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      Abstract: The content of the natural scenes needs to be 
interpreted which is the primary concern in computer vision.  In 
the advancement of the systems focusing on the intelligent image 
understanding, the most powerful key is the degree to which 
meaningful information is extracted by the computer. Moreover 
with this advancement in the field of image processing, precise 
and huge information capturing images are desired. The 
hyperspectral images find its place in such fields of applications. 
For a single scene, the hyperspectral images (HSI) are composed 
of hundreds of channels of spectral data. For different materials, 
with the availability of detailed spectral information, hundreds of 
contracted bands are collected by hyperspectral sensors. However, 
with the dimensional complexity, its impact varies from field to 
field. We reiterate our main focus in this article on providing the 
various challenges existing relating to HSI and a case study of the 
current solutions provided for each. A clear depiction of the 
current issues and approaches in the field of compression as well 
as some general issues are also discussed towards the end section. 

Index Terms: hyperspectral imaging (HSI), hyperspectral 
sensors, multispectral imaging.  

I. OUTLINE TO HYPERSPECTRAL IMAGES  

A. Difference of HSI from usual images 

The image produced by usual digital camera contains either 
intensity or selected color representation (e.g. RGB) while the 
images that are multispectral in nature ease to deliver spectral 
evidence for each and every pixel in the wavelength range for 
a specified spectral resolution. The processing of the visual 
information is involved in certain applications where using 
the spectral data is of great prominence in performing tasks 
e.g. in remote sensing, medical imaging, fine arts, assessment 
of product quality. The increasing drift for these schemes to 
practice spectral and spatial information leads to 
hyperspectral image representation that finds numerous 
applications in estimating and analyzing the existence of 
chemical compounds, pathologies and other statistics that 
provides qualitative and at the same time quantitative 
evaluation of these features [1]. 
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B. Need for HIS 

In remote sensing, hyperspectral imaging has become a core 
technology and is also known as image spectrometry. A very 
high resolution is exhibited by hyperspectral imaging that 
provides diagnostic capabilities that are better for detection of 
objects, classification, and discrimination as compared to the 
multispectral imaging [2]. Moreover, in the traditional 
imaging sensors considering the human visual system, only 
three spectral measurements (red, green, and blue: RGB) are 
captured that covers the visible electromagnetic spectrum. On 
the contrary, there is a large quantity of information beyond 
the visible range being carried in other series of 
electromagnetic spectrum embracing near-infrared and 
infrared ranges. For the first time, new doors have been 
opened by HSI techniques allowing the provision of 
exploiting the information beyond the visible bands of the 
electromagnetic spectrum [3].  

C. Sensors in HSI 

To monitor the various environmental changes in our planet 
hyperspectral sensors have been developed in the latest years. 
For the wide variety of instances applicable to the 
classification of ground materials and recognition of objects, 
the hyperspectral sensors are employed to work for a narrow 
continual spectral band as they find applications in military 
surveillance, analysis of urban-growth, monitoring of 
agriculture, finding of minerals, detection of material defects 
and others [4]. From the visible to infrared spectra, the 
hyperspectral image (HSI) data set spans between hundreds of 
electromagnetic spectral bands [5]. The rich informative HSI 
data poses challenges in the expansion of effective and 
resourceful algorithms for the HSI classification [6]. From 
satellite, airborne as well as ground-based sensors, an 
enormous quantity of data is obtained with developing remote 
sensing technology. According to the spectral and spatial 
facts, to satisfy the purpose of remote sensing, the 
fundamental goal of classification is assigning the label to 
distinctive objects for an image. For the collection of 
hyperspectral image, only spectral information concerning 
each pixel is acquired whereas manual acquirement of label 
information is often done by experts [7]. 

D. Classification in HSI 

The HSI classification remained a vibrant zone of 
investigation in the latest years. The classification task for 
HSI is developing rapidly due to enormous applications in 
mineralogy, agriculture as well as in surveillance and 
therefore a huge quantity of 
procedures are anticipated 
tackling this delinquent [8].  
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The purpose of classification approach is in allocating unique 
label to each and every pixel vector for a given set of 
observations in HSI. In figure 1, a general framework of HSI 
is given since the classification itself is a vast field to be 
incorporated in a single diagram, hence the major 
terminology associated with HSI classification is given 
enabling the reader to get the basic idea relating to the 
classification field. For more than three decades, the 
dimensional complexity has been known, and so its impact 
that varies from field to field. Nowadays, a resort to the model 
of statistical learning is a usual practice aimed at the users of 

remote sensing data. The satellite imagery of new generation 
is used for the classification of land-use where it is considered 
as the state of art algorithm that includes models such as 
neural networks, SVMs. A very high resolution is achieved 
under the applications of such models that prove their 
efficiency in handling the data remotely sensed [10]. One of 
the prominent topics in HSI analysis is instrument and 
measurement in remote sensing, having wide applications in 
skin imaging [11], and identification of ground elements [12] 
and exploration of minerals [13]. 
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Fig. 1. General framework of Classification in HSI with an elaborated focus on supervised and unsupervised 
classification 
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The collection of HSI is done by captured and recorded 
spanning from visible to infrared spectrum [14]. Aimed at a 
single pixel, the spectrum information is signified by a vector 
whose entities corresponds to standards of dissimilar spectral 
band [15]. For the very first type of classification i.e. 
supervised algorithms, its performance however strongly be 
contingent on data representation used to train the classifier 
[16]. The second type of classification i.e. semisupervised 
classification is known to outperform the supervised 
classification approaches in accuracy. In the literature of 
hyperspectral scenes, benchmarkimages avail a minor amount 
of training illustrations [14]. With a great dimension of data as 
in case of HSI, a quantity of training models limit the 
classification performance. The unsupervised classification is 
yet another type in the arena of hyperspectral image 
classification and remains in great demand focusing on the 
domain where the existence of supervised and semisupervised 
classification approaches fails to give the required 
performance. With the increase in dimensionality, the 
classification algorithm accuracy decreases, as denoted by 
well-known Hughes effect [15]. An important role is played 
by images avail a minor amount of training illustrations [14]. 
With a great dimension of data as in case of HSI, a quantity of 
training models limit the classification performance. The 
unsupervised classification is yet another type in the arena of 
hyperspectral image classification and remains in great 
demand focusing on the domain where the existence of 
supervised and semisupervised classification approaches fails 
to give the required performance. With the increase in 
dimensionality, the classification algorithm accuracy 
decreases, as denoted by well-known Hughes effect [15]. An 
important role is played by quality and quantity to achieve 
accurate results for classification [16]. Moreover, in the 
process of HSI classification, factors like presence of 
redundant features, limited training samples availability and 
imbalance among them plus high dimensional data leads to 
challenges. The field of HSI classification itself is a large 
domain for the researchers to find a problem and a required 
solution to it. Most of the challenges discussed below are 
primarily related to the classification phase of HSI. The 
researchers can benefit from the article as the current or most 
popular remedies to the existing problems in the classification 
domain has been discussed with a clarity of the future work. 
Being the most difficult phase of research i.e. to identify the 
problems, this article benefits the researcher with multiple 
challenges associated with the hyperspectral images.  

II. CHALLENGES IN HSI  

A growing interest has been witnessed in the recent years in 
the HSI processing. Considering the hyperspectral channels, 
rich amount of information is provided by HSI as compared to 
gray-scale and RGB images hence facilitating with more 
knowledge to each observation.  In fields like multimedia, 
computer vision and image processing, hyperspectral 
technology, as a consequence have become a powerful tool. 
HSIs however in practice suffers from various issues like 
huge data size, the mass of redundant information etc. 
hindering its application in many cases [27]. Some of these 
issues have been stated in this article with the respective 
solutions to each. Since the solutions are richer than the 
existing problem and vary from application-to-application, 
hence very concise discussion to some of the popular or new 

solutions have been provided to avoid confusion to the 
researchers. Moreover, restricting to an aim of the article 
where the primary focus is to introduce the researchers to the 
domain of HSI and its problems, a brief introduction to some 
of the popular challenges has been given in this section. The 
paper primary focus is to provide a research problem to the 
reader enhancing their clarity in this field.  

A. Non-linearity of Data 

Over the past decade, the attentiveness in manifold learning to 
represent the topology of huge and nonlinear high 
dimensional data set is inferior yet still significant, wherein 
the dimensions to visualization and classification are growing 
rapidly particularly in the hyperspectral imagery analysis.The 
data constituting a resolution of high spectral and continuous 
band of HSI allows for discrimination between targets of 
interests that are spectrally similar providing capabilities in 
estimating constituent abundance within pixels and hence 
allowing direct exploitation in the predictive model for 
absorption features. For the HSI data, the dense spectral 
sampling allows for the association of spectral information in 
many adjacent bands that are exceedingly correlated, 
resulting into considerable lesser inherent dimensional space 
traversed by data (figure 2). To exploit the non-linear 
characteristics of the data the development of specialized 
methods has been motivated to meet the amplified 
accessibility of HSIs with superior admittance to advance 
computing. In this context, significant attention has been 
received by a selection of features and its extraction. From the 
perspective of back-end classifiers, both feature extraction 
and feature selection are relatively flexible. From the 
perspective of classification meaningful information is 
retained by the feature selection while featuring extraction 
projects data to intrinsic spaces of lower dimensions. The 
algorithms involved in feature selection are computationally 
intensive while for feature extraction it is superior to the finest 
feature selection. The feature selection is not vigorous in 
multifaceted scenes while extraction of feature is more 
vigorous to variations in the spectral signatures across the 
scenes. Feature selection preserves the original spectral 
signature. While in feature extraction the interpretation 
relative to that of the original spectral signature is lost.   Hence 
the difference between feature extraction and feature 
selection are stated clearly.  One of the approach to withstand 
the non-linearity of data is the nonlinear manifold learning in 
a graph entrenching structure. The advantage of the approach 
lies in its ability to mitigate the impact that effects 
electromagnetic energy navigating the atmosphere and 
reflected from the target. However, it has various 
disadvantages. Nonlinearity is not always exhibited in data, 
therefore user’s evaluation of inherent nonlinearity in the data 

becomes always necessary. It requires parameter tuning and 
higher computation is exhibited by large-scale data sets. 
Being data-driven, manifold learning results strongly depends 
on data characteristics, hence one method cannot provide 
consistent results.  Its assumption of inherent smoothness 
violated by data sets containing classes whose spectra is 
distinctly different resulting in either multiple manifolds or 
submanifolds that cannot be unified with the representation of 
solitary manifold.  
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Hence opportunities exist where appropriate characterization 
is developed that exploits unique characterization of manifold 
keeping structure of hierarchical manifold a merit. The work 
can further be extended beyond feature extraction. For local 
and global embedding methods, joint exploitation is needed in 
dynamic, multitemporal environment integrating active and 
semisupervised learning. Numerous other approaches are 
available in the literature like the contribution of localized 
spatial information have been known to provide ominously 
advanced precisions and superior visualizations, even though 
the computational overhead of such methods would 
prerequisite to be considered for outsized remotely sensed 
data sets [33]-[36]. The HSIs availability has increased 
providing grander access to progressive computing, in turn, 
motivating the expansion of generalized approaches 
exploiting the nonlinear physiognomies of the data. In this 
context, significant attention is received by dimensionality 
reduction problem with solutions provided by feature 
selection and extraction approaches. Both these approaches 
are quite successful in the arena of classification. Though 
some loss of information is seen relative to the original data, 
yet effective results are shown by both in classification 
[54].For a given data set with training samples, Ẍ =  in 
Rm (feature space of m-dimensional) and n being total quantity 
of samples for training [54]. A graph embedding framework is 
adapted by nonlinear dimensionality reduction algorithms in 
which G = {Ẍ, Ŵ}, is the undirected weighted graph and Ŵ is 
the n # n affinity matrix. The concept of affinity weights Ŵ ij ɛ 
[0, 1] is utilized by the algorithms for measuring the 
“distance” among observations of dual sample. The class 

label information is not used by the affinity function instead it 
characterizes the neighborhood associations concerning 
entire pairs of points on the basis of differences of the 
features. The heat-kernel is a popularly used approach for 
measuring the affinity between samples xi and xj to the 
existing problem in the domain of non-linearity in the 
hyperspectral images. There are various preprocessing 
techniques that can be applied to the images to enhance their 
visibility and extract useful information from them so that the 
wide range of applications of hyperspectral image can fetch 
where = ||xi-  denoting the native scaling of samples 

of data in the neighborhood of  and  is the knn-nearest 
neighbor of xi .As stated this is just one of the proposed 
solution                                                       

                                     Wij =exp                         (1) 

 

maximum benefit from it elaborating its capability to provide 
a vast amount of knowledge. The applications of 
hyperspectral images exist owing to the opulent spectral and 
spatial statistics delivered by it. Hence the challenge of 
non-linearity has to be resolved in the very beginning by using 
any of the image enhancement technique well suited for 
hyperspectral images so that detailed study of it can be done 
in an appropriate manner.  

B. Ill-conditioned Problems with Remote Sensing Images 
(Classification by means of Restricted quantity of training 

samples and bias in Sample selection) 

In the remote sensing, the hyperspectral sensors capture 
several images in the visual and nonvisual range for the 
frequency bands/channels with a wavelength of 5-20 nm 
between the channels/bands. A very important branch in the 
arena of remote sensing is the classification of HSI. The class 
of the object may be recognized on the basis of spectral 
measurements at a point leading to the major mission of 
classification where it assigns a label to every pixel generating 
a map of land cover. The division for the classification 
methods is done in two forms namely supervised and 
unsupervised classification. For the purpose of better 
evaluation focus is primarily on supervised classification. 
Due to the complicated ground features, finding a common 
sparse representation is a very difficult task of remote sensing 
images. An image of remote sensing is regarded as the 
combination of sub-image of edges, even and point-like 
components respectively. To represent only a particular kind 
of texture or ground object, this capability is shown by each 
domain method so for each sub-image in the sparse 
representation group of domain representation is used. The 
ill-conditioned problems like super resolution (SR) and 
classification are solved using MSR (mixed sparse 
representation) which is regarded as a prior to maximum a 
posteriori and for the remote sensing images the effects of the 
framework have been demonstrated. When compared to the 
other common SR methods, the new framework of MSR 
constructs high-resolution images in a much better way that 
adds to the improvement in the accuracy in classification as 
well. To solve the ill-conditioned problems related to remote 
sensing images, a competitive candidate is the proposed 
framework MSR [55]-[68].  
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Fig . 2. An AVIRIS hyperspectral image of true color over the Kennedy Space Center (KSC), Florida. For spectral data 
the nonlinearity is exhibited by plot of bands: 13, 31 and 65. 

Furthermore, to the problem of ill-posed classification where 
the availability of the samples is too few with respect to the 
features number, the two different approaches considered are 
AL and SSL, where the estimation of the underlying 
distribution classes is not done correctly by any one. In the 
classification problems of real RS, ill-posed difficulties 
remain very expected to befall in particular for RS images 
classification of the past generation e.g. HSI and images of 
very high resolution (VHR), wherein the existing training set 
to the quantity of features is usually very trivial. The high 
number of spectral bands in the classification of HSI leads to 
defining the problem of classification in the feature space of 
high dimension. The poor spectral resolution is provided by 
the available spectral bands in the VHR image classification, 
therefore several features of texture and geometry are 
extracted to characterize. A novel SSL algorithm [72] has 
been proposed for improving the progressive semisupervised 
SVM as it integrates concepts that are considered in the AL 
methods. The three major iterative steps include initialization, 
the SSL, and the convergence. In the initialization the original 
training samples are used by a standard SVM as it solves the 
following constrained optimization problem: 

 

 ||ŵ||
2 + Č  

subjected to : yi [ŵ · φ(xi) + b] ≥ 1 − ξi i = 1, . . . , n 
                                               ξi ≥ 0                                        (2) 
where  is a vector orthogonal to the unraveling hyperplane, 
b is the term of bias such that b/| ŵ | is representing the 
distance of the hyperplane at the origin, Č is the parameter of 
regularization, φ is the mapping function of the data in the 
feature space, ξi is the variable in slack, and n is the quantity 
of training samples. Rendering to the emblem of the 
subsequent conclusion function f(x) = ŵ · φ(x) + b, pseudo 
labels that are assumed to be the unlabeled trials.  For any 
iteration, after the initialization until convergence, a pool is 
formed by the set of samples µ of unlabeled samples that are 
iteratively designated and added together to the training set in 
addition to their pseudo labels and are then aloof from the 
pool. The following sample set id is defined that lies in both 
higher and lower sides of the margin: 

                    Hup = {x|x ∈ µ, 0 ≤ f(x) ≤ 1)}                              (3) 
               Hdown = {x|x ∈ µ,−1 ≤ f(x) ≤ 0)}                          (4) 
 
ρ samples are designated at every iteration from every side of 
the boundary. The ρ samples with f(x) in particular, nearer to 
1 are selected from Hup, and the ρ samples with f(x) nearer to 
−1 are taken from Hdown. This grades in the assortment of an 
entire of 2ρ samples, that are namely semi-labeled. Therein 
the procedure of iteration is stationary when the quantity of 
mislabeled samples of training as well as the pseudo-labeled 
patterns numbers are lesser or equal than β · m, where β is a 
parameter which is user-defined. After reaching the junction 
the SVM is trained for the final time, in accordance to the 
subsequent problem of minimization: 

 || ŵ ||
2 + Č +  

subject to : yi [ŵ · φ(xi) + b] ≥ 1 − ξi  i = 1, . . . , n 
      [ŵ. φ( ) + b] ≥1-  j = 1, . . . , m 

                                        ξi,, ≥ 0                                         (5) 
where the complete set of semi-labeled samples is related with 
the similar parameter  for regularization. To obtain 
the results of accurate classification, it is important to 
consider not only the quantity but the quality as well. To 
model the fundamental dispersal of real classes, this 
capability is directed by the training samples quality. From 
the underlying distribution, designing is the mutual 
supposition in the algorithms of learning to train the data 
consisting of instances strained autonomously. The problem 
of ill-conditioning can be solved by an approach that uses a 
new framework of mixed sparse representation (MSRs). The 
advantage of the approach is the improved classification 
accuracy. Moreover, high-resolution images are 
reconstructed. The competitive candidate solves the problem 
for image related MAP. Though this approach poses 
challenges like MSR-SR is slower in computation and 
involvement of extra procedure like warping, interpolation, 
and blurring as they are included in every iteration. It provides 
the opportunity for being 
extended to unsupervised 
classification.  
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The experiment is further characterized by few training 
samples and inturns affected by bias due to the selection of the 
sample. Moreover, the concepts of integration are 
investigated to find similarity between dual paradigms of 
learning to improve state-of-art procedures therein uniting AL 
and SSL towards mutually leverage recompenses of 
approaches mutually. The novel algorithm of SSL proposed is 
improving the liberal semisupervised SVM as it integrates 
concepts usually considered in AL methods [69]-[72]. Table 
1 provides alternative solutions to the challenge of the 
inadequate volume of samples for training and the bias 
associated with the selected samples. The table illustrates the 
bifurcation of the approach that is semisupervised learning 
where each approach has its own importance in the field of 
classification from the use of separate classifiers to the use of 
joint probability and many more. An additional brief of active 
learning is also given and towards the end, these two 
approaches can be very well integrated providing a 
satisfactory solution to the resolve the problem of sample bias 
as well as a few labeling samples. The opportunities are also 
given in the finest manner that takes the charge of 
incrementing the diversity in the field of research that the 
researcher can very well implement in its new era of research.  

The use of supervised classification technique is done to 
automate the classification of RS images on the accessibility 
of categorized trials to train the supervised algorithm. In the 
learning, an expensive and time-consuming process is the 
collection of labeled samples. For accurate classification 
maps, the central importance is given to the superiority and 
amount of available training samples. The quantity of training 
trials is not sufficient neither the quality to train the classifier 
properly foremost to a major delinquent in real-world 
scenario. To enrich the supervised learning algorithm with 
information to be given in input and improve the accuracy of 
classification, SSL techniques are adopted as mentioned in 
the table 1 and an alternative approach improving classifier 
learning is Active learning that  

TABLE I.  Brief Summary Of Ssl And Al To Provide 
Relief To The Challenge Of Restricted Quantity Of 

Training Samples And Bias In  Sample Selection (2014) 

 
Approach Methodology Opportunities 

Self –training 
[SSL] 

Repeatedly used supervised 
learning method. The labeled 

samples are trained in the 
beginning, followed by labeling 

the unlabeled samples in 
accordance with the current 
decision function and then 

adding training set to it 

For a development 
of hybrid 
solutions, 
integration of AL 
and SSL can be 
investigated 
further. 
Using various 
strategies, 
validation 
methods for SSL 
can be deeply 
investigated. 
For training set, 
after inclusion of 
semi-labeled 
samples, 
consistency of   
model assessed by 
novel validation 
strategies.  

Convergence of 

Co-training 
[SSL] 

For labeled data, training of two 
separate classifiers is done for 

two subfeature set respectively. 
Each classifier classifies labeled 

data inturn providing other 
classifier labeled sample which is 

most confident with predicted 
labels. With the additional 

training examples, each classifier 
is retained when given to 

supplementary classifier and 
procedure is recapitulated. 

Generative 
Probabilistic 

It is assumed for approximation 
of joint probability P(x, y|θ), 

Models 
[SSL] 

given θ is limitation vector of the 
model to be projected from 

annotations. Joint exploitation of 
labeled and unlabeled samples is 

benefitted by estimation of 
parameter vector θ. Bayes rule 

forms a basis for final 
classification. 

learning algorithm 
detected forming 
a good solution or 

by moving 
towards 

inconsistency in 
conditions that are 
critical with either 

few or biased 
labeled data where 
a reliable way of 

using 
cross-validation is 

not possible. 

Semisupervised 
SVM 
[SSL] 

In-terms of TSVM: Given a set of 
training points, traditional 
classifiers induces decision 

function to incorporate a learning 
task, wherein the minimization 
of classification error is done. 

Graph-Based 
SSL 

A graph is defined by 
graph-based SSL method where 

nodes are categorized and 
unlabeled samples and edges 

reproduce the resemblance. The 
label smoothness is assumed by 

these methods over graph 
(cluster/manifold regularization). 

Active 
Learning 

AL does not lead to training set 
that is unbiased, as the strategy of 
completely random selection is 

obtained. To diminish the 
quantity of training samples to be 

labeled is an aim of AL for 
classification accuracy to be 

satisfactory. 

 
is based on the assumption that few new labeled samples are 
to labeled and at the same time to add them to the training 
customary. The iterative expansion of the original training set 
is done that includes supervisor who usually is a human expert 
that assigns a accurate label to any inquired sample. The 
method shows its effectiveness to optimize the training 
sample collection effectively concerning different application 
domains that include RS image classification [8]-[11]. 

C. Pixel-wise Representation 

In HSI, classification of an image is one of the most crucial 
procedures labeling the pixels to unique classes on the basis 
of spectral features. In the fields of mineralogy as well as 
agriculture and surveillance, HSI is in great demand leading 
to the rapid development of HSI classification task with a 
huge amount of methods being projected tackling this 
delinquent [73].  For SRC, a assessment sample y ∈ RP, where 
P defines the quantity of spectral bands that can be inscribed 
as a sparse linear amalgamation where x ∈ RN 

 and ||x||1 
=  is l1 –norm. A = [a1, a2, . . . , aN] is a organized 
dictionary designed from the concatenation of numerous 
classwise subdictionaries, {ai}i=1,..., N signifies the columns 
of A, N defines the entire number of training samples from all 
the K classes, and λ is a scalar regularization parameter. The 
class label aimed at the test pixel y is resoluted through a 
minutest residual among y and its estimation from every 
classwise subdictionary 
                  class(y) = arg                      (6) 
A highly effective approach when compared with previous 
approaches on both classification results and computational 
efficiency is SVM. To improve its performance an extensive 
diversity of modifications to 
SVM’s have been projected.  
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Few of them integrate the contextual information in the 
classifiers [74] [75]. In order to pursue the rule of sparse 
decision, others design sparse SVM by using l1-norm as the 
regularizer [76]. To resolve numerous computer visualization 
errands SRC has been proposed recently [77], leading to 
state-of-the-art recital sparsity being used as a prior. To rely 
on the scrutiny that hyperspectral pixels belong to the 
identical class, SRC is being applied to HSI classification that 
approximately lies in the equivalent low-dimensional 
subspace. In the analysis of HSI, one of the most important 
procedure is the pixel-wise classification that assigns every 
pixel to a predefined class. An SRC gives rather plausible 
results as it represents an assessment pixel as a linear 
amalgamation of a trivial subset of labeled pixels as compared 

to traditional classifiers like SVM. The second-generation 
SRCs appeared in the literature when additionally structured 
scarcity priors are incorporated that repots to expand the 
performance of HSI further. The exploitation of the spatial 
dependencies forms the basis of these priors amongst the 
neighboring pixels, the intrinsic configuration of the 
dictionary, or both. The author also proposes a novel arranged 
prior baptized as the low-rank (LR) assembly prior, that can 
be deliberated as a alteration of the LR prior. Besides, 
differently regulated priors to advance the outcome for the 
HSI classification is also being investigated [67]. Again as 
table 2 depicts one of the approaches to support the pixel-wise 
classification based on the sparse representation classifier 
where it outperforms the traditional classifiers. 

TABLE II.  Differentiation Between The Spatial-Spectral Techniques Based On Pixel-Wise Classifiers 

Pixel-wise classifiers 
 

Spatial-spectral techniques 
 
 

  Extract spatial features 
(incorporate  both) 

 
  Spatial and spectral features 

(techniques  incorporated) 
 

 Mean and median filters. 
 Gabor wavelets. 
 Morphological profiles. 
 Mean shift (MS). 

 (after extracting   spatial features) 
 

 Composite kernals (CK’s). 
 Generalized CK’s. 
 Multiple kernals. 

  
(considering spatial     features in addition                                  

to   spectral     features) 
 

     Used to perform Final Classification 

Integrate spatial and spectral information separately. 
 
 

    Probabilistic                        Bayesian                                      Original 
         SVM                             Framework                                        HSI  

First estimate the 
class conditional 
probability density 
function. 
 
 
Then the 
context-based 
class priors is 
estimated using 
Markov Random 
Fields 
(MRF). 

Uses MLR to learn 
posterior probability 
distributions from 
spectral information 
contained in the data 
and uses MRF to 
include spatial 
contextual 
information in the 
classifiers. 

First classified by a pixel-wise 
classifier and simultaneously 
segmented into some adaptive 
neighbors by using some 
segmentation techniques  
(such  as): 
 
 Partitional clustering. 
 Morphological body-sheds. 
 Minimum spanning forests. 
 
Majority voting adopted integrating 
pixelwise classification results and 
the obtained segmentation map. 
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D. The Outperformance of Classifier in both Quality and 
Quantity 

In remote sensing instrument and measurement, analysis of 
HSI is an important topic having wide applications in fields 
such as skin imaging, identification of ground elements and 
exploration of minerals. The electromagnetic wave reflected 
from materials is used to capture and record HSI spanning 
from visible to the infrared spectrum. For a single pixel, the 
spectral information for HSI is epitomized by a vector whose 
entities corresponds to those values of spectral bands that are 
different. For the pixels, the class labels are determined by 
spectral information of the undeviating variances of pixels. 
The spectral evidence in the previous work is utilized by the 
previous work for HIS classification without considering 
spatial contexts hence resulting in the classification maps with 
noisy appearance. For HSI, classification performance is 
enhanced attempting to jointly exploit spatial-spectral 
information. A region-based sparse representation is 
proposed that assumes that pixels within local region belong 
to the same class or the same material. For each test pixel, a 
fixed-size region is first defined in the region-based sparse 
representation, then inside this expanse, the pixels are 
mutually disintegrated on the identical dictionary atoms. An 
approach is highlighted in table 3 regarding the 
outperformance of the classifier in both quality and 
quantity.Sparse representation classification (SRC) [35] 
outline undertakes the pixel ẍ of a particular class that can be 
embodied by a lined amalgamation of atoms selected from a 
dictionary Đ = [Đ1, . . . , Đ c, . . . , Đ C] ∈RNXM . C is defined 
as the quantity of classes and M =  is the total number 
of samples for training. The sub-dictionary  ∈  is 
created by unswervingly extracting pixels of the cth class in 
unique HSI. Then, subsequently directing the identical 
process, one can acquire solitary subdictionary for every 
class, besides all these subdictionaries are established as the 
concluding dictionary Đ = [Đ 1, . . . , Đ c, . . . , Đ C]. Then ẍ 
can be sporadically represented as follows: 

                                   ẍ = Đ α + ε                                           (7) 
where α ∈ RMX1  defines the sparse coefficients for the ẍ and ε 

is an inaccurate residual item. The value of α is attained by 
resolving the subsequent optimization problem: 
                  ậ = arg     s.t.  ≤ K0            (8) 
where K0 is the level of sparsity, which is equivalent to the 
superior bound quantity of nonzero rows in ậ. Once ậ is 
acquired, the class label of the assessment pixel can be 
resolute by associating the error of reconstruction of every 
class 
   class(ẍ) = arg (ẍ) = arg       (9) 
where ậc is the sparse coefficient subset of ậ that belongs to 
c-th class.  For HSI, the complex spatial information cannot 
be sufficiently exploited ever since the magnitude of the 
designated region is stable. Also for the HSI classification, 
some recent work combines extracted features with the 
classifiers. In [24] the author mined linear as well as 
non-linear features developing a mechanism for multiple 
feature learning. Though an outstanding performance is 
achieved by the multiple-feature-based classifier, still few 
issues need to be addressed. One of the issues is 
multiple-feature-based classifiers are applied only to the fixed 
window on the feature and the exploitation on the HSI 
features for spatial correlation cannot be sufficient [23]. In the 

classifiers based on multiple-feature, the correlations among 
different features are not well considered [25]. In this paper, 
MFASR process is projected to address the above two issues 
[32]. This method utilizes the adaptive sparse representation 
exploiting the correlations effectively midst four features that 
are extracted. For the HSI features to utilize the 
spectral-spatial information fully a shape-adaptive region is 
adopted for the pixel in every feature. The proposed MFASR 
demonstrated the superiority over several well-known 
classifiers demonstrated by the experimental results on three 
real HSIs both in terms of quantitative and qualitative 
measures. For the HSI four features were empirically selected 
in this paper. For the HSI an automatic strategy for selection 
of feature is to be considered in the future work to enrich the 
performance of HSI classification for MFASR [52]-[55]. 

E. Small Number of Labelled Samples 

For classification purposes, to augment and increase the size 
of training samples, semi-supervised [24] and domain 
adaptation/transductive learning [56], approaches are 
proposed in the literature of remote sensing. To improve the 
classifier systems performance active learning methods is 
proposed that uses fewer training samples [57]. Using the 
labeled samples that are available possibilities are offered by 
the new samples for training, probably semi-supervised 
learning (SSL) [56]. The window structure is created using a 
blend of both spatial as well as spectral statistics i.e. proposed 
via the integration of contextual information from the 
neighborhood pixels. Better performance and promising 
results are shown by the proposed framework even when the 
quantity of initially labeled samples are trivial [62]. 

F. Exploitation of Spatial Features 

In the process of classification, the fundamental role is played 
by the exploitation of spatial features. To the surrounding 
pixels are generally related spatial characteristics of a pixel. 
The sliding window helps in defining fixed spatial 
neighborhood for the extraction techniques of spatial features 
[47] or these techniques are known for creating adaptive 
three-dimensional district to the relating parameter value of 
the considered filter [39], therefore computing spatial 
measures within the regions obtained. To extract the spatial 
information relating the hyperspectral images RMSR 
(random multiscale representation) technique is used that 
includes a spatial-spectral method of classification. The dense 
scales are used by the RMSR technique that represents spatial 
characteristics of HSI, so that complementary information can 
be benefited collecting various scales capturing spatial 
evidence nearby the pixel. The spatial features are mined by 
the computing principles on the quadrilateral scales that are 
dense. In the process of keeping all the information being 
extracted spatially, the spatial features obtained on dense 
scales are concatenated as rich-dimensional multiscale 
features. To compress the spatial features of high dimension 
without any loss of salient features into the lower dimensional 
features, actual sparse random matrix of measurement is 
familiarized.  With the help of computing criteria, a complete 
process of RMSR is accomplished originally at random scales 
of the random bands according to nonzero entries of identical 
sparse measurement matrix. 
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 In RMSR, criteria are investigated that includes first two 
moments, which are simple and at the same time can be 
meaningfully enhanced by the integral technique of the image. 
A load of computation becomes light because of these 
effective methods. The CK-based approach conducts the final 
classification that weights appropriately the spatial features 
with regard to spectral features. The two widely used 
hyperspectral datasets are tested for the proposed method 
[65]. The actual matrix of sparse random measurement [35] is 
given below that will be utilized in RMSR. In random 
projection, a rich-dimensional feature vector a ∈ Rm is 
anticipated to a inferior dimensional feature vector v ∈ Rn  by 
the use of a random matrix R ∈ Rnxm as follows: 
                                           v = Ra                                        (10) 
wherein the columns of R is having entity length, and n is very 
less than m. Precisely, for an integer d and let n ≥n0 = 
O(ɛ-2

ln(d)) with ɛ is greater than 0, for whichever dual vectors 
ai, aj in a restricted collection X of d vectors in Rm , we have 
            (1 −ɛ) ||ai -aj ≤ ||Rai – Raj  ≤(1+ ɛ) || ai -aj            (11) 
Since the random Gaussian matrix R is dense, involving 
substantial reminiscence in addition to calculation necessities 
wherein m is hefty. For incapacitating this difficult, a sparse 
random matrix R needs to be presented with its entries given 
as follows: 

    Rij =  X         (12) 

TABLE III.  Approach To Show The Outperformance 
Of The Classifier In Both Quality And Quantity (2017) 

Approach Advantages Challenges Future Work 

A multiple 
feature-based 

adaptive 
sparse 

representation 
(MFASR) 
method is 
proposed. 

1) MFASR approach is 
better than 
classification 
methods it is 
being compared 
to in terms of both 
visual quality on 
classification 
maps and 
quantitative 
metrics OA, AA 
and Kappa and is 
highly 
competitive with 
MASR on OA. 

2) Excellence in 
classification 
accuracy for only 
1% training 
samples, being 
superior to other 
classifiers.  

3) On multiple 
features, the 
performance of 
the method is 
better than one 
based on the 
spectral feature. 

4) From feature 
images, 
dictionaries are 

Performance 
deteriorated 
by very large 
sparsity level 

due to the 
fact that final 
classification 
is misled by 

some 
dictionary 

atoms 
selected from 

other class 
when 

sparsity level 
is very large.   

To examine 
effective 

dictionary 
learning 

algorithm, 
future work 
concentrates 

on more 
representative 

feature 
dictionaries. 

constructed 
directly from 
feature images 
where the size of 
the dictionary is 
same as a number 
of training 
samples. 

5) Feature dictionary 
directly extracting 
pixels and hence 
the size of the 
dictionary being 
large leads to high 
computational 
cost. 

 
wherein ρ = 3,2 and verified that if n ≥ (4 + 2β)( ɛ2 /2- ɛ3/3)-1 

ln(d) with β > 0, the proclamation (12) embraces accurateness 
through likelihood of at least 1 – d-ᵦ. The matrix R is easy to 
compute by the use of a unvarying random originator. The 
adaptive spatial vicinity is used to advance approaches for 
classification of HSI. The adaptive neighborhood area is used 
to achieve segmentation results. After surveying, as 
innovation these fundamental methods of segmentation 
(unsupervised) can be then widespread to HSI remote 
sensing. Before getting into the details of the proposed 
solution it is important to define the three basic classes of 
image segmentation which is discussed in figure 4. As 
depicted in the figure below, the criterion to define image 
segmentation is spectral and spatial domain dependent which 
is then further defined based on margin, group and threshold 
with marked or grouped. Then a new approach is developed 
merging spatial and spectral statistics of Hyperspectral 
classification. The segmentation map is used as spatial 
information while classification map as spectral information 
in this novel approach as shown in figure 5. There are 
different segmentation method that is generalized to HSI 
analysis which includes Robust Color Morphological 
Gradient (RCMG), Expectation Maximization (EM) etc. 
while their extensions were applied in the empirical 
implementation that includes Hyperspectral Robust Color 
Morphological Gradient (HRCMG), Adequate Expectation 
Maximization (AEM) etc. Indian Pines and Hekla are the two 
available hyperspectral data sets on which experiments were 
applied. The three analysis measurements, their classification 
maps with pixelwise approaches plus spatial-spectral 
approaches previously defined that includes EMP and ECHO 
were used to compare the experimental results. The results 
clearly indicate better performance in quantitate quality 
measures than the other reviewed approaches but indicating 
that for the proposed approach classification map is so 
artificial in some cases. 
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Spatial Domain Spectral Domain

Based on 

the Margin
Based on 

the Region
Threshold with 

marked or grouped

 Fig. 3. Classes of Image Segmentation  

Compared to the elder schemes improved accuracy is shown 
by the novel segmentation methods (HRCMG, AEM, and 
HRHSEG), when employing median voting scheme. The 
proposed approach is found to be fit and it preserves 
altogether spectral and spatial statistics appropriately. The 
projected approach is fast, accurate and simple. The future 
work includes introducing the three major approaches for 
processing of spectral-spatial simultaneously: the fusion of 
spatial-spectral statistics at pixel feature vector, 
Object-oriented classification and pixel classification and 
fusion of segmentation maps [66].  

 

 Fig. 4. Approach used to excavate the Spectral 
Information (2016) 

G. Operative Feature Abstraction and Denoising of HSI 
data (supervised classification) 

Intended for many applications, applying the techniques of 
denoising directly, probably removes fine features when 
removing noise which is undesirable. Therefore, multiscale 
wavelet transform-based methods for image denoising are 
widely used avoiding this problem, where at different 
decomposition levels the image is putrefied into a set of 
wavelet quantities using the transform and hence removing 
noise existing in the low-energy channels of the transformed 
domain. The analysis of the data of the hyperspectral images 
is of prime importance and the technique efficient for its 
analysis is given in figure 9, where both the previous and 
proposed method has been given with the interest of 
differentiation among them according to various properties. 
Though there exist a wide variety of approaches to analyzing 
the hyperspectral data but the widely used is the wavelet 
transform. It is one of the oldest methods for the analysis of 
the hyperspectral data. Since it is not possible to discuss in 
detail all the reformed approaches, hence a general approach 
has been discussed in the form of comparative structure 

between the wavelet transform and curvelet transform 
briefing the researcher with its effective analysis indexing. 

HSI

Data

Analysis

Wavelet transform

(Previous method)

Curvelet transform

(Proposed method)

 Widely applied
 Separate image geometric details
 Separate background noise 

effectively.
 Classification Accuracy(using SVM 

Classifier) is better

 Widely applied
 Separate image geometric details
 Separate background noise 

effectively.
 Classification Accuracy(using SVM 

Classifier) is better 







 Fig. 5. Methods to analyze the data of hyperspectral 
images 

A popular research topic in the recent years is the HSI 
classification, and before this classification task, an important 
task is the extraction of features effectively. In other words, 
feature extraction can be defined as the process of 
transforming original features into a well-defined new set of 
features. Traditionally, to the HSI data cube, the extraction 
techniques for spectral features is applied directly. Feature 
extraction is an important phenomenon associated with 
hyperspectral images in the field of image processing. In the 
procedure of feature extraction, from the original bands, new 
features need to be learned, wherein losing the physical 
significance of the bands but in turn containing information 
that is more discriminant for the process of classification. 
While utilizing the label information the methods of feature 
extraction is divided into three methods namely: 
unsupervised, supervised, and semi-supervised. During the 
process of learning, both the supervised and semi-supervised 
methods are in need of labeled samples labeled pixel. On the 
other hand, the unsupervised approaches have been attracted 
in the recent years since they entertain no requirement of label 
information. Being a vast field, the involving some amount of 
artificial work to be done on the complete illustration of the 
process of feature extraction cannot be defined, hence the 
popular and most recent work done in accordance with the 
same is given diagrammatically below considering one of the 
most prominent criteria i.e. reduced dimensionality, further 
bifurcating the process. Hence, if reduced dimensionality is 
provided in either supervised or unsupervised classification, 
then the various approaches satisfying the functionality are 
listed below some of which includes approaches like principal 
component analysis and many more. The other is based on the 
supervised feature extraction excluding the involvement of 
dimensionality reduction. An innovative algorithm is 
recommended in the paper [67] for the extraction of HSI 
features that exploit the curvelet transformed domain by 
means of a comparatively new spectral feature dispensation 
technique, i.e. singular spectrum analysis (SSA).  On the 
spectral dimension in order to extract features, the proposed 
approach relies mainly on SSA, since it belongs to the 
category of spectral feature extraction. To show its efficacy, 
the method proposed is associated to some state-of-the-art 
technique used for spectral 
feature extraction. 
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The proposed method, in addition, is known to prove that it is 
capable to eliminate the unwanted relics that are presented 
through the process of data attainment. Also using the 
proposed approach, an addition of an extra step of spatial 
preprocessing is achieved to the classified map, where the 
performance of classification is comparable to several 
methods of recent spectral–spatial classification [57]. 

H. Allocate an Exclusive Label to each pixel vector 

An active area of research for HSI classification is the 
application of hyperspectral data analysis, in the last two 
decades [38] [39]. The goal of classification for a given a set 
of observations is to dispense an exclusive label to every pixel 
vector. The supervised classifiers along with many 
spectral-based techniques have been employed to tackle this 
problem, including spectral band analysis, k-nearest 
neighbors, SVM, and SRC. To the HSI, set of 2-D Gabor 
filter is applied first extracting discriminative features. Gabor 
filters [43] are applied band by band to hyperspectral images 
imitating the associations amongst surface materials in the 
spatial domain. Precisely, a series of 2-D Gabor filters 
through altered scales and alignments is premeditated to 
excerpt Gabor features 

 (x,y) = exp (-Π ( a
2
x՛

2 + b2
y՛

2
)) . exp(j2 Πfux՛

2) 
x’= xcos  + ysin , y՛=-xsin  + ycos  

                            a= 0.9589fu , b= 1.1866fu                                       (18) 
where fu and θv denote the central frequency and orientation 
of the Gabor filter, respectively. Subsequently the Gabor 
filters have been gained, denoted by { t, t = 1, 2, . . . , T } for 
expediency (T is the quantity of the Gabor filters), Gabor 
features are mined by convoluting each spectral band of 
Approach followed to assign a unique label to every pixel 
vector (2017) HSI with every Gabor filter, namely  
                      Gt (x, y, b) =|(Rb ⊗ )|(x,y)|                        (19) 
where Rb ∈ RXxY    is the bth band, 1 ≤ b ≤ B, and ⊗ and | · | 
defined as convolution and absolute operators, 
correspondingly. Apparently, Gt (x, y) = [Gt (x, y, 1);Gt(x, y, 
2); . . . ;Gt (x, y, B)] ɛ RB is the retort of the tth Gabor filter at 
all bands. Through applying  on all pixels of the 
hyperspectral images, a Gabor cube Gt ɛ R

XxYxBcan be 
obtained, which has the same size as the original 
hyperspectral data. Further, after each Gabor filter  t = 1, 2, 
.. . , T has been convolved with the HSI , a total of T Gabor 
cubes Gt , t = 1, 2, . . . , T was extracted. 

From the HSI a superpixel map is then generated. Then 
the super-pixel based spatial-spectral Schroedinger 
eigenmaps (S4E) method is then adopted reducing the 
dimensions of each Gabor cube being extracted. Using the 
SVM- based multitasking learning framework, the 
classification is finally carried out [10]. 

I. Compression 

In Geoscience and Remote Sensing, the advancement in data 
acquisition technologies leads to the growth of spatial and 
spectral resolutions with the frequencies of obtaining data. Up 
to hundreds of several bands are covered by modern 
hyperspectral sensors having both high spatial as well as 
spectral resolutions. A comparative analysis of the two 
different type of compression i.e. lossy and lossless 
compression difference is clearly stated with a plot of 
comparison on various parameters below in table 4. 

The analysis is done on various parameters to 
provide an overview to the researcher giving clarity on the 
parameters to differentiate the well-known compression i.e. 
lossy as well as lossless compression. The parameters 
includes the efficiency in compression and the effectiveness 
in terms of the technology applied. Furthermore, the selective 
loss in information is also the well-known parameter 
considered followed by the reduction in the data reduction, 
then the application where the loss of information is caused by 
certain types or levels of distortion and is insensitive to the 
system of human visual and hearing etc. 

TABLE IV.  Comparison Between Lossy And Lossless 
Compression 

Comparison Factor Lossy 
Compression 

Lossless 
Compression 

Improves the efficiency of 
compression and is an effective 

technology. 

   

Selective information loss.    

Application where the loss of 
information is caused by certain 

types or levels of distortion and is 
insensitive to the system of 
human visual and hearing. 

   

Greater Data Reduction.    

For applications using HSI 
demanding accuracy. 

   

For computers to analyze images 
automatically. 

   

No loss of the data to be 
reconstructed. 

   

 
An essential feature of the system that incorporates 
hyperspectral sensors is data compression owing to the huge 
difference amongst lossy and lossless compression volume of 
data collected by the sensors that need to transmitted or 
stored. The heart of the problem is to find an appropriate 
model in the hyperspectral data compression [43]. In 
remote-sensing, current sensors collect information in large 
amounts to be readily transmitted onto the ground having a 
limitation of limited memory capacity [47]. A large amount of 
in the spatial, spectral, and temporal domain of the earth 
surface is provided by the remote sensors. It must meet the 
requirement of a wide range of important applications 
providing frequent and at the same time fine coverage of large 
areas. For current storage and transmission systems, a tough 
challenge was the increment in the number of high-resolution 
sensors. For instance, images with upwelling spectral 
radiance in around 224 contiguous spectral channels having a 
wavelength between 400 and 2500 nm are delivered by the 
NASA Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) [41]. This clearly predicts that for remote sensing 
data the need for efficient coding techniques has become 
more and more imperative improving the capabilities of both 
storage and transmission. To this, a wide variety of solutions 
have been proposed solving the problem of large volume data, 
among which the inpainting 
finds its application in the 
field of HIS 
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TABLE V.   A Comparative Analysis Of Popular Approaches For Compression In HSI  

Approach Assumption/ criterion Advantages Opportunities 

PDE(partial differential 
equation) 

-based inpainting algorithm 
[12] 

The separate inpainting 
of known data is done in 
spatial and spectral 
dimensions. Based on 
the fusion of both 
combination and 
predictive based method. 

 Performance better than 
CCSDS-123.0. 

 As a spectral transform, it is 
better than JPEG 2000 Part 
2 with DWT 9/7 at all bit 
rates. 

 Competitive to JPEG 2000 
with PCA. 

For compression ratios from moderate to low, these lag 
behind prevalent behavior compared to 

prediction-based and transform-based approaches. 

Lossy hyperspectral data 
compression framework 

based on sparse 
representation [13] 

Online dictionary 
learning algorithm, 
orthogonal matching 
pursuit (OMP): input 
data representation, final 
bit stream is formulated 
by applying quantization 
and entropy coding. 

 The online dictionary helps to 
represent hyperspectral 
data sparsely incorporating 
correlation both spectrally 
and spatially.  

 The compression is offered 
with the benefit of 
rate-distortion performance 
competitive to Wavelet 
transform-based methods. 

Beside compaction feature for energy, other features 
are embodied by sparse coefficient, e.g., 
discriminative, energy compaction feature, exploited 
in other hyperspectral data processing tasks.  In 
dictionary learning, some challenges need to be 
addressed.  

Patch-based low-rank 
tensor decomposition 
(PLTD) 

[HSI compression and 
reconstruction 
algorithm][27] 

Each local patch 
represented: Third-order 
tensor (for HSI). For 
nonlocal similarity, 
similar tensor patches 
grouped by cluster 
forming fourth-order 
tensor per cluster. 
Grouped tensor assumed 
to be redundant. 

 Redundancy in spectral and 
spatial domain removed 
and outperforms traditional 
image compression 
approaches; other 
tensor-based methods. 

 Fully Reserves neighborhood 
relationship; global 
correlation. 

 Simplification in obtaining 
reconstructed HSI. 

The algorithm can be improved further by finding the 
optimal dimensions automatically making the 
algorithm more practical and at the same time effective 
for the compression of HSI. 

Rate control algorithm 
[integrated into  lossy 
extension to the 
CCSDS(Consultative 
Committee 
for Space Data Systems) 
-123 lossless compression 
recommendation] 
[14] 

Lossy predictive coding 
operated in a so-called 
near-lossless mode, 
bounding maximum 
absolute error by 
constant on pixels being 
reconstructed. 
Gives variable output 
rate becoming drawback 
of near-lossless 
compression that 
depends on image 
content 

 Fast and simple to implement 
providing the same 
accuracy for output rate 
and quality of images. 

 Overcomes drawback of 
limited downlink 
bandwidth. 

 Most popular solution 
meeting requirements of 
low-complexity, 
high-throughput and 
excellent performance for 
rate-distortion. 

 Overcomes complexity 
limitations that onboard 
compression algorithms 
face due to constraints on 
hardware. 

Some flexibility is lost in terms of spatial modulation 
of quantization step sizes. 

 
where it focuses on filling missing information and dead 
pixels occurred because of sensor failures. To it, a novel 
PDE-based inpainting algorithm is proposed compressing the 
HSI [42]. Being rich in the number of solutions proposed for 
the terminology associated with HSI compression, the 
literature remains wide open to be discussed in one single 
article, hence a summary of different and current compression 
approaches has been prepared to benefit the reader as 
discussed in table 5. 

III.  ADDITIVE CHALLENGES WITH A BRIEF 
DEFINE PROBLEM AND AN APPROPRIATE 

SOLUTION 

As mentioned earlier in the article, the field of image 
processing is wide and so is the hyperspectral imagery. The 
article tends to elaborate the various challenges associated  
 

with the hyperspectral images. Moreover, to each challenge 
an appropriate solution is given with a condition that it may 
not be depending on the application desired or the required 
functionality desired by the end user. This, in turn, is a 
motivation to the researcher to work on one of the problem 
domain defined. In the article and open new area of research 
with a well-defined solution to them. Being such wide area not 
all the problem from the very beginning can be mentioned. 
Hence to wind up the article in favor of the researcher a short 
summary of few other problem is defined in table 6. 
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III. CONCLUSION 

To find a research problem in HSI is a cumbersome task. To 
privilege the researcher in finding an appropriate research 
problem, this paper is a small contribution that not only 
defines the challenges associated with hyperspectral images 
but also an outlook to the approach or approaches that have 
been previously employed to solve that particular challenge. 
An addition to it is the analysis of that one or more approaches 

to determine its advantages, disadvantages, the challenges 
occurring in that particular approach and future work. The 
simplicity of the article is maintained by not getting into the 
detailing as discussing even a single challenge mentioned 
above can be turned into a complete review itself. Hence 
various challenges are defined by the classification based 
issues to the compression and foremost the last section of the 

 

TABLE VI.  Additive Issues In Hsi Along With The Proposed Approaches To Help Resolve Them 

Challenges Approach Followed Advantage 

Identify constituent spectra plus 
the estimation of its fractional 
abundance from mixed pixels. 

Novel framework coupling sparse 
hyperspectral unmixing with abundance 

estimation error reduction [30]. 

 Suppress abundance estimation error. 
 Improves the unmixing accuracy. 

Estimate number of end members 
(NOE). 

A method proposed based on statistics of 
IDD (Indegree distribution dimensionality) 

of data nearest neighbor graph [31]. 

 IDD: High dependence on intrinsic dimensionality 
and skewed for increased dimensionality 

HSI processing algorithms always 
based on the assumption of no 

spatial as well as spectral 
correlation in noise. 

One effective solution is employing 
hyperspectral noise estimation which is 
based on regression residuals. Or use 

per-pixel noise estimator [32]. 

 Improvement in noise variance estimation 
compared to a classic residual method with the 
perk added in case of uncorrelated noise as well. 

Expensive computation to 
sharpen HSI due to a large 

number of bands. 

AATPRK (appropriate area-to-point 
regression kriging) transforming original 

HSI to new feature space [38]. 

 It expedites ATPRK inheriting its pros of 
maintaining similar performance in sharpening 
plus conserves spectral properties. 

Hyperspectral anomaly detection GSEAD (graphical scoring estimation based 
anomaly detector): 
The graphical data description are utilized 

achieving anomaly detection procedure 
based on data-adaptive analysis [39]. 

Achievements superior to other state-of-the-art 
methods for: 
 Receiver operating characteristic curves. 
 The area under ROC curves values. 
Background-anomaly separation 

Hyperspectral face recognition is 
difficult due to factors:  
 Data acquisition. 
 Low signal-to-noise ratio. 
 Higher dimensionality. 

For hyperspectral face recognition, the 
author initially compared five frequently 
used descriptors for 2D face recognition that 
already existed and then used CRC 
(collaborative representation classifier) with 
two voting techniques [40]. 

For PolyU-HSFD database: Gabor filter bank-based 
features are robust to both Gaussian white noise and 
shot noise achieving competitive classification results. 
For CMU-HSFD database: HOG (histogram of 
oriented gradients) yields good classification results 
for low noise level. 
High noise level: Raw facial images without feature 
extraction perform very well in term of correct 
classification rate. 
Facial image with no noise: The local binary pattern 
and HOG descriptor achieve good classification rates. 
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paper highlights the general challenges in the arena of HSI to 
endeavor the maximum of the benefit to the researcher. The 
novelty of the paper lies in easing the most crucial task in the 
era of research that is to find a research problem.  
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