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ABSTRACT

We prove the following analogues of the Lebesgue density theorem for two types of fractal subsets
of R: cookie-cutter Cantor sets and the zero set of a Brownian path. Write C for the set, and u for the
positive finite Hausdorff measure on C. Then there exists a constant ¢ (depending on the set C) such
that for u-almost every x € C,

dt=c,

1 (Tu(B(x, e

lim L f #(BG, )
T—»=T ), (2¢7)

where B(x, €) is the £-ball around x and d is the Hausdorff dimension of C. We also define analogues

of Hausdorff dimension and Lebesgue density for subsets of the integers, and prove that a typical zero
set of the simple random walk has dimension { and density V(2/x).

1. Introduction

In this paper we introduce a notion of density for fractal and fractal-like sets
including certain kinds of Cantor sets and sparse sets of integers. This type of
density is called order-two density, because it is based on the use of an order-two
averaging method, in the sense of [14, 15], to obtain a limit where the usual
density of a measure or set does not exist.

The main examples considered here are the middle-third Cantor set, non-linear
hyperbolic Cantor sets and the zero set of a Brownian path. Examples of
fractal-like subsets of the integers which are considered are the integer middle-
third Cantor set (for a definition see below) and the zero set of a simple random
walk.

Hyperbolic ‘cookie-cutter’ Cantor sets (the terminology is due to Sullivan) were
chosen because, in addition to their own intrinsic interest, the use of the basic
tools (for example, the use of both the Gibbs and the conformal measures, the
bounded distortion property, and the suspension to an ergodic flow over the
Cantor set) is quite clear. This should enable an extension of the theory to more
general situations where Bowen’s Hausdorff dimension formula holds. This has
already been done for certain hyperbolic Julia sets in conjunction with M.
Urbanski. For an overview of what is known about cookie-cutter Cantor sets, for
complete references and for a self-contained development of the tools mentioned
above, see [4].

For the zero set of a Brownian path, our result is related to an additive
functional limit theorem of Brosamler ([8, Theorem 2.1]; there the limit at
infinity is studied) and for the simple random walk, it can be seen as a special case
of a beautiful but little known almost-sure limit theorem of Chung and Erdés [10,
Theorem 6]. The proof we give here uses the ergodicity of the scaling flow plus
Strassen’s invariance principle and an almost-sure invariance principle of Révész
for local time. Order-two density can also be proved to exist for times of return to
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a set of finite measure in a class of infinite ergodic measure-preserving
transformations; this is joint work with J. Aaronson and M. Denker and will
appear elsewhere. The theorem proved there is closely related to Chung and
Erdos’ work although the proof and interpretation are quite different.

The purposes of the present paper are several. Firstly we introduce the notion
of order-two density and develop its basic properties: consistency with respect to
usual density (which however diverges almost surely for all the examples
mentioned above); a Radon-Nikodym-like result for absolutely continuous
measures; and the comparison with a hierarchy of order-n densities based on the
Hardy-Riesz log averages (see [15]) and on the averaging operators of [14].
Secondly we introduce the techniques needed to prove existence of the order-two
density for the examples mentioned above; the existence of order-2 density for
the Hausdorff measure on these sets can be considered to be an analogue (for
Hausdorff measure) of the Lebesgue density theorem. Finally, we want to show
that there is a deep underlying connection between all of the techniques we
use—even though they may at first seem disparate. The middle-third Cantor set is
dealt with in some detail because it is possible there to show these connections.
The analogies that one sees between the different situations are not precise but
seem to be very helpful in suggesting problems and methods.

The notion of order-two density is related to Mandelbrot’s concept of
lacunarity (see [24], especially pp. 315-318, for an intuitive description and
illustrations). The lacunarity of a fractal should describe the degree to which the
structure is fractured; one wants a way of comparing different sets of the same
dimension or related sets of different dimensions. Order-two density provides a
possible tool for making such comparisons. In the physics literature Smith,
Fournier and Spiegel [33] observe that estimates of fractal dimension (they
consider in particular the correlation dimension) can show log-oscillatory be-
haviour. When such oscillations occur, this brings added difficulties to the
problem of numerical estimation of dimension. Smith, Fournier and Spiegel are
suggesting that one can however make use of this oscillation as a way of
measuring the ‘textural property of fractal objects that Mandelbrot calls lacuna-
rity’. But as they point out, if the sets are not strictly self-similar then in general
the oscillations can damp out for small radius R. In that case, apparently, one will
not get a helpful definition of lacunarity by using the amplitude of the oscillation.
Some examples where one would expect to see such damping are the non-linear
sets studied in § 4 below.

Mandelbrot deals with the problem of oscillation in a different way. First, he
considers the distribution of the values of mass M(x, R) in a ball of fixed radius R
about points x in the fractal (that is, integrating over x). The moments of this
distribution are to provide parameters which measure the lacunarity. However
(again for self-similar fractals) this distribution will, after normalization by R4,
oscillate log-periodically. Therefore he restricts attention to random fractal sets
and takes the ensemble average. The resulting distribution will in nice cases now
be R-independent.

What we are suggesting instead is to study the oscillations of M(x, R) for fixed
x as R— 0, by means of ergodic theory. This produces, for the examples studied
below, a limiting distribution (which one could call the lacunarity distribution at
x) and which in these examples is in fact the same for almost all x in the fractal.
This distribution has as its mean value (i.e. as first moment) our order-two
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density. In a later paper we will study this distribution, and its higher moments,
more closely. But for the present we focus only on the order-two density, since it
is the most basic of this class of measurements.

The authors would like to thank J. Aaronson, M. Denker, H. v.d. Weide, and
especially M. Urbanski for useful conversations. The work was partially carried
out while the first author was visiting Gottingen, and while the second author was
visiting Warwick and Delft. '

2. Definitions and properties of order-two density

We wish to define d-dimensional analogues of the °‘ordinary’ densities,
Lebesgue density (for subsets of R") and Cesaro density (for subsets of Z). For
subsets of R”, Hausdorff dimension is considered; the corresponding notion of
dimension in Z is explained below. In this paper R” is always equipped with the
usual Euclidean metric.

If the subset under consideration has Hausdorff dimension d smaller than the
dimension of the ambient space then the most obvious analogue of Lebesgue
density does not exist, because the sparseness of the set implies large fluctuations
in the amount of mass in a neighbourhood of a point as the neighbourhood
shrinks.

Order-two density for subsets of the reals
The outer d-dimensional Hausdorff measure of a set C = R" is given by

HY(C) =lim inf {3, 9,(U: 1UI<e,UUi>C},

e—> i Ni=1

where {U;} is a countable cover of C, |Uj|=diamU; and @,(t)=t% The
Hausdorff dimension of C is the unique d with the property that d=
inf{(6: H3(C)=0}. A subset CcR" is called a d-set by Falconer [12] if it
is measurable with respect to d-dimensional Hausdorff measure H? and
0< H?(C) <. We shall denote the restriction of H? to C by u.

DEeFINITIONS. The upper and lower densities (in dimension d) of C at x € R” are
respectively

1(B(x, £)) _ . H(B(x, £))
W—, and D(C, x)_%——(Ze)"

If D(C, x) = D(C, x), we call this common value the density of u at x and denbte
it by D(C, x); then one says that x is a regular point.

D(C, x) =1lim
e—0

(We shall call this ordinary d-dimensional density when there is a likelihood of
confusion.) One of the main theorems of geometric measure theory says (see [12,
Theorem 4.12]) that for d <n and non-integer, u-almost every point is irregular.
This should be compared with the Lebesgue density theorem which says that if
one replaces u with Lebesgue measure A then for any A-measurable set C the
density with respect to A exists at A-almost all points of C and equals 1.

Now we shall define a new type of density, which does exist almost everywhere
in the examples treated below. We wish to control the fluctuations of
u(B(x, £))/(2¢)? as £ converges to zero; what we do is to replace £ with e~* and
then apply the Cesaro average.
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Derinimions. The upper and lower order-two densities of C at x are

f pBx, e7))

2d —td

Dy(C, x) = lim —

T—-»oo
and

Tu(B(x, e™))

1
Dy(C, x) = lim —] Ll dt
0

2de—ld
We similarly define D,(C, x), the order-two density (in dimension d) to be the
common value if these are equal. In this case x is said to be order-two regular.

We choose the name ‘order-two density’ because the method being used to
smooth out the fluctuations of u(B(x, £))/(2¢)" can be seen to be an order-two
averaging method composed with an inversion (using the terminology of Fisher
(14)).

The exact connection of order-two density with the order-two averaging
methods is as follows. Setting f(¢) = u(B(x, £))/2%t?, we have D,(C, x) equal to
lim_.. AZ(f(1/)), where ¥(x)=xwofx)e* and (Ag)(r) is defined to be
(yp *(goexpeexp))eclogelog(t). By Wiener’'s Tauberian theorem, this is
equivalent to A2 where @ = y(—x), which can be written in the more familiar form

i) = [ 00

This is the Hardy—Riesz log average; see [15]. Based on this formula one can, if
the order-two density fails to converge, apply, in place of the order-two average,
higher-order averaging methods from an infinite, consistent hierarchy—the
Hardy-Riesz higher log averages—and also ultimately one could apply an
exponentially invariant mean, as in [14]. Thus, replacing A} by A} in the
equation above, for n = 1, defines the order-n density D,(C, x).

The definition of order-n density of a set extends in a natural way to the density
of a Borel measure v on a g-compact metric space M. For a fixed positive d, we
then write D,(v, x) for the order-n density in dimension 4 of v at x; when u is
Hausdorff measure restricted to a d-dimensional set C = M, one has by definition
D,(u, x)=D,(C, x). The relationship between densities for absolutely con-
tinuous measures is given in Theorem 2.2 below; this is a Radon—-Nikodym type
of theorem. We use this in § 4 when comparing Gibbs measure with Hausdorff
measure. _

For sets C in R, it is also natural to talk about right and left densities. These
densities, which will be denoted by D", D' and so on, are defined as above by
replacing u(B(x, £))/2%* with u([x, x + €))/&".

We now note some basic properties of density and the order-n densities. For
the examples studied in this paper the order-two density always exists. The first
two properties hold also for the order-n density of a finite regular Borel measure
v on a o-compact metric space M.

(1) ForallxeM and for 1sn<m,

D(C, x)<D,(C, x)<D,,(C, x)<D,(C, x)sﬁ(C,x)SB(C,x).

The same is true, in R, for the right and left densities.
(2) D(C, x) and D(C, x) are Borel-measurable functions of x. The same holds
for the order-n densities, and for right and left ordinary densities in R.
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(3) 27¢<D(C,x)<1 at p-almost all x € C, so by (1) we have D,(C, x) <1.
For the case where M =R,

274D"+D")<D<D=<2"%D"+D";

hence D'(C,x)<2? (and similarly for D'). The same holds for the order-n
densities.

(4) D(C, x)=0 at H*-almost all x outside C. As above, by (1) this holds for
order-n density also.

(5) Let C be a pu-measurable subset of C; then

D(C,x)=D(C,x) and D(C,x)=D(C, x)

for pu-almost all x € C. For ordér-n density, the same is true when D, = D,. That
is, if D,(C, x) exists for almost every x € C, then

D,(C, x)=D,(C, x)

for almost every x € C c C. The same holds, in M =R, for left and right order-n
densities.

(6) More generally, let C =|_J;-, C,, a countable disjoint union of d-sets with
‘H%(C) <. Then for any n,

D(C,, x)=D(C,x) and D(C,, x)=D(C, x)

for almost all x € C,. As in (5), this is true for D, when D,=D,, and in R it
holds also for D%, and D’,.

(7) Let y: R"— R" be conformal, that is, a C' diffeomorphism which in the
tangent space sends circles to circles. Then

D(y(C), (x))=D(C,x) and D(y(C), y(x)) =D(C, x).

The same is true for the upper and lower order-n densities and in R for right and
left ordinary and order-n densities.

Proof of properties (1)-(6) for ordinary density can be either found in Chapter
2 of [12] or proved using the methods described there. Consistency of D,, with D,
for n <m (Property 1) will be proved elsewhere since we do not actually need it
in this paper; the basic idea can be seen in Lemma 4.4 of [15]. To prove
Properties (5) and (6) for D, we need first this lemma, which has its origins in
work of Besicovitch. It follows as a corollary of Theorem 2.9.8 of [13].

Lemma 2.1. (i) Let v be a regular Borel measure on a compact metric space M,
and let u be absolutely continuous with respect to v, with Radon-Nikodym
derivative du/dv = f(x). Assume that the collection of open balls forms a v-Vitali
relation (see [13]). Then for v-almost every x € M,

o M(BG ©)

—0 v(B(x, €)) A

(ii) For M =R, one also has for almost every x,

B x+6)
—o v([x, x + €))

fx)

(and similarly for the left-sided limits).
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The assumption that the collection of open balls forms a v-Vitali relation holds
for any Borel v in finite-dimensional vector spaces, finite-dimensional Riemann-
ian manifolds, and in shift spaces with the usual metric. In particular, we can
apply it in the case of R'. We thank B. Kirchheim for pointing out to us that this
assumption is needed in the above lemma. Property (7) is easily proved from the
conformal transformation property (see §4). Note that although the order-two
density of a set is defined by means of the Euclidean metric on R, by (7) it
remains the same under diffeomorphic changes of metric. A consequence of (7)
for R" is that order-two density is unambiguously defined for subsets of conformal
n-dimensional manifolds (via charts).

The proof of the next theorem then follows in a straightforward way, by use of
L’Hopital’s Rule; we postpone details to a later paper.

THEOREM 2.2. (i} With M, v and u as above, if the order-n density exists at
v-almost every x and equals g(x), then the order-n density of u exists v-almost
surely, and equals g(x) - du/dv = g(x) - f(x).

(i) For M=R"', the same equations hold for right- and left-sided order-n
density.

To prove (5) and (6) above, note that for C < C, if one sets u=v|s then

du/dv = x¢, so that (5) and (6) now follow as corollaries of Theorem 2.2. In § 5
we shall extend the notion of order-two density to cover sets with positive finite
Hausdorff @-measures for functions ¢(¢) # ¢* which are regularly varying at the
origin.

Dimension and order-two density for subsets of the integers

We will say a subset F of the integers is sparse if it has Cesaro density zero.

DerNiTION. Let F be a subset of the non-negative integers Z* and define
Ny=0, and
N,=N,(F)=card(FN{0,1,2,...,n—-1}), forn=1.

The upper and lower dimensions of F are

dim(F) = lim sup log N, /log n
and
dim(F) = lim inf log N, /log n.
If dim(F) = dim(F) then we call the common value the dimension of F, dim(F).
A useful equivalent definition is: dim(F) = d if and only if for every £ >0 there
exists ngy such that for every n > ny,
n ¢ <N,/n?<n"

Definitions of dimension for discrete sets appear in [18] and [25], but these
definitions have been designed for other purposes and generally take different
values than our dimension.
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We will call F N fractal if dim(F) is less than 1. Note that any fractal set is
also sparse. We now give the examples of fractal subsets of N which originally
motivated the definitions.

(1) F={n*: neN}, for k a fixed integer greater than 1, has dimension 1/k:
this follows from the observation that n'* — 1< N, <n"* for all n.

(2) The integer Cantor set,

N
[C]= {2 a3: NeN,a,=0or 2}
i=0

={0,2,6, 8,18, 20,24, 26, ...},

has dimension d = log 2/log 3 (not surprisingly!?) which comes directly from the
fact that (n/2)¢ <N, <n“ for all n.

(3) Let Zs be the set of zeros of a simple random walk (S,=0, S, =X, X,
where X; = +1 with independent probabilities (3, 3)), that is Zg= {n: S, =0}.
Then dim(Zs) =% almost surely. This follows from bounds due to Chung and
Erdos [10, Theorem 7], that for almost every S, given £ >0 there exists ny such
that for all n > n,,

1 1
nit< N, <nz*e,

DeriNiTION. Let F = Z* have dimension d. The order-two density (in dimension
d) is

2( N./k “)—

M—»w log

if the limit exists.

Note that this is the Hardy—Riesz log average applied to the sequence N,/k.
We mention that if, for instance, the (Cesaro) density of a set of integers exists
and is positive, that is, lim,_,., N,/n = a >0, then the set has dimension equal to
1; this is straightforward to check. '

For the examples we described above, the following are true.

(1) F = {n*} has order-two density 1 since in fact N,/n"*

(2) The integer Cantor set has order-two density which equals the right
order-two density of the middle third Cantor set at 0 (see § 3). This can be proved
by analogy with the proof given for the random-walk zeros in § 5.

(3) In § 5 we prove that the order-two density of Z exists almost surely and is
equal to V(2/x).

As in the real case, when the log average fails to converge, one can apply a
higher-order averaging operator or an invariant mean. Details will appear in a
later paper. The case of the integer Cantor set leads to some interesting ergodic
theory; see [16]. Further i.i.d. random walk examples will aiso be treated in [1].

We suggest two possible interpretations for integer order-two density. First, it
gives the density of a set F ‘at the point +’ analogous to real order-two density
of C at a point x € C. Second, it is a sort of (finitely additive) d-dimensional
Hausdorff measure on subsets of the integers. This second analogy is strength-
ened if one extends the definition to all subsets of Z*, by use of an appropriate
invariant mean.

—1.
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3. The middle-third set

In this section we will prove the existence of the order-two density at almost
every point, and at every rational point, of the middle-third set C. This set has a
very nice structure that makes the proof especially simple. We shall concentrate
here on right order-two density, and prove that it is almost surely constant. From
this we can determine the left and symmetric order-two densities using the
symmetry of C.

The middle-third Cantor set is defined as C={¥L;~,4,3™": a;=0, 2}. It has
Hausdorff dimension d = log 2/log 3, and its Hausdorff measure H*(C) is equal to
one; see [12] for proofs. We let u denote H restricted to C. The Cantor function
(or Devil’s Staircase) L (shown in Fig. 1), is defined by L: [0, 1]— [0, 1] with
L(y) = u([0, y]); that is, L is the distribution function of u and pushes u forward
to Lebesgue measure on [0,1]. One can easily check the following explicit
formula for L:

L(z ai3'i) =3 b2,
i=1

i=1

where b; =0 when a; =0 and b; = 1 when a; = 1, 2. We use the letter L in analogy
with P. Lévy’s local time for Brownian motion (see § 5). This important property
of L that we shall use is its scaling structure: for any y € [0, 1],

L(3y)=3L(y).
1-01
0~9J
08
074

0-6

O-Sﬂ

00 r T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 1-0

F1G. 1. The Devil’s staircase function L(y) with upper and lower envelopes y¢ and (3y)~
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This implies in particular that for any ¢ =0,
L( —t— Iog3) L(e—r)

—dt—d log3 = e

e

In other words the function ¢+ L(e™)/e™" is periodic with period log3 (see
Fig. 2). This proves that the right order-two density of C at zero,

. 1 (TL(™

lim — j (fd,)dt,

T—> 0 e

exists, because the Cesaro average of any periodic function converges.

1-05
1

0-95
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0-85

0-8

0-75

07

0-65

0-6

0-55¢ T v . v .
0 0-1 0-2 0-3 0-4 05 06 0-7 0-8 09

FIG. 2. The function y — L(y)/y".

It is clear that 0 is a very special point of the Cantor set, but there are also
other points in C where the function

fx, 1) = u(lx, x+e” ')) Lx+e™*)—L(x)
e~ —td e—td

is periodic in ¢. Consider, for example, the points x, =3, x,=3. Figs 3a and 3b
show the functions

y— L, (y)=L(x; +y) — L(x,) = u([x;, x, +y))
and

¥y Leo(y) = L(xz +y) — L(x2) = p([x2, x2 + y)).
These functions satisfy

L, (3y)=3L.(y)
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FIG. 3a. The function y = Li(y) = ([}, & +)).
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0.5_ ................... :

0-4-
0'3J
0-2-

0-1

00

0

T 1

0 01 02 03 04 05 06 07 08 09 10

FIG. 3b. The function y— L3(y) = (3, 2+y).
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and
L, Gy)=3L.(y)

(we shall see why in a moment) which, in particular, implies that f(x,, ) and
f(x2, t) are periodic in ¢ with period 2 log 3 =log 9. The right order-two densities
at x; and x, therefore exist and since f(x,, t + log 3) = f(x,, ¢) for all ¢, the limits
are equal. L, and L,, are related because under the map S: [0, 1]— [0, 1] given
by S(x) =3x (mod1), the whole Cantor set is invariant, with S(x;) =x, and
S(x,) = x,. Now, for any small y >0,

S[xy, x1+3y) =[x, x2+y)

and, by the conformal transformation property of Hausdorff measure (see § 4),

1([x1, x1 +3y)) = Ju([xz, x2 +y)),

which gives L, (3y) =3L,,(y). Similarly one gets L,(3y)=3L, (y). These ex-
pressions generalise as follows. For each x € C define L, (f) = u[x, x +t) for
t € [0, 1]. We call this the local time at x. For each x € C we have

LX(%t) = %Ls(x)(t)
This implies that
3.1) flx, t+1log3)=f(S(x),t) forallxeC,t=0.

Now, for general points x € C, the function f(x, ¢) is not necessarily periodic in ¢,
but enough statistical regularity exists at typical points for the order-two density
to exist at u-almost all points. The key to understanding this is the combination of
(3.1) together with the observation

(3.2) u is invariant and ergodic under the transformation S: C— C.

Here (3.1) comes immediately from the conformal transformation property of y,
whilst (3.2) can either be checked directly or be seen from the fact that the system
(S, u) is naturally isomorphic to the one-sided (3, 3) Bernoulli shift (ergodicity
means that if K c C is a Borel set such that K = S7'K then u(K)=0 or 1).

We note that the S-periodic points are exactly the rational numbers in C, and
that these are in fact the only points where f is a periodic function; this is not too
hard to check.

THEOREM 3.1. For any point x € C that is periodic with respect to S and also for
u-almost all x € C the order-two density D,(C, x) exists. Furthermore, for u-almost
all x,

log 3

+(C, x) = DY(C, x)—m ff(z ) du(z) dt,

and
D,(C, x) =2'""D%(C, x).

Proof. Define a function F: C—R by

1 log3

F(x)“m' f(x, t)ar
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The function f(x, ¢) is jointly continuous since L is continuous. This implies that
F is also continuous. Note that

"21 F(Six)_ f f(Sx, t) dt
i=0 i=o log
1 n log 3
=@ A f(x, t)dt (from (3.1)).

Averaging F along an S-orbit thus corresponds to averaging f(x, t) over t; for,
letting n(T) = [T /log 3], we have

1 n(T)~-1 ; 1 T
FT) P F(Sx)—?j f(x, t) dt‘
n(T)log3 1 T
n(T)log 3 f fe ) di = ?L 11 dt‘
(T —n(T)log3)2 |ifll=
- n(T)log3
<2lfl=
()’

which converges to zero as T— o, using the fact that f is a jointly continuous
function on a compact set and hence bounded (||-|| denotes the sup-norm). Now
the Birkhoff ergodic theorem says that, for u-almost all x,

>3 F— [ F@)dut),

and so we have for y-almost all x that
1 T 1 log 3
- x,tdt—)J’de z=—J’ f z, ) du(z) dt.
7|, fw0d= [ Fe e =5 [ f s auca)

We mention two other ways in which one can prove the above result; these two
ideas will be used for the work on hyperbolic Cantor sets in §4 and on the
Brownian zero sets in § 5. Define

M= {(x,t): xeC,te]0,log3]}/=,
where = is the equivalence relation

(x, log 3) =(S(x), 0).

We can define a semi-flow on M by integrating the vector field X =0, { =1; that
is, we flow up with unit speed in the constant-height suspension of S. Now the
function f(x, t) can be thought of as a function f: M — R since it respects the
identifications made in the definition of M, by property (3.1). Averaging f(x, ¢)
over ¢ then corresponds to averaging f along the semiflow. Using ergodicity of the
semiflow, one then gets convergence to a constant from almost all initial
conditions for the semiflow. The second way to prove the result (which is the
technique used for the Brownian motion example of § 5) is to take the space of
paths L,(¢) with the measure induced from p on C. A scaling (semi-) flow on this
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space of functions can be defined such that the scaling flow does essentially the
same as the flow induced on M above. One shows again that the flow is ergodic
and that calculating the order-two density corresponds to taking an ergodic
average of a certain function on the space of paths. In the corresponding
construction for Brownian motion, the space of paths is the space of local times of
the zero set for the Brownian motions.

4. Hyperbolic Cantor sets

In this section we show that for a class of Cantor sets in R' the left, right and
symmetric order-two densities of Hausdorff measure exist almost surely, and are
each constant almost everywhere. One can see this as a version of the Lebesgue
density theorem for Hausdorff measure on these Cantor sets, since almost every
point has the same order-two density. We do not have an expression for this
value in general, but J. Aaronson and T. Kamae have independently found ways
to approximate the order-two density for the case of the middle-third Cantor set.
As a corollary of the existence of order-two densities for Hausdorff measure, the
order-two densities of the Gibbs measure also exist. We then prove that the
densities exist at all periodic points, and show how the almost-sure value can be
expressed in terms of the values at the periodic points. Further information on
the techniques used here can be found in [4]. These techniques stem from
Bowen’s paper [7] which was the first to use the theory of Gibbs states to
calculate Hausdorff dimension.

We now describe the construction of cookie-cutter Cantor sets.

Take a small neighbourhood J > [0, 1] and two maps @,, @,: J—J satisfying
the following hypotheses:

(1) ®4(0)=0, @,(1) =1 and @o(J) N ¢:(J) =J;

(2) @, and @, are C'*7 diffeomorphisms on their images;

(3) there exist 0 < a < <1 such that for all x € J,

a<|De;x)|<pB (=0,1).

(Note that (1) implies that @,, @, are orientation-preserving and thus that D¢,
D@, >0. With minor changes to the proof of the existence of right order-two
density, everything in this section can be done just as easily with orientation-
reversing maps. For this reason we shall always use absolute value signs around
Dg;.)

Two such mappings @, ¢; uniquely determine a compact non-empty set
C = C(g@o, ¢,) with the property that

C=gy(C)U ¢,(C)

(see [21]). Such a set will be called a hyperbolic Cantor set (the term hyperbolic is
used since condition (3) is a hyperbolicity condition on ¢, and ¢,). To see that
C=@y(C)U ¢,(C), first set Z = {x1x5X;3...| x, =0 or 1}; a point of = will be
denoted x =x,x,.... Let I=[0,1] and forxeZ let I, ., = @,, ... @, (), so that

le...x,, 31x|...x,.+|‘ By (1) we have
Lh=1[0, (1)}, 1, =[g:(0), 1]
and

Ionll=®.
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Inductively one sees that for any distinct finite sequences x, ... x, and y, ... y,, the
corresponding intervals I, , and I, , are disjoint. If we can show that
diam(/,,  ,)— 0 as n— o then for any x € £, (\;_, ,, ., is a single point, and so

C=UMN1L, .,

is a Cantor set (by which we mean it is homeomorphic to the middle-third set).
Now

e,...xl = 1@, - @ (DI < B" 1] = B"

so that |I,, ,|—0 (in fact geometrically fast) as n—». We denote the map
x> =1L, ., by &1 Z— C and will use the notation 7(x) = x. We shall use the
notation J,, ., = @,, ... @, (/).

The Cantor set C can be regarded as an invariant set of expanding dynamical
system, with the map S: J,UJ,—J defined by

@5 '(x) ifxeld,

S(x)={<p|"(x) ifxel,.

(For the middle-third Cantor set one takes @o(x) = 3x, @,(x) =3x + % and S(x) =
3x (mod 1).) The assumptions we made on @, ¢, then imply that S is a
hyperbolic C'** map with @, and @, as inverse branches, and with C as an
invariant set. The condition from hypothesis (3) above implies that

(4.0) B <IDS)|<a”".

Note that §” maps J,, . diffeomorphically onto J.

One can now apply the well-known argument of Bowen ([7]; see also, for
example, [2, 4]) to obtain an expression for the Hausdorff dimension d of C and
to show that d-dimensional Hausdorff measure p is positive and finite. The
Hausdorff dimension is the unique real number d such that P(—d log|DS(x)|) =0,
where P is the topological pressure. The concept of topological pressure is a
part of the theory of equilibrium states (see [6]). We need only a few facts from
this theory: there is a Bore! probability measure v on C which is invariant and
ergodic with respect to S, and such that there exists 7 € (0, 1) with

V(Ix L X ) -1
41 < —_tnZ < R
“.D T ul "

for any I, ., and
(4.2) n<v(l,. ) IDS"(X)|* <~

for any x €J,, . (the measure v is actually the Gibbs—or equilibrium—state for
the function —d log |DS(x)|, and (4.2) is just a statement of the Gibbs property
for our situation (see [6]) so we call v the Gibbs measure). The reason for
introducing v is that the Ergodic Theorem can be used to obtain v-almost
everywhere results, which then automatically hold u-almost everywhere because
u and v are equivalent (with Radon-Nikodym derivative bounded below and
above by n and n~! respectively; this follows from (4.1)). In the case of the
middle-third set, u and v are identical.
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We shall make heavy use of two other facts. Firstly the bounded distortion
property of S, which can be stated in this form: there exists # € (0, 1) such that for
all n,

(4.3) A<l .l DS ) <A™

for any x € J,, ., (to avoid too many constants we shall replace n by the minimum
of n, 7 so that we can take n = ) in the above inequality); see, for example, [4,
29] for a proof. We also need the bounded distortion property in this slightly
different form: there exists k >0 such that forx, y €/, ,,

(4.4) |log |DS"(x)| — log |DS"(y)|| <k |S"x — S"y|".

We mention that the bounded distortion property is proven in general for S$”
restricted to an interval on which it is one-to-one; this is guaranteed by taking x, y
to be in J,, . Finally, we recall the fact that Hausdorff measure H? on R!
satisfies the following conformal transformation property: for any one-to-one C'
map ®: R—R,

HY(®(E)) = f |D®|? dH".
E

This is easily proved from the definition of Hausdorff outer measure. (In the
higher-dimensional case C' maps are replaced by conformal maps, which explains
the terminology. Measures satisfying the conformal transformation property were
first defined in the context of Fuchsian groups by Patterson [27], and for more
general conformal transformations by Sullivan [35, 36].) Now since S maps C to
C, the measure u (which is the restriction of H? to C) satisfies

4.5) W(SEN = [ IDS@*dutx),

for every E where S|z is one-to-one. Such a measure is known as conformal
measure for the pair (C, S), so we shall refer to u both as Hausdorff measure and
conformal measure.

For a hyperbolic Cantor set we show that the order-two density and the right
and left order-two densities exist u-almost everywhere and are constant almost
surely.

The arguments for left and right order-two densities are identical (up to
confusion of left and right) and follow the argument for the symmetric case with a
few obvious changes. We therefore give only the proof in the symmetric case.

Define a function f: CXR*— R,

,x+e™)
e—rd M

u((x—e
£, =20
We will show that the order-two density
1 T
Dy(C, x)=2"7 lim —f f(x, t)dt
T—x T 0

exists u-almost everywhere by comparing the function f to functions defined on C
for which we can use the Ergodic Theorem to obtain averaging results. Define

M={(x,t): xeC,0st<log|DS(x)|}/=,
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where = is the equivalence relation
(x, log [DS(x)[) = (S(x), 0).

There is a semi-flow ®, defined on M by flowing with unit speed in the ¢-direction.
On M we define a function g,: M— R for each ¢,=0 by

gtn(x’ t) =f(x1 t+ tO)'

This function extends naturally to the domain C X R* by the equivalence relation
=; that is, it is extended so as to satisfy the equation

8u(%, t +10g [DS(x)[) = 8,(Sx, 1)
for all = 0. We also have corresponding functions f,: C X R*— R given by

folx, ) =f(x, £ + to).

Our strategy is to show that f, and g,, are close to each other uniformly in x and
t, and then to use the Ergodic Theorem to show that lim,_.. T~' [ g, dt exists.
In the original version of this paper we estimated f, and g, via the ratios of
certain quantities, in a way which necessitated separate considerations of the
one-sided and symmetric cases. Following a suggestion of the referee and of M.
Urbanski, however, we have replaced these estimates by difference-based
estimates. This enables one to deal with the one-sided and symmetric arguments
in the same way. The first step is to find a uniform bound on f(x, ¢); note that a
fortiori one then has the same bounds for f, and g,,, for each ¢,> 0. The following
lemma is well-known and holds in more general dynamical systems.

Lemma 4.1. The function f(x, t) is bounded away from 0 and «. In fact for all x
and t,

el <f(x, £) <3n~3"2a

In the next four lemmas, we prepare the ingredients for the proof of
Proposition 4.6. We write A, = B(y, €) and A, = B(S"y, |DS"(y)| - €), and show
that the following three quantities are almost equal: u(A,)-|DS"(y)|%,
u(S"(Ay)), and u(A,). Note that if (C, §) were a linear cookie-cutter (by this we
mean that there exists an n such that DS is constant on each nth-level interval
I, . ) as for the middle third set, then these quantities are equal. We shall
assume in Lemmas 4.2-4.5 that ¢ is small enough that A,cJ, ,; this is the
hypothesis needed to apply the bounded distortion property (4.4) to S” on A,.
First we need a preliminary lemma.

LEmMMA 4.2. There is a constant ko> 0 such that if z € A, then

_IDS"(p)I ’ _IDS"(y)|

s @Fl | DS )]

sko |An|Y‘

Proof. By (4.4) we know that, since Ao J,, , , we have

e_K|j|y< |DS"()’)| < ex|j|Y,
|DS™(2)|

and so |DS"(y)|/|DS"(z)| € U for some neighbourhood U of 1 bounded away
from 0 and «. Now since the exponential function is Lipschitz on the domain
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log U, there is a k' >0 such that
|x —x'|<k'|logx —logx'| forx,x'el.
Taking x =1 and x’' = |DS"(y)|/|DS"(z)| we have

|DS"(y)|

i- DS (2)

<k’ |log [DS"(y)| — log |DS"(z)||

<k'x|$"(y) = S"()I"
sk'k|S"(AglY
=k'k |Ag|” |DS"(x)|* (for some x € A,
by the Mean Value Theorem)

|DS"(x)|”
|DS"(y)I”

<k'xe"™ " |A,|" (by the above inequality).
yx1Y

=k'k|A,|” (by definition of A,,)

Setting k,= k'ke
holds for

gives one of the claimed inequalities. A similar estimate

IDS" ()1
IDS"(2)|

taking x' = |DS"(y)|¢/|DS"(z)|* in the argument. This gives the constant dk, and
since d <1, ko works in both inequalities.

b

-

LeMMA 4.3. There exists ko> 0 such that for any y € C and € >0,

| _ B4 IDS"()I*

<k,|A,|"
usay | ol

Proof. By the transformation property (4.5) of u we have

B(A) IDS"(p)I? __p(Ag) IDS"(0)I* _ IDS"(y)I“
#(S"Ao) J4,1DS™(2)|" du(z)  |DS™(2)|"

for some z € Ay, since DS" is continuous. Applying Lemma 4.2 finishes the proof.

LemMa 4.4. There exists k, > 0 such that for any y € C and € >0,
(8" (A0)) — u(AL)| < ky |47+

Proof. We have
1u(S5"(Ao)) = 1(An)] < u(S"(Ao) AA,).
This symmetric difference is a union of two intervals. We first estimate the

measure of the right interval A}, = (A, AS"(Ao)) N[S"(y), 1]. Now the length of
A, is exactly |A,| = |DS"(y)| - |Aol- Hence

1471 = [} 14,1 = 1S"A0 N [S"(y), 1]
<|41A,l —3|DS"(2)| |Aol| (for some z € A, by
the Mean Value Theorem)
_IDS"(2)
IDS"(y)I
=1ko|A,|"*" (by Lemma 4.2).

=34, 1

(by definition of }A,|)
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Next, writing k' = sup f (which is finite by Lemma 4.1), We have
R(AL) <K' |AL|" <K' (ko) |A,| D2,
With the same estimate for the left interval, A, we have
H(A, AS"Ao) = u(A}) + u(As) < ki |A, ",
where k, = 2k’ (3ko).
LemMA 4.5. There exists k,> 0 such that for any y and &, with A, and A, as
above,
|1(Ao) IDS™ ()" = w(A,)| < k2 |4, |+,

Proof. From Lemmas 4.3 and 4.4,
|1(A0) IDS"(9)I = u(A,)| < |1(Ao) IDS™(¥)I* — u(S"Ao)| + |1(S"Ao) — 1(A,)]
SkolAnl" u(S"Ag) + ky |47
<ko |Anl" (1(An) + ky |74 + ko |A, |74
<ko|AnlY (k' |Anl" + Ky |A,|7) + Ky |4,
(k' =supf)
<ko(k' +ky) |An|7* + ky |A, 74
<k, |A,"",

where kz = ko(k’ + k]) + k].

Before proving the principal estimate we introduce the convenient notion of
reduction of ¢ =0 modulo x, mod,.

DEerINITION. Given x € C define ry(x) =0 and r,(x) to be the nth return time of
(x, 0) to the Poincaré cross-section C x {0} under the flow ®,, that is,

n—1
ra(x) = log IDS"(x)| = X, log |DS(S'x)|.

i=0

Furthermore, define int.(¢) to be the unique integer n with
Tn =t< T+
and define mod,(t) = ¢t — r, where n = int,(¢).
PROPOSITION 4.6. There are constants t*, k3> 0 such that for any x € C, setting
6 = vd, then for all ty>t* and for all t =0,
£, (%, £) — g, (x, 1) < kse ™%

Proof. By definition of g,,, for n =int,(¢) and t' = mod,(¢) one has

|ﬁo(x1 t) _gtn(x’ ’)' = lﬁo(x’ t) —glo(snx’ t’)l'

Now if (C, S) were a linear cookie-cutter (as defined above) then the relation
(3.1) from the last section would hold for large enough #,, and we would have

o 1) =84 (%, 1)
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for every x € C and ¢ = 0. The first step of the proof is to note that

fio%s 1) = 81X, D] = Ifio(x, 1) — 84,(S"x, 1))
(4.6) =1£(x, ) = £(§"x, £')|
< @] DS"(x)| u(B(x, e~
— u(B(S"x, e7""Y)|.
We wish to apply Lemma 4.5, taking Ao = B(x, e™*"), and A, = B(S"(x), e ")
(note that e " |DS*(x)|=e " ""*"=e"""", that is, |A,|=|Al|DS"(s)|).
However, to apply Lemma 4.5, we must check the assumption made before the

statement of Lemma 4.2 that Ao J, .. Assuming for the moment that we can
apply Lemma 4.5, we have

|fol, 1) = 8i(x, D <@ ||DS" (1) u(Ao) — u(A,)|
Se("’*")“kz |An|d+yd

< dk2 y e(fo+f')de—('u+l')(d+dY)
24+

1= kye™"°

using the fact that t' <maxr, < —log &. To finish the proof we must verify the
assumption stated above.

We claim that there exists t* such that if 7,>¢* then one has that for any x e C
and ¢ =0 that if n = int,(¢) then

B(x, e™") c Uy, x,e

The idea of the proof is that J, , has diameter approximately e™* (by bounded
distortion), and so one has to shrink the ball B(x, e™) only by a bounded
amount, e~ ", to guarantee (again using bounded distortion) that B(x, e ™ ") c
Js,..x,. First note that there is a 6 >0 such that for any y € C, B(y, 8) =J (the
neighbourhood of I on which ¢,, @, are defined). For x € C and ¢, n as above,
take t,> —log 8 + Kk |J|Y=t*. Choose z near x such that $§"(z) = §"(x) + 8. Then
we have

18"(x) = $"(2)|
|DS"(y)

=6/|DS"(y)|

= e "e*V"[|DS"(y)|

- e—m—rn%ew (where 1, = 1,(x))

=e ™™ (by (4.4))

=e 7,

x—z|= (for some y € [x, z] by the Mean Value Theorem)

The same estimate holds if z is chosen so that $”(z) = §"(x) — 8. Hence
B(x,e™" )@y, ... ., B(x, 8) Uy 4,

which was what we wanted.
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In order to show that order-two density exists at u-almost all x € C, we shall
show that

1 T
lim T J; 8n(x, t)dt

T—x

exists (for p-almost all x) for any #, and then compare T~' [J f(x, t) dt to this
limit.

ProposITION 4.7. There exists h(ty) € R such that, for p-almost all x € C,

1 T
2 [ e nat—hw
0
as T— .

Proof. The Cesaro average of g, written above is just the ergodic average of g,
under the semiflow ®, on M from the initial point (x, 0). One easily checks that
®, is an ergodic semi-flow with respect to the probability measure ¥ which is
locally v X A (normalized) where A is Lebesgue measure. The Birkhoff Ergodic
Theorem for the semi-flow ®, then implies that the claimed limit exists and is
constant for v-almost all x € C, and hence also for u-almost all points in C.

We can now show that the order-two symmetric density exists.

THEOREM 4.8. For a hyperbolic Cantor set C as above, the symmetric order-two
density of u exists at py-almost all x € C and is constant almost surely: there is a
number D,(u) such that, for u-almost all x € C,

1 T
. Dz(u)=D2(C, x):=2“" ;l_l)l‘ulo‘ij; f(x, t)dt.

Proof. Take a sequence t,— such that # >¢* for all k. By the last
proposition there is a set K(z,) with v(K(t)) =1 and

1 T
-j 8, (x, t) dt— h(ty)
T )y

for x € K(t;). Let K=(), K(t). This has v-measure 1. Let x € K and fix ¢ >0
while taking ¢, large enough that kse ™% < ¢. Choose also Ty such that, for T > T,

1 T
7| gutr 0 dt=htw)| <
T Jo

We then have

—1 T —1 T
lim = | f(x,t)dt=lim f fu(x, ) dt
T 0 T—w T 0

T—x

1 T
<f‘j f.(x, t)dt + & (for some T >T;)
0

1 T
<7~j 8, (x, t) dt + 2e (by Proposition 4.6)
o

< h(tk) + 3e.
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Similarly we get
1 T
lim — f f(x, t)dt>h(t,) — 3¢
== T Jo

and so

lim = ff(x t)dt—hm jf(x t)dt‘<6s

T—x T

Letting £ — 0 shows that the limit

1
llm f (x, t)dt

T—o

exists. The limit is clearly equal to the limit of h(f,) as k—o, which is
independent of x. This proves the theorem.

CoRrROLLARY 4.9. The order-two density of the Gibbs measure v exists, and
satisfies

dv
DZ(V»' x) = El: D2(!“')J
for almost every x.
Proof. Apply Theorem 2.2.

THEOREM 4.10. For any point x € C that is periodic with respect to S, the
symmetric order-two density of u exists.

Proof.” If x is periodic under S, then g, (x, ¢) is periodic in ¢ so that the limit

T—o

1 T
lim T jo 8. (x, t) dt

exists. Essentially the same argument as that used above then shows that
“V [T f(x, t) dt converges as T — .

The proof of existence of right order-two density is more or less the same as
above. One defines a function f: CXR*—R by

B, x +e7)
fre n=Fr

so that the right order-two density is given by
1 T
(¢ =lim = [ 1 0,
T—w T 0

and then one works as above with intervals
Ao=[y,yt+e€), A,=[S"y,S"y +|DS"y|¢).

Proceeding just as in the symmetric case (Proposition 4.6), one gets uniform
estimates on |f; — g7 |. This leads to
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THEOREM 4.11. The right order-two density of u exists at p-almost all x € C and
is constant almost surely. For any point x € C that is periodic with respect to S, the
right order-two density of u exists at x.

We remark that except where the Cantor set has an obvious symmetry (the
middle-third set is an example) we do not yet know if the left and right order-two
densities are equal. This seems to be quite a delicate problem. Qur last result in
this section shows that the almost sure order-two density value can be obtained
from the order-two densities at periodic orbits.

THEOREM 4.12. Let B, = {x € C: x =5"(x), |DS"(x)| <A}. Then

1
Dy(C, D. A .
cardB,\x‘};A (C, x)— Dy(u) as A—

A similar statement holds for D% and D5,

One proves this by using the fact that

1
> 8, —>v as Ao
card B; 5,

in the weak topology (this is a consequence of a theorem of Bowen [5], and the
fact that the measure of maximal entropy for the flow ®, is equal to v times
Lebesgue measure on the fibres of M).

5. Zeros of Brownian motion and random walks

In this section we will see that the notion of order-two density makes sense
outside the narrow domain where it was defined in § 2. The examples we shall
consider are the zero sets of Brownian motion and the simple random walk.

For a typical path of the one-dimensional Brownian motion W(¢), as is well
known, the set of returns to zero

Cw={t=0: W(t)=0}

is (almost surely with respect to Wiener measure) topologically a Cantor set, i.e.
is homeomorphic to the middle-third set, and has Hausdorff dimension 3.
However the Hausdorff 3-dimensional measure of Cyy is zero. So instead one uses
a more general kind of measure, which gives positive finite measure on the set: in
the definition of Hausdorff measure given in §2 one replaces the function
@4(¢) =t by the function

@(t) = (2t log log(1/1))?

(for 0<t<1/e). The resulting measure is known as Hausdorff p-measure, and
will be denoted H®.
The order-two density for Cy, at x is, therefore, defined to be
1 (TH®B(x,e™)NC
Dy(Cy, x) = lim = (Bx, )N Cw)

T
Tow T 0 22e 2

when this limit exists.
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As in the proof of the existence of order-two density for the middle-third
Cantor set, the proof here uses the ergodic theorem applied to a scaling flow on
path space. The strategy of the proof is as follows: compare @-measure with P.
Levy’s local time; compare local time with the maximum process of Brownian
motion; then use ergodicity plus the strong Markov property to prove the
theorem. Ergodicity for the scaling flow of the maximum process will follow from
ergodicity of the scaling flow of Brownian motion.

For the case of random walk zeros, the proof is based on a dynamical
interpretation of the almost-sure invariance principles of probability theory, given
in [15). There it is proved that having an almost-sure invariance principle of rate
o(t2) is equivalent to having a joining such that the paths are forward asymptotic
in the scaling flow. Here we need to use two almost sure invariance principles,
one for the random walk and one for its local time. Combining these allows us to
pass the results for Brownian zeros over to the random walk.

A good introductory reference on Brownian motion is [23]; see also
(17,19, 39, 22].

Scaling flow

Let Q= {f: R*—R| fis continuous and f(0) = 0}, with the topology J given
by uniform convergence on compact sets, and with B the Borel o-algebra
generated by 7. Define the scaling maps A,: Q—Q of dimension d by
(Af)(®) =f(at)/a?, for a>0, and define the scaling flow 7, 0n Q by 7, =A
(where s € R). For this section we now fix d = 1, so

(wf)O) =f(et)/e™.

Note that 7,01, = 1,,,, thatis, 7, is a flow. We let v denote Wiener measure on
Q, and write %, for the v-completion of 4. We recall from [14, 15] that I makes
Q into a Polish space (that is, a complete separable metric space) and that T,
acting on (R, %4,, v) is a Bernoulli flow of infinite entropy (on a Lebesgue space).
In particular this is an ergodic, and mixing, flow.

exp(s)

@-measure
The measure H? defined above has the following important scaling property:
for any a >0, and any H ®-measurable set E,

H®(aE) = atH?(E).

This is 1mmed1ately seen from the definition of H® and the fact that
hm,_,o @(at)/ p(t) = a? (=a?), in other words since ¢(t) is ‘regularly varying at the
origin’ [9, p. 18]. We note that, more generally, such measures satisfy the
conformal transformation property (see §4), by the same argument used for
Hausdorff measure; we will not however need that stronger version here.

The first goal of this section is to prove the existence of, and evaluate, the
1-dimensional order-two density of H® on Cy, at H®-almost all x € C\y. Since H®
has the above scaling property and since the zero sets of a Brownian path are
preserved by dilation (in the sense that the set aCy, for a fixed a > 0 is the zero set
of another path (A,W)(t)=(1/Va)W(t/a)), one guesses that the average
behaviour of mass around a point is governed by the function ¢? rather than by
@(t). This guess is borne out by our result, that is, that the 3-dimensional
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order-two density of H® on Cy, for H®-almost all x € Cy, exists and is positive
and finite. .

We comment briefly on a basic difference between the geometry of the
hyperbolic Cantor sets of § 3 and that of a Brownian zero set. There the average
and extremal behaviours of mass in a ball of radius ¢ were governed by the same
function, t*. Here, the average behaviour hovers around ¢4, while the asymptotic
upper envelope, for right density, is the larger function @(¢). To prove this one
uses Khinchine’s law of the iterated logarithm. For symmetric density, an upper
envelope of cg(t) for some constant ¢ between V2 and 1 can be deduced from a
purely geometric theorem of Wallin [38]. The point we wish to make here is that
this extremal behaviour occurs infinitely often as t— 0, but so rarely that it does
not affect the time average which defines the order-two density. '

Local time
P. Levy’s local time of a Brownian path W(¢) € Q is the function Ly: R*—>R™*
defined by

.1
Ly(t)= il—T) e fo Xi~e.e(W(s)) ds

(when this limit exists). Some background references are [11, 39, 22, 32].
We first prove these flow-invariant versions of two basic theorems concerning
local time.

THEOREM 5.1. There is a 1,-invariant set, Q, c Q with v(Q,) =1, such that for
W e Q,, Ly(t) is defined (for all t =0) and is continuous (in t). Furthermore, the
function W — Ly, from Q, to Q is (B,, B)-measurable.

Proof. First, the fact that Ly, is v-almost surely defined and is continuous is a
theorem of Lévy; see, for example, [11] for the proof. Next we note that the
definition of local time is scaling invariant. That is, if L exists for some W € Q,
then the limit for 7, (W) also exists and L.y = 7,(Lw). (We call this the scaling
property of local time). Finally, we check measurability. Let & be the algebra of
finite cylinder sets in Q; it is shown in [11] that W — L, is (%,, ) measurable.
This implies (%,, B)-measurability because F generates B in- Q (since a
continuous path is determined by its values on a dense set of times).

Local time Ly is related to the Hausdorff measure of Cy, by the next theorem,
which is a corollary of work by Taylor and Wendell [37]), Hawkes [20] and
Perkins [28].

THEOREM 5.2. There exists a t,-invariant set Q, c Q, of v-measure 1 such that
for any W € Q,, forall t =0,
Ly(t)=H®(Cw N0, t]).
Proof. That the set Q, on which the above property holds has v-measure 1
follows from Hawkes’ and Perkins’ refinements of Taylor and Wendell’s theorem.

It suffices then to show that Q, is flow-invariant. For W € Q,, we will show that
A, (W) e Q,. Now given that for all ¢,

Ly () =H*(Cw N[0, 1]),
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we want to verify that for any a >0,
La,owy(t) = H*(Cp,wy N[0, £]) for all ¢.
We have
La,om(0) = (Au(Lw))()
= A (H"(Cw N[0, t])) = H*(Cyw N[0, at])/at
= H%@™'Cy N[0, at]) = H(Caowy N [0, 1)),

where the first e'quality is the scaling property of local time and the next to last
uses the scaling property of H®.

Now let v, denote the Borel measure on Q which is the image of v under the
(measurable) map W~ Ly,. Let %, denote the completion of B. We call
(Q, B, v., T,) the scaling flow for local time.

We remark that the scaling flow for local time is a Bernoulli flow. One sees this
as follows. As noted above, L.y = 7,(Lw). Therefore the map WL, is a
homomorphism of flows (it is, by definition of v,, measure-preserving). Thus
since (as noted at the beginning of this section) the scaling flow for W is
Bernoulli, one knows, by Ornstein’s theory [26], that this factor flow is also
Bernoulli.

We shall show that D5(Cy, x) = V(2/m) for H®-almost every x and v-almost
every W € Q. First we need: '

DEFINITION. For W € Q write

My () = sup W(s).
5s€[0,¢]
This is the maximum process of Brownian motion.

Note that the map W — My, is continuous (since on any compact interval [a, b],
IW; — Wallo.p) < € implies ||My, — My, |I..»)<€) and hence certainly (%,, B)-
measurable. Thus v pushes forward to a Borel measure v,, on Q.

In order to calculate the value of D,, we will use a theorem of Lévy which
identifies the local time process as the maximum process of a different copy of
Brownian motion. A rigorous statement of this is:

THEOREM 5.3. For any Borel set A c Q,

vm(A) = v (A).

Proof. We begin with the statement usually given in the probability literature:
that the two processes are equal in distribution (or in law), which means exactly
that vy, = v, on the collection & of finite cylinder sets (see [11] or [22] for a
proof). But this immediately extends to the Borel sets since % generates & in the
space Q.

In probability terminology one can also express this in the following way: given
two copies W and W of Brownian motion, they can be redefined to live on the
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same probability space (Q, #), such that for v-almost every e, with
W(t) = W(w, t) and W(t) = W(w, t), we have that Ly, = My, This is therefore a
close analogue of Révész’ almost-sure invariance principle for random walk local
time (Theorem 6 below).

To help explain this correspondence (between v,, and v,) we note that one can
see from the proof of (8.7) in [11] how it arises from an underlying isomorphism
of Wiener space with itself, which is given by an explicit formula. Here sgn(-) is
the sign function, taking the values, +1, —1, and 0, and the integral is a stochastic
integral.

THEOREM 5.4. The map
W W(t) = — j sen(W(s)) dW(s)
0

is defined for v-almost every W € Q and is an isomorphism of (Q, v, t,) with itself
(in other words there are flow-invariant sets of full measure such that the map
W W is one-to-one surjective and measure-preserving). Furthermore, the
following diagram commutes and is t,-invariant:

Wr— W

N/

We can now prove the existence of order-two density for the Brownian zero
sets.

THEOREM 5.5. For v-almost every W € Q, one has that for H®-almost every
x € Cy the right and left and the symmetric 3-dimensional densities exist and equal
V(@2/x), V(2/m) and 2V (1/ ) respectively.

Proof. One knows explicitly the distribution of the maximum process (for a
good account see [19]); it is half of a Gaussian, i.e. has probability density
function

2
V) ©

This has expected value

2 for x=0, and O for x <O.

2 T en g, _ 2
——\/(Zn)Lxe dx—-\/n.

If we now define a function F: Q— R to be evaluation (of the maximum process)
at time 1,

F(f)=fQ),

then Fis in L,(Q, vp) and has expected value

Q J
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Now since (R, v, t,) is an ergodic flow, so is its homomorphic image (R, vy, ;)
(under the map W — W,,). The Birkhoff ergodic theorem for flows thus implies
that for vy-almost every path M € Q,

(12) 11m fF(r(M))ds \/

The set of M € Q for which this holds meets the set for which My, = Ly in a set of
full measure. Hence (12) holds for v,-almost every L which means that

Jm(cwn[o e™]) _\/3
T—>°<>T —si2 - T

for v-almost every W. This says that for a set of v-measure 1, the right order-two
density of Cy exists at zero and equals V(2/r).

To extend this proof of the existence of D5 at zero to give existence at
H®-almost all x € Cy, we will use the strong Markov property of Brownian motion
plus a Fubini’s Theorem argument.

_For a fixed WeQ and t=0, let t(t)=inf{se R*: Ly(s)=¢}. This is a
stopping time, that is, it only depends on the path up to time t(¢). Therefore by
the strong Markov property, Brownian motion begins anew at time t(¢) for each
t. Hence for every fixed ¢, the right order-two density at the point x = t(¢) exists
v-almost surely by what we have proved above for x = 0. Note that t is an inverse
of Ly, that is (for v-almost every W),

Ly(t(s))=s forallseR™.

Note also that since H? of the zero set Cy gives local time, the image of H?|,,
under Ly, is Lebesgue measure on R™.

Now let Q; denote the subset of v-measure 1 in Q such that the right order-two
density at zero exists and equals V(2/7). Without loss of generality we assume
that Q; is a Borel set; we can do this since %, -measurable sets are exactly those
whose inner and outer measures are equal [31], so the set contains a Borel set of
full measure. We need this to be a Borel set for a technical reason given below.

Define, for s =0, W,(¢) = W(s +¢) — W(s), and set

AT = {(t, W) € [O, T] X Q¢ W‘(,)(') € 93}.

We claim that Ay is %, X %,-measurable, where m is Lebesgue measure. This is
because the maps a: R* X Q—>Q and f: R* X Q—R™* x Q, defined by

a: (s, W)»W,(:) and B: (tr, W)—(t(t, W), W),

are respectively jointly continuous and Borel measurable. Hence since Q, is a
Borel set, A7 = (a°B)™(Q;) is B,, X B,-measurable.

Now for each fixed te[0, T] the set {W:(t, W)e A;} has v-measure 1.
Therefore Ay has v X m-measure T by Fubini’s Theorem [31] (this is why we
checked the measurability of A, above). Also by Fubini’s theorem, for v-almost
every fixed W, the set {t: (t, W)e Ar} has Lebesgue measure 7. That says
exactly that for H ®-almost every x € [0, t(T)], the right order-two density of C,
at x converges (since t pushes Lebesgue measure forward to H ? restricted to Cy ).
This is true for each T e R* and so we have finished.

Convergence for the left order-two density is a consequence of the time
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symmetry for Brownian motion (that is, if W(¢) is Brownian motion on R with
W(0) =0, then W(¢)— W(—1¢) is an isomorphism of the space (Q, v)). Hence the
left and right order-two densities exist simultaneously and are equal. Therefore
the symmetric order-two density also exists on a set of v-measure 1, and (by (3)
of §2) equals 2V(1/n).

The simple random walk
We now turn our attention to the zero set of a simple random walk. The set-up
is much like that in [15].

DerINTIONS. Let X; (i = ..) be a sequence of i.i.d. random variables
taking values 1 with probablllty (3,3). Define $,=0 and S, = X;; this
sequence of partial sums is commonly known as the simple random walk
By the polygonal random walk we mean the functions S(¢) in continuous path
space :

Q={f: R*>R| f is continuous and f(0) = 0}
such that S(n) =S, for n e N and is linear in between. We write S = (S, Sy, ...)
for the sequence of partial sums, and also for the path in Q it determines. The
random walk gives a Borel probability measure on Q which we call y, the
measure of the polygonal random walk.

The zero set of the random walk § is the set

Cs={n: §,=0)}.
We define
N, = N,(Cs) =card{k: 0<k=<n, S, =0}

and define the maximum process

and interpolate linearly to consider M as an element of Q.

We need the following theorem of Révész, which is a discrete time analogue of
Theorem 4.3.

THEOREM 5.6 [30]. For the simple random walk S,, given any &£>0 the

processes N, and M, can be redefined to live on the same probability space, so that
for almost all w in that space,

IN,(0) = M, ()] = o(n*").
We are now ready to prove our theorem.

THEOREM 5.7. For y-almost every path S of the simple random walk, the
order-two -dimensional density of its zero set exists and equals V(2/ ).

Proof. We are to show that for N, = N,(Cs), for y-almost every S,

lim

2
Mlogxnﬁlm—\/;
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Now as at the start of the proof of Theorem 5, let F: Q— R denote evaluation at
time 1, and (Q, v)) the maximum process of Brownian motion. Using the
Birkhoff ergodic theorem with negative time, we have that v,,-almost surely,

(5.1) lim % J; F(r_,(M)) ds = \/ %

By Strassen’s almost-sure invariance principle ([34]; see also [15]), S(¢) and W(¢)
can be redefined to live on the same space so that for almost every w in that space
|W(w, t) — S(w, £)] = o(t2).

Now notice that this implies the same estimate for the associated maximum
processes. That is, for almost every w,

(5.2) lim |My, (t) — Ms(2)|/t2 = 0.

Now notice that (5.1) can be written as:

1 (™M d 2
lim ——f Mwl(y)dy _ \/—.

T—=log T y% y T

From (5.2) one immediately sees that this is also true for Mg, and hence for

y-almost every M (technically speaking, one uses here Fubini’s theorem on the

joining given by the a.s.i.p. and the fact that Q is a Lebesgue space; a basic

theorem of Rochlin implies this—see, for example, [14, 15] for related details).
From the above, it easily follows that

lim —— 3 M1 \/-2-.

N—wlog N (2 n: n T

Finally by Révész’ theorem, the same is true for N,, and we have finished.

RemARk. Here is a more picturesque but less direct way of looking at the
above proof. As in [15], a o(f?) a.s.i.p. is equivalent to the two paths being
forward asymptotic in the scaling flow. Hence since |M,, — Ms| = o(t?) and
|Ms — N| = o(t?), we have that there exists a joining of (Q, v,,) and (K, y) such
that My, and N are forward asymptotic in the scaling flow. Hence the ergodic
averages of F starting at these two points in Q agree.
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