

International Journal of Innovative Research in Engineering and Management (IJIREM)

ISSN (Online): 2350-0557, Volume-10, Issue-6, December 2023
https://doi.org/10.55524/ijirem.2023.10.6.7

Article ID IJIR2481, Pages 49-54

www.ijirem.org

Innovative Research Publication 49

Kubernetes and Docker Load Balancing: State-of-the-Art

Techniques and Challenges

Indrani Vasireddy1, G.Ramya2, and Prathima Kandi3

1 Associate Professor, Department of Computer Science and Engineering, Geethanjali College of Engineering,
Hyderabad, India

2, 3 Assistant Professor, Department of Computer Science and Engineering, Geethanjali College of Engineering,

Hyderabad, India

Copyright © 2023 Made Indrani Vasireddy et at. This is an open-access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT - In the ever-evolving landscape of

container orchestration, Kubernetes stands out as a

leading platform, empowering organizations to deploy,

scale, and manage containerized applications seamlessly.

This survey paper explores the critical domain of load

balancing within Kubernetes, investigating state-of-the-

art techniques and the associated challenges. Container-

based virtualization has revolutionized cloud computing,

and Kubernetes, as a key orchestrator, plays a central role
in optimizing resource allocation, scalability, and

application performance. Load balancing, a fundamental

aspect of distributed systems, becomes paramount in

ensuring efficient utilization of resources and maintaining

high availability. The study focuses on contemporary

methods for achieving effect-ive load balancing on

containers, with a specific examination of Docker Swarm

and Kubernetes—prominent systems for container

deployment and management. The paper illustrates how

Docker Swarm and Kubernetes can leverage load bal-

ancing techniques to optimize traffic distribution. Load

balancing algorithms are introduced and implemented in
both Docker and Kubernetes, and their outcomes are

systematically compared. The paper concludes by

highlighting why Kuber-netes is often the preferred

choice over Docker Swarm for load balancing pur-

poses.This paper provides a comprehensive overview of

the current state-of-the-art techniques employed in

Kubernetes load balancing. Challenges inherent to

Docker load balancing are addressed, encompassing is-

sues related to the dynamic nature of containerized

workloads, varying application demands, and the need for

real-time adaptability. The survey also explores the role
of load balancing in enhancing the scalability and overall

performance of applications within Kubernetes clusters.

In conclusion, this survey consolidates the current

knowledge on Docker and Kubernetes load balancing,

offering a state-of-the-art analysis while identifying

challenges that pave the way for future research and

advancements in the realm of container orchestration and

distributed systems.

KEYWORDS- Load Balancing, Docker Swarm,

Kubernetes, Containers.

I. INTRODUCTION

Cloud computing revolutionizes IT infrastructure by

providing on-demand access to a myriad of resources,

including computing power, storage, databases, analytics,

and intelligence, over the internet. This paradigm [2] shift

allows services to be consumed on a pay-per-use basis,

featuring auto-scalability and eliminating the need for

dedicated server spaces. The traditional complexities of

hardware and software maintenance are alleviated, as
cloud computing negates the requirement for in-house

experts.

Security is bolstered in the cloud environment, and

software updates occur seamlessly. Data accessibility and

sharing transcend local storage limitations, enabling users

to save and retrieve information effortlessly over the

internet. In contrast to classical deployment scenarios,

where applications contend with hardware dependencies,

operating system specifications, and potential conflicts

between software libraries, cloud computing introduces a

transformative solution known as the dependency matrix.

The dependency matrix plays a crucial role in
streamlining the development, packaging, deployment,

and scaling of applications, ensuring ease and

independence. The architectural foundation involves the

integration of hardware and operating systems,

complemented by a container engine like Docker. This

container engine serves as a vital component, facilitating

the creation of containers that encapsulate libraries and

dependencies. As a result, these containers can seamlessly

traverse different machines, abstracting away concerns

about underlying dependencies. Each container

encapsulates everything an application requires to run,
thereby overcoming challenges related to conflicting

library versions and dependencies. This paper delves into

the intricacies of this container-based approach, exploring

its impact on application development, deployment, and

scalability in cloud computing environments.

Before the advent of Docker and containerization,

companies typically deployed software applications on

either bare metal servers or virtual machines. Docker, as

an open-source platform, revolutionized this landscape by

enabling users to package applications and their

dependencies into Docker containers for seamless

development and deployment. Containerization, as
facilitated by Docker, encapsulates all necessary

dependencies, including frameworks and libraries,

www.ijirem.org

International Journal of Innovative Research in Engineering and Management (IJIREM)

Innovative Research Publication 50

ensuring the efficient and error-free execution of

applications across diverse computing environments. The

key advantages of Docker containers include their

lightweight nature, making them easily transferable and

executable across different computer environments,

irrespective of the host operating system or

configurations.

Docker containers offer benefits such as minimal space
occupancy and faster ap-plication execution. They

operate in isolation, sharing the operating system kernel

with other containers. The security of containers is robust,

thanks to container policies that ensure a highly secure

Docker infrastructure. The extended Docker API offers

robust techniques for creating and scaling services,

implementing health checks, load balancing, traffic

distribution, and more. Services in Docker are a set of

containers akin to Docker compose but with enhanced

features. Docker Swarm serves as a Layer 4 TCP load

balancer. In this context, we have established three
Swarm nodes, comprising two worker nodes and one

manager node. The manager node hosts the Swarm

commands, managing load balancing, distribution,

scaling, DNS service, booking, and discovery.

The Docker Swarm LB operates on all nodes, efficiently

handling balance requests across any of the

container/hosts within the node. In the absence of NGINX

or NGINX Plus, Docker Swarm LB manages incoming

customer demands within the swarm net-work. NGINX

Plus boasts several advanced features that position it as an

ideal load balancer for arrays of upstream servers: Load
balancing and session selection: Enhances load balancing

across worker processes and employs session persistence

methods to recognize and honor application sessions.

HTTP health checking and server slow start: Utilizes

asynchronous synthetic transactions to verify the proper

functioning of each up-stream server and employs an

agile "slow start" approach to reintroduce servers when

they recover. Live traffic monitoring: Provides immediate

reporting of activity and performance. Dynamically

configured upstream server groups: Offers a tool for

facilitating common upstream service tasks, such as the

secure and temporary removal of a server.
In the context of running a micro-services architecture

comprising numerous micro-services, each potentially

having varying instances[1]—ranging from one to

thousands—managing the scalability, load distribution,

health monitoring, and other operational aspects can

be an intricate task. Kubernetes, however, emerges as a

robust solution to address these challenges.

Kubernetes[14] facilitates the deployment and

management of diverse applications on multiple cloud

platforms such as AWS, Azure, and Google Cloud. It

provides the ability to create container images for
applications developed in Python, Java, Node.js, and

other languages, enabling seamless deployment within a

Kubernetes environment.

Within Kubernetes, various services play crucial roles,

including Cluster IP service, Headless service, NodePort

service, and Load Balancer. The Load Balancer service,

offered by Kubernetes, stands out as a vital

component[15] that efficiently distributes in-coming web

traffic across multiple backend servers. This distribution

allows applic-ations to dynamically scale in response to

demand, enhance availability, and optim-ize server

capacity utilization. As traffic[10] increases, surpassing

the capacity of a single server, horizontal scaling by

adding more servers becomes imperative. Load balancers

play a pivotal role in deciding which server should handle

incoming requests when mul-tiple servers are available. A

well-designed load balancer maximizes system capacity

and minimizes request fulfillment time by efficiently

distributing incoming traffic. Various strategies, such as
Round Robin, Least Connections, and Consistent

Hashing, are employed by load balancers[12] to distribute

traffic effectively. Round Robin assigns servers in a

repeating sequence, ensuring the equitable utilization of

servers. Least Connections directs traffic to the server

currently handling the fewest requests, while Consistent

Hashing ensures consistent assignment based on IP

address or URL, akin to database sharding.

This paper is organized as follows: Section 2 presents the

related work, Section 3 presents the Discussions, Section

4 presents the Challenges Section 5 Future enhancement,
and Section 6 conclusion.

II. RELATED RESEARCH

The realm of Kubernetes[3] scheduling algorithms has

emerged as a central focus for both researchers and

practitioners, garnering considerable attention in recent

years. This review meticulously navigates through the

intricate landscape of scheduling algorithms within

Kubernetes, exploring a diverse range of theories,

methodologies, and insights gleaned from prior studies.
With the contemporary[4] surge in the adoption of micro-

services in software system design, load balancing has

become a pivotal element in micro-services architecture,

exerting a profound impact on resource utilization and the

overall efficiency of service functionality. The literature

emphatically underscores the crucial requirement for

adept scheduling of workloads in Kubernetes

environments.

In the study conducted by Toka et al. [11], their research

reveals that the proposed scheme significantly enhances

system performance during periods of rapid load

pressure, exhibiting a decrease in operational cluster
instability compared to the default auto scaler. Li et al.

[16] present two dynamic scheduling algorithms,

Balanced-Disk-IO-Priority (BDI) and Balanced-CPU-

Disk-IO-Priority (BCDI). BDI aims to enhance disk I/O

balance between nodes, while BCDI addresses the issue

of load imbalance between CPU and disk I/O on a single

node.

Ismail, Bukhary Ikhwan, et al. [20] conduct an evaluation

of Docker as an edge computing technology. Their

assessment, based on deployment and termination,

resource and service management, fault tolerance, and
caching, highlights Docker’s advantages in rapid and

efficient deployment, low overhead, and overall good

performance, positioning it as one of the best

technologies for edge computing platforms. Cito, Jürgen

Ferme, Vincenzo C. Gall, Harald (2016) et al. [17]

explore the utilization of Docker containers to enhance

reproducibility in software and web engineering research.

Emphasizing Docker’s role in supporting research artifact

reproducibility, the study underscores its significance in

the current virtualization landscape, particularly in the

deployment and production of web applications.

International Journal of Innovative Research in Engineering and Management (IJIREM)

Innovative Research Publication 51

Ahmed et al. [19] delve into the deployment of Docker

containers in a heterogeneous cluster using a dynamic

scheduling framework for Kubernetes named KubCG.

The platform optimizes container deployment by

considering Kubernetes Pod timelines and prior data on

container execution, providing insights for efficient

resource utilization in CPU and GPU resources.

Weizheng Ren et al. [18] propose enhancements to
existing load balancing algorithms in the Dynamic

Balance Strategy of High Concurrent Web Cluster Based

on Docker Container. They aim to make load balancing a

dynamic technique dependent on traffic, comparing

Docker and Kubernetes architecture and ad-dressing

drawbacks in the existing NGINX load balancing

strategy. The study calculates real-time performance

weight ratios of the cluster by weight.

Docker and Kubernetes, as open-source tools, have

revolutionized the creation, deployment, and management

of applications across diverse platforms, particularly in
the realms of micro-services and cloud-based services.

These technologies play a pivotal role in various domains

of information technology, offering versatile applications.

Load balancing, a crucial aspect of their functionality,

remains a focus of research, with studies exploring

scheduling strategies, enhancing security, and optimizing

dynamic load balancing[13] techniques in cloud

platforms. Our research paper aims to provide a com-

prehensive analysis of the dynamic load balancing

capabilities offered by Docker and Kubernetes. We delve

into various load balancing techniques, outlining their
ideal use cases and comparing them against alternative

methods.

In the context of State machine replication in containers

managed by Kubernetes [7], the authors propose the

integration of coordination services in Kubernetes to con-

trol container size and enable automatic state replication.

They introduce the DORADO protocol and evaluate its

performance through preliminary tests, detailing the

execution environment and experimental setup. The

conclusion outlines challenges and future prospects for

the protocol. In the paper on a decentralized system for

load balancing of containerized micro-services in the
Cloud [2], the authors present a decentralized or-

chestration system for load balancing in containerized

microservices. They discuss container limitations for load

balancing and introduce a swarm-like algorithm for

container migration. The paper concludes with

preliminary experimental results and summary remarks.

The literature survey covers static algorithms such as

Load Balancing Min-Min Algorithm, Load Balancing

Min-Max Algorithm, and Round Robin Load Balancing

Algorithm. The study evaluates these techniques based on

parameters like fairness, throughput, fault tolerance,
overhead, performance, response time, and resource

utilization.

III. DISCUSSIONS

In the literature review section, a thorough examination

has been presented, encompassing load balancing in

Docker and four sub-categories within the realm of

Kubernetes scheduling. It is imperative to provide a

concise discussion on the categorized literature review

that is outlined in this section. The proliferation of public

cloud vendors has prompted the inclusion of Containers

as a Service (CaaS) in their offerings. This surge in

popularity is attributed to Docker, a software enabling

Linux containers to op-erate independently within an

isolated environment on a host. The orchestration and

allocation approaches depend on the specific software in

use. The central aim of the study was to examine how

container execution evolves over time. Two dynamic
alloc-ation algorithms were employed and compared

against the default Docker algorithm. The efficiency of

these algorithms is contingent upon the workload’s

weight and scales proportionally with the increasing

number of nodes in the Cloud.

In the context of a Portable Load Balancer for Kubernetes

Cluster, Linux contain-ers have garnered favor due to

their lightweight and portable characteristics. Presently,

numerous web services[6] are deployed as clusters of

containers. The paper focuses on Kubernetes Clusters, but

it’s noted that Kubernetes relies on load balancing
provided by cloud providers. To address this, the authors

proposed a portable load balancer applicable in any

environment, facilitating the migration of web services.

This solution leveraged the Linux kernel’s Internet

Protocol Virtual Server (IPVS), resulting in an enhanced

portable web service without compromising performance.

load balancing[5] in docker can be achieved using

NGINX. NGINX is a versatile web server employed as a

reverse proxy, HTTP cache, and load balancer.

Engineered for high concurrency and minimal memory

usage, it adopts an asynchronous approach, executing
requests through a single thread instead of creating a new

process for each web request. In the NGINX architecture,

a master process oversees multiple worker processes. The

master effectively manages the workers, which handle the

actual processing of the server. The asynchronous nature

of NGINX ensures that each received request can be

executed by a worker concurrently, without impeding

other requests. Notably, there are two types of load

balancers: the open-source NGINX and NGINX Plus.

NGINX Plus, being the commercial variant, introduces

critical application features not present in the native

Swarm load balancer.
Within the domain of multi-objective optimization-based

scheduling in Kubernetes, numerous research studies

have been undertaken to optimize diverse objectives.

These

objectives include minimizing energy consumption and

cost, maximizing resource utilization, and meeting

application performance requirements. Various

optimization techniques, such as genetic algorithms,

particle swarm optimization, and ant colony optimization,

are employed in these studies. Additionally, some

research incorporates ma-chine learning-based
approaches to predict workload patterns and inform

scheduling decisions. Challenges persist in this area,

including [9] the multi-objective nature of the problem,

which poses a significant challenge in finding optimal

solutions that balance conflicting objectives. The dynamic

nature of the cloud environment also necessitates real-

time adaptation of scheduling decisions to changing

conditions. Despite these challenges, research in multi-

objective optimization-based scheduling in Kubernetes

shows great potential for achieving efficient and effective

resource management, with further work needed to

International Journal of Innovative Research in Engineering and Management (IJIREM)

Innovative Research Publication 52

address challenges and validate approaches in real-world

scenarios.

Conversely, AI-based scheduling in Kubernetes has

become a prominent area of research in recent years.

Numerous studies propose different approaches to

optimize scheduling decisions using machine learning

and other AI techniques. Notable achievements include

the development of scheduling algorithms capable of
handling complex workloads in dynamic environments.

These algorithms consider factors such as re-source

availability, task dependencies, and application

requirements to make optimal scheduling decisions.

Reinforcement learning-based scheduling algorithms,

which ad-apt to changing workload patterns and learn

from experience, as well as deep learning-based

approaches that capture complex patterns in workload

data, have been proposed. While these studies

demonstrate that AI-based[8] scheduling improves

efficiency and performance in Kubernetes clusters,
challenges remain. The lack of real-world datasets for

training and evaluating AI-based scheduling algorithms is

a significant challenge, and there is a trade-off between

accuracy and computational complexity. Future research

in this area could focus on developing more efficient and

scalable AI-based scheduling algorithms capable of

handling large-scale, real-world workloads.

Finally, autoscaling-enabled scheduling emerges as a

nascent research area aiming to optimize resource

utilization and enhance application performance by

combining autoscaling and scheduling techniques.
Finally, autoscaling-enabled scheduling emerges as a

nascent research area aiming to optimize resource

utilization and enhance application performance by

combining autoscaling and scheduling techniques.

Several recent studies indicate significant improvements

in resource utilization and application performance

through autoscaling-enabled scheduling, reducing

resource wastage and improving response times. How-

ever, challenges persist, particularly in designing

effective autoscaling-enabled scheduling algorithms that

can adapt to dynamic workload changes while

maintaining application performance. Practical
implementation in real-world scenarios also requires fur-

ther research, as existing studies often occur in controlled

experimental settings. Challenges in algorithm design,

standardization, and practical implementation need to be

addressed, urging future research to focus on developing

more effective and practical autoscaling-enabled

scheduling techniques. How-ever, challenges persist,

particularly in designing effective autoscaling-enabled

schedul-ing algorithms that can adapt to dynamic

workload changes while maintaining applic-ation

performance. Practical implementation in real-world
scenarios also requires further research, as existing

studies often occur in controlled experimental settings.

Challenges in algorithm design, standardization, and

practical implementation need to be addressed, urging

future research to focus on developing more effective and

practical autoscaling-enabled scheduling techniques.

IV. CHALLENGES

Through this research, a notable observation emerges

regarding different load balancing techniques: a lack of

clear understanding regarding why specific algorithms

outperform others and how each can be enhanced.

Despite researchers attempting to implement or improve

load balancing algorithms, a comprehensive

transformation in load balancing within container

environments has not been achieved. Given the evolving

nature of containers, considerable research remains, and

the importance of load balancing is growing. As we
progress, emphasizing load balancing becomes crucial for

enhancing system performance and reducing carbon

emissions. Our aim is to identify algorithms suitable for

various purposes and implement these techniques while

comparing their performance. Presently, there is

widespread acknowledgment that, concerning container

orchestration, Kubernetes outperforms Docker Swarm.

Kubernetes’s scalability, portability, and self-healing

attributes contribute to its preference over Docker Swarm.

Kubernetes’s longer existence and extensive

documentation add to its popularity. Our investigation
seeks to uncover why Kubernetes is the preferred choice

for implementing load balancing.

The research papers employ diverse algorithms to

enhance Kubernetes scheduling, tested across various

platforms and environments. The survey thoroughly

analyzes the current literature, forming a taxonomy to not

only assess the current state-of-the-art but also identify

challenges and future directions. Areas identified for

potential future re-search include the growing need for

advanced computation optimization techniques as

Kubernetes popularity rises, with a focus on sophisticated
algorithms, potentially incorporating AI or machine

learning. Integration with emerging technologies like

serverless computing could enhance resource usage.

Testing and implementation to reveal limitations of

current learning algorithms for scheduling, emphasizing

tooling and automation improvement, along with the

development of testing frameworks. Continuous

refinement of Kubernetes’ implementation and

development process is crucial, including comprehensive

testing and validation strategies. The future of testing and

implementation in Kubernetes involves ongoing

innovation, collaboration, and a commitment to driving
the platform forward.

V. FUTURE RESEARCH

Before the advent of container technologies, deploying

applications was a time-consuming manual process,

consuming significant company resources. The

introduction of container technologies, particularly

Docker and Kubernetes, revolutionized and standardized

the deployment process, making it more efficient.

In the current landscape, load balancing for containerized
applications comes in various forms tailored to different

use cases. Docker has significantly simplified the

capacity to scale, providing built-in features for service

discovery and load balancing. Developers now spend less

time creating these support functions independently and

more time focusing on their applications. Docker

automates tasks such as setting DNS for service discovery

and adding applications to the load balancer pool when

scaling is required, enabling organizations to deploy

highly available and scalable applications in a shorter

timeframe.

International Journal of Innovative Research in Engineering and Management (IJIREM)

Innovative Research Publication 53

The realm of Kubernetes resource management

predominantly relies on optimization modeling

frameworks and heuristic-based algorithms. A promising

avenue for future research involves enhancing and

proposing novel resource management algorithms. This

prospect directs future investigations towards overcoming

the challenges associated with handling intricate and

dynamic workloads across distributed and heterogeneous
environments within Kubernetes. Research efforts may

delve into the development of more intricate algorithms

and techniques addressing workload placement, resource

allocation, and load balancing. Additionally, there exists

an opportunity to explore innovative approaches to

containerization and virtualization. The integration of

emerging technologies such as edge computing and 5G

networks may further unlock avenues for achieving more

efficient and scalable resource management within

Kubernetes.

The majority of research efforts in Kubernetes scheduling
have predominantly centered around evaluations

conducted on small clusters. However, an intriguing

future research direction involves scaling up the cluster

sizes for algorithmic evaluation. Despite Kubernetes

demonstrating effectiveness in managing clusters

comprising several thousand nodes, there arises a crucial

need to assess its performance in even larger cluster sizes.

This evaluation encompasses scrutinizing the scalability

of the Kubernetes scheduler, pinpointing potential

bottlenecks, and proposing viable solutions to address

them. Furthermore, it becomes imperative to evaluate the
repercussions of larger cluster sizes on application

performance and resource utilization. Exploring this

avenue of research holds the potential to unveil more

efficient scheduling algorithms and enhanced

management strategies tailored for large-scale Kubernetes

deployments.

Despite these advancements, existing methods still face

efficiency challenges, and the scalability of new

algorithms is limited for widespread use. The increasing

adop-tion of containers makes load balancing an essential

requirement, necessitating further research into efficient

implementations

VI. CONCLUSIONS

Scaling and reaping the benefits of Docker has never been

easier. Docker comes equipped with built-in service

discovery and load balancing features, alleviating

developers from the task of creating these supporting

functionalities themselves. Instead of dedicating time to

manual API calls for setting DNS in service discovery,

Docker automates the process. When scaling an

application becomes necessary, Docker seamlessly
integrates it into the load balancer pool. By leveraging

these features, organizations can deploy highly available

and adaptable applications in a significantly reduced

timeframe.In sum-mary, the survey on Kubernetes

scheduling offers a comprehensive examination of the

present landscape in this field. It delves into the

objectives, methodologies, algorithms, experiments, and

outcomes of diverse research endeavors within this

domain. The sur-vey underscores the significance of

scheduling in Kubernetes and underscores the ne-cessity

for proficient and effective scheduling algorithms.

Despite the advancements made, the experimental results

indicate opportunities for enhancements in this realm,

emphasizing the need for ongoing efforts to devise novel

algorithms and enhance exist-ing ones. In conclusion, the

survey contributes valuable insights into the existing

status of Kubernetes scheduling and directs attention

toward promising avenues for future research.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Chang, C., Yang, S., Yeh, E., Lin, P. & Jeng, J. A
Kubernetes-based monitoring platform for dynamic cloud
resource provisioning. GLOBECOM 2017-2017 IEEE
Global Communica-tions Conference. pp. 1-6 (2017)

[2] Zhong Z, Buyya R (2020) A Cost-Efficient Container

Orchestration Strategy in Kubernetes-Based Cloud
Computing Infrastructures with Heterogeneous Resources.
ACM Trans Internet Technol 20(2):1–24

[3] Kim SH, Kim T (2023) Local scheduling in kubeedge-based
edge computing environment. Sensors 23(3):1522

[4] Peng Y, Bao Y, Chen Y, Wu C, Guo C (2018) Optimus: An
Efficient Dynamic Resource Scheduler for Deep Learning
Clusters. Proceedings of the 13th EuroSys Conference,
EuroSys

[5] Mao H, Schwarzkopf M, Venkatakrishnan SB, Meng Z,
Alizadeh M (2019) Learning schedul-ing algorithms for data
processing clusters. SIGCOMM Conference of the ACM
Special In-terest Group on Data Communication. pp 270–
288

[6] Chaudhary S, Ramjee R, Sivathanu M, Kwatra N,
Viswanatha S (2020) Balancing effi-ciency and fairness in
heterogeneous GPU clusters for deep learning. Proceedings

of the 15th European Conference on Computer Systems,
EuroSys

[7] Kubernetes: Available: http://kubernetes.io/.
[8] Taherizadeh S, Stankovski V (2019) Dynamic multi-level

auto-scaling rules for containerized applications. Computer
J 62(2):174–197

[9] Rattihalli G, Govindaraju M, Lu H, Tiwari D (2019)
Exploring potential for non-disruptive vertical auto scaling

and resource estimation in kubernetes. IEEE International
Conference on Cloud Computing, CLOUD. pp 33–40

[10] Jain, N., Mohan, V., Singhai, A., Chatterjee, D. & Daly, D.
Kubernetes Load-balancing and related network functions
using P4. Proceedings Of The Symposium On Architectures
For Networking And Communications Systems. pp. 133-
135 (2021)

[11] Toka L, Dobreff G, Fodor B, Sonkoly B (2021) Machine

Learning-Based Scaling Manage-ment for Kubernetes Edge
Clusters. IEEE Trans Netw Serv Manage 18(1):958–972

[12] Masne, S., Wankar, R., Raghavendra Rao, C. & Agarwal, A.
Seamless provision of cloud services using peer-to-peer
(p2p) architecture. Distributed Computing And Internet
Techno-logy: 8th International Conference, ICDCIT 2012,
Bhubaneswar, India, February 2-4, 2012. Proceedings 8. pp.
257-258 (2012)

[13] Kim SH, Kim T. Local Scheduling in KubeEdge-Based

Edge Computing Environment. Sensors (Basel). 2023 Jan
30;23(3):1522. doi: 10.3390/s23031522. PMID: 36772562;
PM-CID: PMC9921110.

[14] Wankar, Rajeev. (2008). Grid Computing with Globus: An
Overview and Research Chal-lenges. International Journal
of Computer Science Applications.

[15] Vasireddy, Indrani, Rajeev Wankar, and Raghavendra Rao
Chillarige. "Recreation of a Sub-pod for a Killed Pod with

Optimized Containers in Kubernetes." International

International Journal of Innovative Research in Engineering and Management (IJIREM)

Innovative Research Publication 54

Conference on Expert Clouds and Applications. Singapore:
Springer Nature Singapore, 2022.

[16] Li D, Wei Y, Zeng B (2020) A Dynamic I/O Sensing

Scheduling Scheme in Kubernetes. ACM International
Conference Proceeding Series. Pp 14–19

[17] Cito, Jürgen & Ferme, Vincenzo & C. Gall, Harald. (2016).
Using Docker Containers to Improve Reproducibility in
Software and Web Engineering Research. 609-612.
10.1007/978-3-319-38791-8_5

[18] Dynamic Balance Strategy of High Concurrent Web Cluster
Based on Docker Container. Weizheng Ren et al 2018 IOP

Conf. Ser.: Mater. Sci. Eng. 466 012011
[19] El Haj Ahmed G, Gil-Castiñeira F, Costa-Montenegro E

(2021) KubCG: A dynamic Kubernetes scheduler for
heterogeneous clusters. Software Pract Experience
51(2):213–234

[20] Ismail, Bukhary Ikhwan, et al. "Evaluation of Docker as
edge computing platform." 2015 IEEE Conference on Open
Systems (ICOS). IEEE, 2015.

