savings produced at the site (tCO2.yr-1). 

If the average lifetime (LTgp) of cogeneration projects at 
40 years is accepted [6], real savings expected at the end of 
operation period are projected as cumulative – CO2r_c  (4): 

                              gprcr LTCOCO .2_2 =          (4) 

where: CO2r_c – cumulative real savings (tCO2), CO2r – yearly 
real CO2 savings (tCO2.yr-1), LThp – lifetime (yr) 

Substitution of yearly gross savings into (4) with preserved 
lifetime LTgp turns to cumulative gross savings (CO2g_c). A 
ratio of real cumulative over gross cumulative savings 
expresses in reduction effectiveness ηR (5) [16]: 

                                   100.
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where: ηR – reduction effectiveness (%), CO2r_c – cumulative 
real savings, CO2g_c – cumulative gross savings. 

 

V. RESULTS AND COMMENTS 

A. Carbon Dioxide Savings 
Substitution approach expects the power station project to 

supply energies constantly 24 hours a day, as in a case of 
conventional combined heat – and - power plants of a 
base-load service. 

In both processes, the substituted bulk of energy duty 
equals 100 % with proportion related to primary energy mix 
for heat and power (Table II). In a heat production savings, 
the accepted duty (Qdh) of 83 GWhth equals 298, 4 TJ yearly 
the project is able to cover. Substitution of PEM and emission 
factors typical for Slovak Republic [17] - [18] (Table IV) into 
(1) defines yearly gross CO2 savings from a heating section 
of 26 811 tCO2.yr-1, as a result of partial coal (24 349 
tCO2.yr-1) and natural gas (2 461 tCO2.yr-1) removal (Fig. 2)  
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TABLE IV: EMISSION FACTORS AND GROSS CARBON DIOXIDE SAVINGS 

Fossil fuels 
Emission 

factor 
[t.TJ-1] 

Emission 
factor 

[t.MWh
-1] 

CO2g  (heat) 
[tCO2.yr-1] 

CO2g 
(power) 

[tCO2.yr-1] 
Total coal 96 1,04 24 349 16 255 

Natural gas 55 0,55 2 461 4 011 
Oil products - 0,9 - 2 813 
Geothermal 0,27 0,002 - - 

 
Analogously according to (1) in a power production 

section, substitution of related emission factors (Table IV) 
and proportion factors (Table II) for partial yearly gross CO2 
reduction turns to total 23 080 tCO2.yr-1 removal potential as 
a sum of partial emissions avoided from substitution of 
different fossil fuels (Table IV). A sum of bulk reduction 
from heat and power production defines then total yearly 
gross savings – CO2g of 49 891 tCO2.yr-1 (Fig. 2). 

 

 
Fig. 2. Graphic display of partial gross CO2 savings in power and heat 

production 
 

Observed contrasts in partial CO2 savings clearly reflect 
proportion of fossil fuels on heat and power production as 
well as correspond to various emission factors.  

Each installation and operation of geothermal power plant 
defines a need for CO2 related to utilizing of geothermal 
fluids definition. The carbon dioxide produced (2) then 
reflects hydrochemistry of thermal fluids, essentially free 
CO2 compound and functions energy duty the fluid covers in 
a heat (Qed = 298,4 TJ) and power (Qed = 26 050 MWhe) 
production with calculated [19] emission factor of thermal 
fluid for both processes (table IV).  Solution of (2) gives then 
132 t.CO2.yr-1 of carbon dioxide produced at the station 
(CO2p) as a sum of partial emissions on a heat production 
(80tCO2.yr-1) and power production (52 tCO2.yr-1) side. 

With total yearly gross savings (CO2g = 49 891 tCO2.yr-1) 
and in-situ emissions produced during utilization (CO2p = 
132 tCO2.yr-1) predicted, solution of (3) defines then real 
carbon dioxide emissions mitigated (CO2r) itinerary at a level 
of 49 578 tCO2.yr-1. As emissions potentially produced at the 
station represent 0,2 % from a bulk saved, the gap is almost 
negligible and the fluid is considered emissions- inactive 
[15]. 

Recent design of combined heat and power geothermal 
plants expects projects to operate at least for 40 years [20], a 
period that is set as lifespan (LTgp) to enter calculations of 

cumulative gross (CO2g_c) and real (CO2r_c) CO2 savings(4). 
Relation understands cumulative savings as itinerary of 
emissions the project mitigated at the end of operation, and 
calculates with both, gross (CO2g) and real (CO2r) bulks. As a 
result, 1,995 MtCO2 of gross cumulative or 1,990 MtCO2 of 
real cumulative savings are expected for the project (Fig. 3, 
table V) in case the system operates constantly as expected 
for a base-load supply.  

 
Fig. 3. Screen of cumulative real CO2 savings 

 
TABLE V: SUMMARIZING TABLE ON CARBON DIOXIDE SAVINGS 

Value 
Gross CO2 

savings 
[MtCO2] 

Real CO2 
savings 

[MtCO2] 

Power 
production 

[GWh] 

Heat 
production 

[TJ] 
Yearly 0,0498 0,04975 26,1 298,4 
Cumulative 1,995 1,990 1 044 11 936 

 

B. Environmental Economics Considerations 
Every geothermal project consideration meets unique 

limits regarding economical investment aspects. Investment 
costs in power-plant projects compose of a) exploration and 
resource confirmation, b) borehole drilling campaign, c) 
surface facilities and infrastructure emplacement and d) 
power plant design [21]. If we assume overall installation 
costs for a project for both, power and heat production at – 6 
400 €.kW-1, and add to an investment analysis expected 
operation and maintenance costs at 190 €.kWe-1.yr-1 [22], 
with optimized installed plant for 40 years projected lifespan 
at installed capacity of 3 500 kWe and heat production 
installed capacity of 16 MWth, investment costs may roughly 
reach 64,6 mil. €. This is an amount potential developer 
(private or national-owned) should consider in preliminary 
economic feasibility studies. By a contrast, a mean selling 
price of 0,03 €.kWh-1 for electricity and 15 €.GJ-1 can be 
expected in local conditions [23]. Additionally, with yearly 
real carbon dioxide savings known (49 578 tCO2), project 
can apply for environmental government subsidies regarding 
a CO2 carbon credit market at a level of 6 €.t-1 [5]. Yearly 
environmental subsidies then can contribute with 0,3 mil. € 
on benefits side. A simple payback period calculated is then 
2,32 years. However, such an analysis is clearly preliminary 
and detailed study is needed, where yearly incomes will 
depend on initial energy production and then break-away 
energy prices. 

C. National Reflections – Towards the EU Road Map 
National targets for EU member countries regarding 
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introduction of renewables into primary energy mix in heat 
and power production defined proportion the Slovak 
Republic is supposed to achieve in 2020 for 14 % on heat and 
31 % on power production [24]. Set-up targets are mandatory 
to meet under optional legal and financial penalties.  

By now, renewables share 7 % on heat and 19,8 % on 
power (large hydro included) or 2,3 % (without large hydro 
plants) [5].   

In case the project will operate, yearly power supply for a 
grid will reach 26,1 GWhe. In primary energy mix we subtract 
the electricity produced from recent proportion of fossil fuels 
according to their share in electricity sector. As the total 
electricity generated yearly counts 26 155 GWhe, geothermal 
project power supply will take 0,1 %. Then, proportion of 
renewables will increase for 19,9 % (large hydro included) or 
2,4 % (without large hydro).  

Actual geothermal yearly heat production in Slovakia 
reaches 144 TJ defining its 0,3 % proportion on total national 
heat supply (42 210 TJ). Constant co-generated geothermal 
heat delivery from a project into a mix calculated for 298,4 TJ 
yearly, balanced with energy mix related subtraction of coal 
and gas in a heat delivery, will lead to increase of geothermal 
proportion up to 1,05 % and increase of renewables share on 
heat production from 7,04 % to 7,8 % (Fig. 4). 

 
Fig. 4. Impact of geothermal system implementation for a power and heat 

supply renewable contribution towards the EU road map. 
 

Observed increase of renewables proportion on heat and 
power national market imply the geothermal sector may not 
be able to cover the gap between recent situation and targets 
in the EU road map individually. However, while the Košice 
Basin is among three perspective localities for a geothermal 
power supply [25], thus possibilities of growth in geothermal 
power are rather unlikely, 26 areas perspective for 
geothermal heat production are identified [26] with a total 
thermal potential of 6 653 MWth [27], providing a 
background high enough for rapid improvements. Then, 
every national progress towards the EU road map targets is a 
question of government financial and technical support – 
supposed-to-be motivated by moral, legal and environmental 
merits. 

D. Limitations and Adds 
Authors accent the study is a background for potential 

ongoing detailed research. Additional approach is definitely 
needed considering operation characteristics of geothermal, 
combined heat and power binary plant projected, as well as 
detailed economic and environmental-economic analysis of a 
market is necessary. Data used in calculations of carbon 

dioxide savings are kept constant in time, however, they may 
seasonally vary.  

 

VI. CONCLUSIONS 
The substitution approach for carbon dioxide savings 

evaluation is presented in the paper on a case study on actual 
considered geothermal power plant project in the Ďurkov 
area, Košice Basin, eastern Slovakia. Later on, results are 
nominally analyzed and reflected regarding project 
environmental economics and impact for a national primary 
energy mix scheme towards the EU road map set-up targets. 

Essential philosophy of the approach understands 
reduction as a mitigation-substitution process, within that 
CO2 intensively emittive fossil fuels are replaced with a 
renewable source of low CO2 emissions intensity in the same 
process and nominal duty. Analyzed model of a power plant 
operates as binary and base-load at combined, 
heat-and-power principle. 

Introduction of the power plant into the heat and power 
grid may contribute with overall yearly gross 49 891 tCO2 
mitigated, out of that 28 811 tCO2 refer to fossil fuels 
substitution in a heat and 23 080 tCO2 to power production 
sector (corresponding to actual fossil fuels regional energy 
mix proportion). Use of geothermal fluids leads to yearly 
potential in-situ emissions of carbon dioxide evaluated for 
132 tCO2.yr-1 characterizing fluid as carbon-inactive. After 
subtraction of emissions produced from a gross itinerary, 
yearly real CO2 savings calculated drop negligibly down to 
49 578 tCO2. If the 40 years lifespan of a geothermal project 
is accepted, cumulative savings at the end of a period 
increase up to 1,995 tCO2 of gross or 1,990 tCO2 of real bulk 
reduced. Carbon dioxide emission reduction potential then 
reflects in potential environmental subsidies at yearly rate of 
0,3 mil. €, contributing on a project’s payback period 
shortening. 

Even of proven environmental impact and relatively low 
(preliminary) calculated payback period (2,32 years), 
introduction of projected plan producing 26,1 GWhe of power 
and 298,4 TJ of heat yearly will not dramatically effect 
national primary energy mix. Observed 0,1 % upturn in 
renewables proportion on power and 0,8 % on a heat 
production will not solve a nations’ rough path to meet EU 
set-up targets regarding renewables proportion on energy 
mix. 
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