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Abstract—Human activity recognition (HAR) has been a 

popular fields of research in recent times. Many approaches 

have been implemented in literature with the aim of recognizing 

and analyzing human activity. Classical machine learning 

approaches use hand-crafted feature extraction and are based 

on classification technique, however of late, deep learning 

approaches have shown greater success in recognition accuracy 

with increased performance. With the current, wide popularity 

of mobile phones and various sensors such as accelerometers, 

gyroscopes, and cameras that are already installed on mobile 

phones, the activity recognition using the accumulating data 

from mobile phones has been a significant area of research in 

HAR. In this paper, we investigate the HAR based on the data 

collected through the accelerometer sensor of mobile devices. 

We employ different machine learning (ML) classifiers, 

algorithms, and deep learning (DL) models across different 

benchmark datasets. The experimental results from this study 

provide a comparative performance analysis based on accuracy, 

performance, and the costs of different ML algorithms and DL 

algorithms, based on recurrent neural network (RNN) and 

convolutional neural network (CNN) models for activity 

recognition. 

 
Index Terms—ML, DL, CNN, RNN.  

 

I. INTRODUCTION 

Due to wide applications in many fields such as human- 

computer interaction, elder care [1], medicine [2], video 

surveillance and security applications, HAR has become one 

of the most active research areas in the field of computers in 

recent years. The ability of a computer to recognize human 

activity can be used to detect possible security threats 

covering large areas through video surveillance. The 

activities of elderly people can be monitored, and with the 

proper feedback system, sudden adverse effects such as 

sudden health problems, can be recognized early and properly 

mitigated before they become worse. Also, HAR can be used 

for patients having a mental disorder or disease such as 

Parkinson’s Disease Dementia [3] to regularly monitor their 

activities and detect if any abnormal activities occur.  

Basically, HAR can be divided into three basic types: 

video-based HAR [4], sensor-based[5], and radio-based[1] 

HAR method. In video-based HAR, a sequence of images or 

videos captured from the camera is used to analyze the 
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activity performed by the human. In sensor-based HAR, 

sensors such as accelerometers, gyroscopes that are placed on 

various parts of the body are used to collect the data generated 

by the movement of the human. In the radio-based method, 

the human body moves in a radio field and the channel fading 

due to signal attenuation and multipath effect is used for 

HAR.  

Among many approaches, ML methods [6] and DL 

approaches [7], [8] can be used to recognize the daily activity 

of the human by using sensor data with high accuracy. By 

using 3D acceleration data from the accelerometer sensors 

that are placed on multiple parts of the body, movement is 

detected, and activity is recognized. The various sensors 

placed on the human body have different sensitivities toward 

different activities [9]. The presence of sensors all over their 

bodies while performing their regular activities can be 

uncomfortable to the users; therefore, the use of smartphones 

in HAR is gaining popularity of late. 

In this paper, we compare the HAR of different algorithms, 

including ML classifiers such as random forest (RF), decision 

tree (DT), K-nearest neighbor (KNN), and DL classifiers such 

as RNN and CNN to accelerometer data collected from single 

as well as multiple devices.  

The remainder of this paper is organized as follows: 

Section II provides a literature review of the related work on 

sensor-based HAR using deep and ML algorithms. Sections 

III and IV describe the datasets and methods that have been 

used for the study. Section V presents the experimental results 

and analysis and in Section VI, conclusions and future work 

are discussed. 

 

II. RELATED WORK 

In this section, we mainly review the sensor-based 

recognition process using accelerometer data. Because of its 

low cost, ability to measure the acceleration in three 

orthogonal axes, and low power consumption, the use of 

accelerometers is increasing in HAR. Researchers[5] have 

used multiple inertial sensors at different body parts such as 

the chest, right thigh, and left ankle. They have highlighted 

the performance analyses for different supervised and 

unsupervised classification techniques. The selection of the 

sensors, the placement position, and the number of sensors to 

use are still major issues [9] in HAR. The research in [10] has 

investigated the position of the accelerometer sensor by 

collecting data from six tri-axial accelerometers that were 

placed at different parts of the body such as the chest, wrist, 

lower back, hip, thigh, and foot. The study includes six 
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activities: walking, running on a motorized treadmill, sitting, 

lying, standing, and walking up and downstairs. The study has 

shown that putting sensors on the hip provides better accuracy 

than at other locations of the body. Not only the position of 

the sensors but the determination of the number of sensors to 

be used, have drawn attention toward HAR. In [11] the 

authors have shown that gyroscopes can have higher accuracy 

than accelerometer data and the choice of sensors depends on 

the activities performed. They also suggested using multiple 

sensors in HAR.  

The most used classification approaches for activity 

recognition using the accelerometer sensor have been the ML 

method [12], [13] and more recently, DL methods [7], [8]. In 

[14], the authors used phone-based accelerometer data to 

identify the physical activity in daily life collected from 29 

users. Using three ML classifiers, they achieved high 

accuracies for common activities such as walking and jogging, 

but relatively low accuracies on activity such as climbing 

stairs. In [12], the authors utilized the ensemble of the 

different ML classifiers with the average of probabilities 

combination rule and have achieved better results than those 

from other single state-of-art classifiers.  

In recent years, with the advancement and achievements of 

deep learning in many fields such as speech recognition and 

natural language processing, DL approaches have been 

implemented in HAR. Hybrid approaches to DL and hidden 

Markov models [15] have been implemented, and have 

achieved better recognition accuracy by using tri-axial 

accelerometers than have nonhybrid methods. In [16], DL 

methods based on restricted Boltzmann machines have been 

used and have outperformed a wide range of common models 

and have also shown the acceptable use of resource 

consumption, although in constrained devices such as 

smartwatches. A single DL network as well as an ensemble of 

DL networks such as long short-term memory(LSTM) 

networks has been implemented to analyze the recognizing 

capabilities for real-world unbalanced data [17]. While most 

conventional methods use hand-crafted feature extraction, DL 

performs automatic high-level feature extraction [7] and this 

has made it a widely adopted approach in recent times. 

 

III. DATASET 

In our experiment, we selected two commonly used 

benchmark datasets for HAR using the accelerometer data 

collected from smartphones. The first dataset Wireless Sensor 

Data Mining (WISDM) dataset contains the raw data 

collected from the smartphone carried on the waist. The 

second dataset consists of the data collected from five 

different accelerometers on five different positions on the 

body. Both datasets consist of daily motion activities such as 

walking, sitting, standing, going upstairs, and going 

downstairs. We used these datasets to demonstrate our study 

in different nature of datasets, the balanced and unbalanced 

dataset, having similar activities. The detailed description of 

each dataset is presented. 

A. ACTi Tracker Dataset (WISDM Dataset) 

ACTi tracker Dataset [18] (Dataset 1) contains the data 

collected in controlled laboratory settings from the real- 

world usage of smartphones released by the WISDM Lab in 

2013. The dataset contains the raw data collected from the 

accelerometers of the cellphones attached to the waists of the 

volunteers. The dataset contains 2,980,765 pieces of labeled 

data with six attributes: walking (42.1%), jogging (14.7%), 

stairs (1.9%), sitting (22.3%), standing (9.7%), and lying 

down (9.3%). The data were collected at a sampling rate of 

20Hz (one sample every 50 ms). 

B. Sensor Activity Recognition Dataset (Shoaib SA) 

In this dataset [19] (Dataset 2), the data were collected in 

the university building for seven physical activities: walking, 

sitting, standing, jogging, biking, walking upstairs, and 

walking downstairs. The activities were performed for 3-4 

minutes by ten male participants between 25 and 30 years of 

age. In the experiment, five smartphones (Samsung Galaxy 

SII i9100) were placed on five different positions on the 

volunteers. The smartphones were placed on the common 

positions of mobile devices in daily life such as right jeans’ 

pocket, left jeans’ pocket, upper arm, right wrist, and on the 

belt using a belt clipper. The dataset contains data collected 

from the accelerometers, linear accelerometers, gyroscopes, 

and magnetometer sensors of the mobile phones at the rate of 

50 samples per second. In our experiment, we used only the 

data collected from the accelerometers for the five different   

smartphone positions. The dataset is balanced and has an 

equal number of observations for each class. 

 

IV. METHODOLOGY 

The raw data of the dataset that have been collected from 

the three-dimensional axis values of the accelerometer 

sensors are normalized and then analyzed through the ML 

classifiers and DL algorithms. The output from the model is 

analyzed based on overall accuracy, precision, and recall 

values. Since we have only used the raw data directly from the 

sensors, the hand-crafted feature extraction and feature 

selection methods which are most common in other research 

are not implemented for ML in our models. The overall 

methodology is shown in Fig. 1. 

 

 
Fig. 1. Overall methodology. 

 

A. ML Algorithm 

We used raw data that were collected from the 

accelerometers in the smartphones. The data comprised 80% 

of training data and 20% testing data. The different ML 

classifiers were modeled using the training data, and 

performance was evaluated using the testing data. The 

experiment was carried out using various ML algorithms with 
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different parameters. The classifiers that showed the best 

results were RF with the 10 estimators, DT, and KNN with 5   

neighbors. In this paper, the results and comparison between 

these three classifiers are presented. 

B. DL Algorithm 

In our study, we implemented DL architecture and 

investigated the recognition performances in the CNN and 

RNN architectures. We have implemented a CNN method 

that has already shown remarkable success in image 

classification [20] for the time-series data in HAR. The 1D 

sensor data are transformed to 2D data and reshaped to the 4D 

tensor format for 2D convolution, in which the height of the 

input data shape is pre-defined as 1. For the RNN method, we 

implemented the model based on LSTM cells. We have used 

the negative log-likelihood cost function using Adam 

optimizers. 

1) CNN method 

 
TABLE I: SUMMARY OF THE CNN MODEL LAYERS, OUTPUT SHAPE AND 

NUMBER OF PARAMETERS 

layers Output shape # parameters 

conv2d_1 (Conv2D) (None, 1, 100, 16) 64 

max_pooling2d_1 (None, 1, 50, 16) 0 

conv2d_2 (Conv2D) (None, 1, 50, 64) 1088 

max_pooling2d_2 (None, 1, 25, 64) 0 

dropout_1 (Dropout) (None, 1, 25, 64) 0 

conv2d_3 (Conv2D) (None, 1, 14, 256) 196864 

max_pooling2d_3 (None, 1, 7, 256) 0 

conv2d_4 (Conv2D) (None, 1, 7, 512) 131584 

max_pooling2d_4 (None, 1, 4, 512) 0 

dropout_2 (Dropout) (None, 1, 4, 512) 0 

global_average_pooling (None, 512) 0 

dense_1 (Dense) (None, 50) 25650 

dense_2 (Dense) (None, #of class) 306 

 

In the CNN model, the data from the accelerometer are first 

divided into time-series segments which are the same size as 

the window. The size of the window we selected was 100. A 

50% overlapping window technique, in which the data is 

divided into several segments, was used. A batch of segments, 

each segment sized 1×100, was stored in a 4D tensor similar 

to an image data. Each segment had half of the overlapping 

data from its previous segment. The depth axis comprises the 

three-dimensional sensor values of the data. These segments 

are divided as 80% training data and 20% testing data. These 

training data are divided again into 80% training and 20% 

validation data. With these training data, the deep model is 

trained with a learning rate of 0.001. The trained model was 

tested with the validation data in each epoch. A checkpoint 

was created in which the model was saved if the performance 

improved with each epoch in the validation loss. At the end of 

the training, we had the latest optimized model that shows 

high performance in the validation dataset, which is then used 

for testing against the testing data. This method implements 

similar logic as the early stopping technique. The data are fed 

into different layers, where each layer has a batch size of 100. 

As shown in Table I, the CNN model contains a total of four 

convolutional layers: a max pool layer which reduces the data 

sample by half, a global average pooling layer, a dropout layer 

for regularization with a probability constant of 0.5, and a 

dense layer. We used the ReLU activation function in our 

model to transform our output data. Also, to validate our 

results, we performed the five-fold cross-validation method 

on the entire dataset. The results from both approaches were 

similar. 

2) RNN model 

In the RNN model we used the multiple layers of LSTM 

and the dropout wrapper layer, which were then appended 

together. The output of the first layer would be the input to the 

next layer. Because LSTM provides the possibility of learning 

the long dependencies of the data, we used it in our model. All 

these layers are stacked by using multiple RNN cells. First, we 

constructed a fixed length of training batches to train the 

model. The number of batch size was 25 with a learning rate 

of 0.3 when the total number of epochs equaled 100. After 

each epoch, we calculated the mean average and mean loss in 

each epoch. 

  

V. EXPERIMENT RESULTS 

We selected two publicly available datasets for activity 

recognition. We chose two different nature datasets; one 

dataset had an unbalanced data distribution, collected using a 

single sensor placed at the waist region, whereas the other was 

a balanced dataset collected using multiple sensors on various 

parts of the body. Both sets had data collected from the 

tri-axial accelerometer sensor.  

 

 
Fig. 2. Overall accuracy. 

 

 
Fig. 3. Precision, Recall, and F1 score for KNN. 

 

 
Fig. 4. Accuracy/Loss result for dataset 1. 
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Fig. 5. Accuracy/Loss result for dataset 2. 

 

Fig. 2 shows an overall accuracy comparison of two 

datasets for three ML classifiers. Comparing both datasets for 

the same ML classifier reveals that the accuracy is higher for 

dataset 2 than for dataset 1. This can occur because the data 

was collected from multiple sensors placed on various parts of 

the body while the activity was being performed. This shows 

that if the model is fed with more information during training 

and designing, overall performance can be affected.  Also, the 

accuracy is higher for the KNN method in both datasets, 

nearly 91% in dataset 1 and about 98% in dataset 2 than for 

other ML classifiers. Since dataset 1 is a highly unbalance 

dataset with a greater variation in the number of data for 

different activities, the result is further analyzed using other 

performance metrics such as precision, recall and F1 score. 

Fig. 3 shows the precision, recall, and F1-score of both the 

datasets for KNN classifier.    

In dataset 1, with the exception for climbing stairs, the 

performance has high precision, recall, and F1-score, whereas 

the score is higher and nearly consistent across all the 

activities in dataset 2. This can be due to the highly 

imbalanced nature of the dataset 1 where the percentage of 

data for stairs is about 1.9%, whereas for walking it is about 

42.1%. We have used only the raw data without any 

hand-crafted features extractions for ML classifiers.  

Fig. 4 and Fig. 5 show the accuracy and loss curve of both, 

the RNN and CNN models for the training data for dataset 1 

and dataset 2, respectively. For both the datasets, the CNN 

and RNN models are trained using the training data with the 

same model hyperparameters in the same environment. The 

output shown in the figures are the best results, in terms of 

accuracy, among the different outputs obtained by tuning the 

distinct set of hyperparameters in both models. The figures 

show that for the RNN model, the mean accuracy of the total 

batch for each epoch increases and is 81.74%   and 95.65% 

for dataset 1 and dataset 2 respectively. For the CNN model, 

the accuracy of testing data is as high as 92.22% in dataset 1 

and 99.12% in dataset 2. The mean loss decreases 

continuously for each epoch or iteration indicating the 

learning nature of the model. The accuracy table for the 

datasets and DL models is given in Table II.  

 
TABLE II: ACCURACY TABLE FOR DATASET 1 AND DATASET 2 USING THE 

RNN AND CNN MODEL 

Method Dataset 1 Dataset 2 

RNN 81.74% 95.65% 

CNN 92.22% 99.12% 

 

From Table II, it can be observed that using DL 

architecture such as CNN and RNN for the balanced dataset 

the result shows a higher improvement than that in an 

unbalanced dataset with the same model structure and the 

same set of hyperparameters. Also, the CNN model provides 

a better prediction than the RNN model for time-series sensor 

data with the given set of parameters.  

 

 
Fig. 6. Normalize confusion matrix for predicted output in testing data of 

actitracker dataset. 

 
Fig. 7. Normalize confusion matrix for predicted output in testing data of 

Shoaib dataset. 

 

Fig. 6 and Fig. 7 show the normalized confusion matrix for 

predicted output in the testing data for dataset 1 and 2 for the 

CNN model. In Fig. 6, one can see that activities such as 

jogging and walking are classified more accurately than 

activities such as climbing stairs which are misclassified as 

walking. Activities of a similar nature are misclassified, e.g., 

climbing stairs is misclassified as walking, and standing is 

misclassified as sitting. This could be a result of variation in 

the distribution of data for all classes. This can also be 

illustrated in Fig. 7 where the prediction accuracy is 

distributed across all the classes. Because of the uniform 

nature of data distribution among all classes, and because of a 

balanced nature, similar activities could be classified more 

accurately.   

Table III displays the precision and recall values for 

different activities using dataset 1 and 2. Comparing   
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precision and recall for both datasets for similar activities 

reveals that dataset 2 provides a better result than dataset 1, 

which also shows that balanced nature of dataset and using 

multiple sensors can boost activity recognition performance. 

 
TABLE III: PRECISION AND RECALL TABLE FOR BOTH THE DATASET USING 

CNN METHOD 

Dataset 1 Dataset 2 

Activity Precision Recall Activity Precision Recall 

Jogging 0.97 0.96 Biking 1 1 

Lying 

Down 

0.80 0.85 Downstairs 0.99 0.99 

Sitting 0.84 0.83 Jogging 0.99 0.99 

Stairs 0.97 0.71 Sitting 1 1 

Standing 0.89 0.75 Standing 1 0.99 

Walking 0.93 0.98 Upstairs 1 1 

   Walking 0.98 0.99 

Avg/total 0.90 0.90  1 1 

 

TABLE IV: ACCURACY TABLE USING K-FOLD CROSS VALIDATION 

 KNN CNN 

Fold Dataset 1 Dataset 2 Dataset 1 Dataset 2 

1 90.15% 97.62% 84.37% 99.52% 

2 90.23 % 97.64% 88.26% 99.52% 

3 90.19% 97.68% 86.39% 98.41% 

4 90.16% 97.67% 89.11% 99.36% 

5 90.24% 97.63% 87.39% 98.96% 

Average 90.19% 97.65% 87.31% 99.16% 

 

To further validate our result, we analyzed the performance 

in the entire dataset using five-fold cross validation. Table IV 

shows the comparison of the accuracy in each fold of the 

five-fold cross validation and the average accuracy of dataset 

1 and 2 for the KNN and CNN methods. The result is 

comparable with the result from the previous approaches. 

 

VI. CONCLUSION 

We compared HAR performance in two datasets, WISDM 

and Shoaib, for determining daily activities such as cycling, 

walking, and standing. On comparing the results of the ML 

classifiers, we found that we could achieve comparable results 

with most of the classifiers using only the raw data from the 

accelerometer sensors. This has reduced the effort for 

determining the hand-crafted features from raw data for ML 

classifiers. KNN provides the best results in both dataset with 

a high performance compared with other classical ML 

classifiers such as RF and DT. We also compared the results 

for the RNN and CNN methods in both datasets. Our model 

shows   learning capacity and produces significant recognition 

accuracy and better results in the balanced dataset than if the 

same model were used in an unbalanced dataset. The DL 

recognition models can have a higher accuracy with the data 

collected from multiple accelerometer sensors placed at 

different parts of the body than with single accelerometer 

sensor data. Additionally, DL architecture such as CNN 

exhibits a higher performance than traditional ML classifiers 

with no hand-crafted feature selection. In our study, we have 

used only the accelerometer data collected from the mobile 

devices whereas data from other sensors can be used 

simultaneously. Furthermore, sampling methods can be 

implemented in an unbalanced dataset to study the effect on 

the performance result of HAR. 
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