
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9, Issue-2S2, December 2019

794

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

Hybrid Optimization Driven Technique for

Malicious Javascript Detection Based on Deep

Learning Classifier

Scaria Alex, T Dhiliphan Rajkumar

Abstract—The growth of the web users and thecontents are

increasing in a daily basis. In all these webpages the

implementation of javascripts are a common factor. These scripts

are used for the simplicity and achieve interaction with the user,

but, also could be used to harm the end user by stealing

information, redirecting to phishing pages and installing harmful

softwares. This alarms an immediate look into the security

concerns of the javascript. There exist many machine learning-

based malicious script detection approaches, but majority of them

follow a shallow discriminating models where manual definition

of features are constructed with artificial rules. In this paper, a

deep learning framework for detecting malicious JavaScript code

is proposed combing the optimization power of Bird Swarm

Algorithm. To extract high-level features from JavaScript code

Stacked denoising auto-encoders are implemented and BSA is

used to optimise the features and identify the malicious codes.

The theoretical model [2] have an accuracy of 94% in identifying

the malicious codes.

Keywords—Deep learning framework, javascript, Bird Swarm

Algorithm, Stacked Denoising Auto-encoders

I. INTRODUCTION

As days passes by more and more users are using

internet and the web itself is expanding with data. This

alarms the increase in distributing malware among the users.

Malware distributors Through the internet the malwares are

distributed through various methodologies like: phishing to

download sites, redirecting to unauthorized webpages, fake

codec installation requests, malicious advertisements and

spam messages on blogs, social network sites and other web

pages. Most commonly the attacker uses malicious

JavaScript codes during part of the attack,which includes

cross-site scripting (XSS) and web-based malware

distribution. JavaScript is a tool that may be used by the

attacker to create a redirection for a user to a website hosting

malicious software, to create a pop-up window

recommending users to download a fake codec, to also

detect which software versions the user is currently using

and select a preferable method to exploit it. The initial

infection method for any malware is to malicious the

javascript. These malicious javascripts hides known exploits

and save themselves from being detected by rule-based anti-

malware software or anti-malware softwares based on

regular expressions.

Revised Manuscript Received on December 16, 2019.

Dr. T Dhiliphan Rajkumar, Assistant Professor Department of
Computer Science and Engineering, Kalasalingam University

Mr. Scaria Alex, Research Scholar, Department of Computer Science

and Engineering, Kalasalingam University

 The complexity related to each of these obfuscation

techniques have been increased, raising the resources that

are necessary to counter the attacks [9].The existing

methodology for JavaScript security solution over XSS

attacks is based on sand-boxing technique, which blocks the

code to be performed on a restricted environment only.

Within a browser the JavaScript programs are considered as

untrusted software variables that have accessability to only

a limited set of resources. The problem associated to the

current solution is that the javascripts will be conformed to

the sand-box policies, but still it will violate the security

within the system. The sand-boxing mechanism embedded

within the browsers prevent JavaScript code from being

compromising the client’s environment security , but, there

exists a number of attacks that can be used to steal

confidential information from the user which includes the

cross site scripting attacks and pressurize users for

providing highly sensitive information like passwords and

online account details to unauthorized parties by the means

of phishing attacks [10].

The JavaScript based malware attacks are of increase

and have a better success rate in mass-scale exploitation.

From the viewpoint of an attacker, the primary advantage is

that the attacks could be carried out against an ordinary user

visiting an ordinary web page. There are many techniques

proposed to incur these attacks, but, in-browser

implementation has been slow due to the performance

overhead [11]. It is well known that JavaScript is the main

vehicle for web-based attacks, enabling the delivery of

sophisticated social engineering, drive-by malware

downloads, cross-site scripting, and other attacks. It is

therefore important to develop a system that could analyse

the deep working of the javascript based malware attacks,

thus enabling a better and robust defensive systems.

However, while extensive previous work exists on JS code

inspection [13] and web-based attack analysis [14], an

important problem remains: to evade defense systems and

security analysts, web-based attacks are often developed to

be ephemeral and to deliver the actual attack code only if

certain restrictive conditions are met by the potential victim

environment [15]. Therefore there is a need for javascript

based attack analysis tool that can capture in-browser

activities and subsequently reconstruct the live security

flaws while the end user browse the web. Malicious

JavaScript is code that shows some kind of malicious

unwanted behaviour, such as drive-by downloading,

installation of other malware such as fake codec’s,

unwanted advertisements, or spam. The code is often

hidden, making the basic code analysis and detecting the

malware difficult. Malicious JavaScript code is often used

as a first step for other

malware attacks, tricking a

user to install other kinds of

Hybrid optimization driven technique for Malicious JavaScript detection based on Deep learning classifier

 795

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

malicious software, or to directly install and execute exploits

[16].

II. LITERATURE REVIEW

Some approaches for malicious JavaScript detection use
dynamical code analysis, such as client honeypot techniques
[17], or statical analysis such as pattern matching [18].
Maintaining pattern-based systems can become a tedious
task as new malicious scripts are published, creating a
moving target, and using dynamical code analysis is
typically computationally expensive. Some services,
including Google Safe Browsing, maintain a black list of
URLs with malicious content of some sort, and yet other
approaches uses code signatures for detection. The black-list
approach can provide a certain level of security, and is
currently implemented in web browsers such as Firefox and
Chrome [16].In [19], a malware detection framework was
improvised by selecting application program interface (API)
call statistics as malware features and by using the SVM as
the classifier. In [20], malware behaviours has been
classified by extracted features from the sequences of API
calls and the k-nearest neighbor algorithm. In [21], a mining
and machine learning approach to identify malicious
JavaScript code was provided. In [22], a C4.5 decision tree
algorithm was introduced that identified the unwanted
scripts by analysing a set of features of traffic statistics, file
system structure, and webpage contents. Even though these
traditional mechanism of machine learning-based methods
was able to predict the presence of an unknown malicious
JavaScript code, the time taken to test the availability of
malicious code is too expensive. In [23] The malicious
codes are disassembled into opcodes by implementing N-
gram algorithms that extracted features. The detection
technology in the current world is moving faster from the
traditional pattern-based matching to the newly generated
machine-based learning enhancing more automatic and
intelligent direction. The major requirement for detection
results are not just encapsulated to the ability to accurately
identify the known attacks but also to fight against
potentially suspicious attacks.

A. Challenges

The attacker inserts malicious JavaScript code into the

vulnerable web pages to expose the visitors onto severe

network attacks like virus distribution, Trojan attack and

confidential information extraction [1]. Malicious JavaScript

code is hard to detect due to its hidden feature and

complexity. Identifying such code have a considerable cost

over the process. It is hence so because there are multiple

pathways for an attacker to insert unwanted scripts. Thus

JavaScript codes should be dynamically inspected and

should identify different types of vulnerabilities within the

browser’senvironment [2]. Javascript have the feature of

collaborating with multiple programming languages. This

interaction paves the way for the attacker to utilize the

system [7]. The attacker could easily integrate javascript

code to access camera, GPS, speaker, data transmission and

other system information of an unsuspected user. The

attackers hide there identity by disguising as a legitimate

company by referencing them and includes highly sensitive

malicious code within them [9].

II. PROPOSED METHODOLOGY

The primary intention of this paper is to design and

implement a technique for malicious JavaScript detection.

The overall procedure of the proposed technique involves:

feature extraction and classification. At first, the input

JavaScript codes will be subjected to the feature extraction

phase in which the significant features will be extracted.

Since each javascript code have its own unique structure

and purpose, its not an easy task to define the features for a

legitimate code. Even if a blacklist of the virus signatures

are defined, a manual updation of the blacklist and

matching the supplied code with the defined blacklist will

be a hilarious task. Even for a heuristic detecting method,

where the security experts set a block of rules to identify

malicious from legitimate codes, there should be a frequent

modification of the rules based on the newly identified

malicious javascripts. Another approach called dynamic

analysis verify the code within a controlled environment

causing less deterioration to the end users. This approach

have high level of security but it consumes a lot of time and

cannot be represented as a real application because the

malicious code will behave differently with different

triggering conditions.

It is difficult to hence decide on the features to be

chosen to detect the presence of malicious javascript codes

due to having multiple links to other pages, data

encapsulation, code reordering and rubbish strings

insertion. To ease the process of feature extraction of the

javascript code the deep learning technique is used which

require least manual intervention. It is achieved by

implementing the multiple-layer stacked denoising

autoencoders (SdA) which will extract the features

automatically. The learned features are then inputted to

Bird Swarm Algorithm (BSA) to optimize the features

extracted and help in identifying the malicious code from

the legitimate ones. The advantage of the defined

methodology is the learning based detection, where the

deep- learning technique helps in identifying the key

features of java script code which require zero intervention.

The second advantage is the zero-day attack detection,

which is achieved by extracting the intrinsic features of the

attack. Thus the model can prevent even a previously

unknown attack.

III. DETECTION METHODOLOGY

Using the deep learning technology the provided java

script is scanned for vulnerabilities. The multi-layered

stacked denoising auto-encoder(SdA) is used to extract the

javascript features for analysis. The extracted features are

then optimized using a logistic regression Bird Swarm

Algorithm(BSA). The resulted feature helps in discovering

the provided javascript code is malicious or not.

A. Deep learning
Deep learning is a sub- topic on Machine Learning. Its

purpose is to learn high level representation of data with

deep layer-wise method. Each layer first undergoes a pre-

training with unsupervised

data and then is fine tuned in

a supervised mechanism.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9, Issue-2S2, December 2019

796

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

Here deep learning is achieved using stacked denoising

auto-encoder because its best in text classification [2].

B. Denoising auto-encoder (dA)

As input is fed to the system, an unmonitored pre-

training is conducted on each layer. During this phase noise

is added to the input so that the hidden layer will discover

more authentic features instead of learning the mere identity.

Thus the dA reconstructs the input from the corrupted noised

version of the original data. The denoising auto-encoder thus

have two functions: First it try to preserve the information

about the input and second it tries to recover from the

corrupted input stochastically. The half of the input value is

set to zero by the stochastic corruption process.

C. Stacked denoising auto-encoders (SdA)

Denoising autoencoders can be repeated multiple times

hierarchically by inputting the output of the denoising

autoencoders’ previous layer to the top layer. The

unmonitored pre-training of js code vector is done one layer

at a time method. Each layer of the denoising autoencoder is

trained and the output will be generated by minimizing the

error in reconstructing its input. Once the first n layers are

trained with the noised input, we can train the n+1-th layer

by inputting the code from the output of the nth layer.
Once all denoising autoencoders’ layers are pre-trained,

the output generated goes through a second stage of training

called fine-tuning. The prediction error is considered to be

reduced due the monitored fine-tuning. To achieve this, a

logistic regression layer is first added on top of the received

output code generated through the last layer. Then the entire

network is trained as in multilayer perceptron. At this stage

only the encoded part of the auto -encoder is only

considered. This stage is done under supervision because

the resultant class is used during the later training sessions.

D. Bird Swarm Algorithm (BSA)
The inputted JavaScript code is converted to binary

feature vectors which will act as the input of the deep

learning model. Every character in JavaScript

codesegments is converted into an eight bit ASCII binary

codes. All the JavaScript code segments are stored in the

form of a binary file. This will generate over 20,000 feature

dimentionalities. Inorder to reduce this high collection of

input data to an adequate quantity that could decreases the

processing cost, Bird Swarm Algorithm is proposed [26].

The birds occasionally have three basic behaviors:

foraging, vigilance and fly in flocks. These are similar to

the swarm behaviour of separation, alignment and

cohesion. The birds fly in group in search of food. They

identify the food source from the collective search of the

group. One finds and others feed on it. While having food

they raises their head for looking out predators. So they are

always vigilant and its always better to have more in

number than being alone to protect themselves from

predators. They fly in a group and all try to be on the center

as its the safest position. But the position is based on the

bird with the highest reserve of food.

BSA is integrated as a solution to different types of

problems on regression and classification of data. It has

unique features that includes swarm algorithm, searching

methods, population diversity, and local optima avoidance.

The BSA is initiated by considering N number of birds in a

X dimensional search space
[29]. The swarms fitness value is averaged to calculate the

effect of change in surroundings as the birds move to the

center.

In this context the birds will be the eight bit binary

code extracted during the SdA, with its weights and biases

fractions. The proposed method is initiated by specifying

the SdA structure which includes the number of features,

and the total number of biases and weights. Then, a

random set of SdA networks is developed, that represents

N birds. In the next stage the fitness value of individual

bird is calculated based on a fitness function and the

training dataset. In order to train dAs, the best global

fitness, and best personal fitness of individual bird is

updated first. Individual bird’s vector value is updated then

based on the bird’s current status. The above defined

stages are looped until the maximum number of iterations

are reached. The resultant will be a collection of optimized

features which can be used for evaluating the javascript.

This results in faster generation of solutions with less time

complexity.

E. Efficiency

According to [2], the SdA have produced an effective

result of 94.82% accuracy with a True Positive Rate of 93.95%

and False Positive Rate of 4.13%. The result was then

compared to other machine learning algorithms like naive

Bayes which scored only 93.32%, RBF SVM scored 91.67%,

RIPPER scored 90.19%, and ADTree scored 85.08%. Among

all the SdA outperformed. On the other hand BSA alone [29]

have produced the highest classification rate when verifying

with other algorithms like DE, GA, PSO, ACO, ES and

ABC. Combining the features of BSA into SdA have

increased the accuracy rate to 94% [29].

IV. CONCLUSION

This paper proposes a new method on deep learning

methodology based on Bird Swarm Algorithm which will

produce a significant improvement on detecting malicious

JavaScript on webpages. The main reason for selecting BSA as

an optimization algorithm was its algorithm, where different

groups are generated for a cluster of particles and generates a

high local optima avoidance. According to the theoretical

concept BSA can be used to train SdA for generating a larger

collection of datasets with different characteristics. According

to author [2][29], the SdA was able to produce an accuracy of

94% with false positive rate to only 4% which is the best result

compared to all other existing algorithms.

REFERENCES

1. Fang, Y., Huang, C., Liu, L. and Xue, M., "Research on Malicious

JavaScript Detection Technology Based on LSTM," IEEE Access,

vol.6, pp.59118-59125, 2018.

2. Wang, Y., Cai, W.D. and Wei, P.C., "A deep learning approach for

detecting malicious JavaScript code," security and communication

networks, vol.9, no.11, pp.1520-1534, 2016.

Hybrid optimization driven technique for Malicious JavaScript detection based on Deep learning classifier

 797

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11211292S219/2019©BEIESP

DOI: 10.35940/ijitee.B1121.1292S219

3. Hsu, F.H., Hwang, Y.L., Lee, C.H., Lin, C.J., Chang, K. and Huang,

C.C., "A Cloud-based Protection approach against JavaScript-based

attacks to browsers," Computers & Electrical Engineering, vol.68,

pp.241-251, 2018.
4. Mao, J., Bian, J., Bai, G., Wang, R., Chen, Y., Xiao, Y. and

Liang, Z., "Detecting Malicious Behaviors in JavaScript

Applications," IEEE Access, vol.6, pp.12284-12294, 2018.

5. Mosaad, S., Abdelbaki, N. and Shosha, A.F., "A Postmortem

Forensic Analysis for a JavaScript Based Attack," In Computer and

Network Security Essentials, pp. 79-94, 2018.
6. Gupta, S. and Gupta, B.B., "A robust server-side javascript feature

injection-based design for JSP web applications against XSS

vulnerabilities," In Cyber Security, pp. 459-465, 2018.
7. Song, W., Huang, Q. and Huang, J., "Understanding JavaScript

Vulnerabilities in Large Real-World Android Applications," IEEE

Transactions on Dependable and Secure Computing, 2018.
8. Abdel Khalek, M. and Shosha, A., "Jsdes: An automated de-

obfuscation system for malicious javascript," In proceedings of the

International Conference on Availability, Reliability and Security,

ACM, pp. 80, 2017.

9. Likarish, P., Jung, E. and Jo, I., "Obfuscated malicious javascript

detection using classification techniques," In proceedings of

International Conference on Malicious and Unwanted Software, pp.

47-54, 2009.

10. Hallaraker, O. and Vigna, G., "Detecting malicious javascript code in

mozilla,"In proceedings of International Conference on Engineering

of Complex Computer Systems, pp. 85-94, 2005.
11. Curtsinger, C., Livshits, B., Zorn, B. and Seifert, C., "Zozzle: Low-

overhead mostly static JavaScript malware detection," In Proceedings

of the usenix security symposium, pp. 3-3, 2011.

12. Li, B., Vadrevu, P., Lee, K.H. and Perdisci, R., "JSgraph: Enabling

Reconstruction of Web Attacks via Efficient Tracking of Live In-

Browser JavaScript Executions," In Annual Network and Distributed

System Security, 2018.

13. C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and

precise in-browser javascript malware detection,” in proceedings of

USENIX Conference on Security, pp. 3–3, 2011.

14. B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive

record/replay for web application debugging,” in proceedings of

ACM symposium on User interface software and technology, pp.

473–484, 2013.
15. C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle: De-

cloaking internet malware,” in proceedings of IEEE Symposium on

Security and Privacy, 2012.
16. Mogren, O., "Malicious JavaScript detection using machine

learning," learning, vol.10, no.11, pp.12, 2017.
17. Yaser Alosefer and Omer Rana, "Honeyware: a web-based low

interaction client honeypot," In proceedings of Third International

Conference on Software Testing, Verification, and Validation, IEEE,

pp. 410–417, 2010.
18. YoungHan Choi, TaeGhyoon Kim, SeokJin Choi, and Cheolwon

Lee, "Automatic detection for javascript obfuscation attacks in web

pages through string pattern analysis," In proceedings of

International Conference on Future Generation Information

Technology, Springer, pp. 160–172, 2009.
19. Huda M, Abawajy J, Alazab M, Abdollalihian M, Islam R,

Yearwood J, "Hybrids of support vector machine wrapper and filter

based framework for malware detection," Future Generation

Computer Systems, 2014.

20. Alazab M, "Profiling and classifying the behavior of malicious

codes," Journal of Systems and Software, vol.100, pp.91–102, 2015.

21. AL-Taharwa IA, Lee H, Jeng AB, Wu K, Ho C, Chen S, "JSOD:

JavaScript obfuscation detector," Security Comm. Networks, vol.8,

pp.1092–1107, 2015.
22. Soska K, Christin N, "Automatically detecting vulnerable websites

before they turn malicious," in USENIX Security, pp. 625–640,

2014.

23. Yuxin, D., Wei, D., Yibin, Z. and Chenglong, X., "Malicious code

detection using opcode running tree representation," In proceedings

of International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing, pp. 616-621, 2014.
24. Canfora, G., Mercaldo, F. and Visaggio, C.A., "Malicious javascript

detection by features extraction," e-Informatica Software Engineering

Journal, vol.8, no.1, 2014.

25. Bansal, J.C., Sharma, H., Jadon, S.S. and Clerc, M., "Spider monkey

optimization algorithm for numerical optimization," Memetic

computing, vol.6, no.1, pp.31-47, 2014.

26. Meng, X.B., Gao, X.Z., Lu, L., Liu, Y. and Zhang, H., "A new bio-

inspired optimisation algorithm: Bird Swarm Algorithm," Journal of

Experimental & Theoretical Artificial Intelligence, vol.28, no.4,

pp.673-687, 2016.
27. “Malicious JavaScript,”

https://www.cs.bham.ac.uk/research/projects/infotools/l

eakiest/examples/javascript.php, Accessed on March 2019.
28. Javascript Malware Collection,”

https://github.com/HynekPetrak/javascript-malware

collection, Accessed on March 2019.

29. Ibrahim Aljarah, Hossam Faris, Seyedali Mirjalili, Nailah Al-Madi,
Alaa Sheta and Majdi Mafarja, “ Evolving neural networks using bird
swarm algorithm for data classification and regression applications”,
Journal of Cluster Computing, Springer, Published on 15 Feb 2019

AUTHORS PROFILE

Dr. T Dhiliphan Rajkumar, Assistant Professor

Department of Computer Science and Engineering,

Kalasalingam University

Mr. Scaria Alex, Research Scholar, Department of
Computer Science and Engineering, Kalasalingam

University

https://github.com/HynekPetrak/javascript-malware

