Disjoint direct product decomposition

C. Jefferson, M. Chang (2022)

Mainak Roy IIT Kharagpur 2.9.2024

The problem to solve

Theorem

Let $H \leq \mathfrak{S}_n$ be a permutation group with orbits $\Omega_1, \ldots, \Omega_k$. There exists a unique finest partition P of the orbits such that we can write ź

$$
H=\prod_{c\in P}H|_c
$$

where $H|_c$ is the projection of H onto the set of points in the union of orbits in c.

Goal

Find an efficient algorithm to find the partition P.

Remark: All groups from here on are permutation groups.

Theorems, definitions, and stuff

Definition

A group K is called a *subdirect product* of $G = G_1 \times G_2 \times \ldots \times G_k$ if the projection maps $\rho_i: K \rightarrow G_i$ are surjective.

Theorem

Let H be a subdirect product of $G_1 \times G_2$. $H = G_1 \times G_2$ iff $1 \times G_2 \leq H$.

Proof

Forward implication is obvious.

Backward implication: $\forall (g_1, g_2) \in H, \exists (1, g_2) \implies (g_1, 1) \in H$. Now, $\rho_1(H) = G_1 \implies G_1 \times 1 \leq H$. $H = \langle G_1 \times 1, 1 \times G_2 \rangle$, hence proved.

Theorems, definitions, and stuff

Theorem (Goursat's lemma)

Let H be a subdirect product of $G = G_1 \times G_2$. Let $\rho_i : G \to G_i$ for $i \in \{1, 2\}$ be the projection maps. Then, the following hold:

- 1. Let $N_1 := \rho_1(Ker(\rho_2))$ and $N_2 := \rho_2(Ker(\rho_1))$. Then $N_1 \leqslant G_1$ and $N_2 \leqslant G_2$.
- 2. θ : $G_1/N_1 \rightarrow G_2/N_2$ given by $N_1h_1 \rightarrow N_2h_2 \forall (h_1, h_2) \in H$ is an isomorphism.
- 3. (asymmetrical version) $\theta : G_1 \rightarrow G_2/N_2$ given by $h_1 \rightarrow N_2h_2 \forall$ $(h_1, h_2) \in H$ is a surjective homomorphism.

Lemma

Let T_2 be a transversal of N_2 in G_2 . Let $\hat{\theta}: G_1 \rightarrow T_2$ be given by $\hat{\theta}(g_1) = t_2$ if $\theta(g_1) = N_2t_2$. Let $\mathcal{G} = \{((g_1, \hat{\theta}(g_1)) | g_1 \in G_1\}.$ Then $H = \langle \mathcal{G}, 1 \times \mathcal{N}_2 \rangle$.

Notation

- ► Let Δ be a union of some *H*-orbits. $h|_{\Delta}$ for $h \in H$ is the restriction of h to the points in Δ . $H|_{\Delta} = \{h|_{\Delta} | h \in H\}.$
- \blacktriangleright Fix an ordering of the orbits of $H \leqslant \mathfrak{S}_n$, say $\Omega_1, \Omega_2, \ldots, \Omega_k$. Let $G_i = H|_{\Omega_i}$. H is definitely a subdirect product of $G = G_1 \times \ldots \times G_k$
- ► Let ρ_i : $G \to G_i$ for $i \in \{1 \dots k\}$ be given by $g \to g|_{\Omega_i}$.
- ► For $I = \{i_1, \ldots, i_r\}$ \subseteq $\{1 \ldots k\}$, let $P_I : G \rightarrow H|_{\bigcup_{i \in I} \Omega_i}$ be given by $g \to g|_{\Omega_{i_1}} g|_{\Omega_{i_2}} \dots g|_{\Omega_{i_r}}$.
- ► Let $\Delta_i = \bigcup_{j \leq i} \Omega_j$.
- Elet $\overline{i} = \{1 \dots i\}.$
- ► Let $H_{(\Delta)}$ be the *pointwise stabilizer* subgroup of H of the points in ∆.

An iterative algorithm

We will consider the orbits one by one and at each step, we will maintain the current partition of the orbits such that we have a finest direct product decomposition.

Definition

At the end of the i-th step, we should have the finest direct product decomposition of $P_{\overline{i}}(H)$, which is \mathcal{P}_{i} Define $P_i = \langle C_1|C_2| \dots |C_r \rangle$ to be a set partition of \overline{i} , such that

$$
P_{\overline{i}}(H) = P_{C_1}(H) \times P_{C_2}(H) \times \ldots \times P_{C_r}(H)
$$

Now, we will consider $P_{\overline{i+1}}(H)$ to be a subdirect product of $P_{\overline{i}}(H) \times \rho_{i+1}(H)$.

An iterative algorithm

We use points 1 and 3 of Goursat's lemma, and the lemma following it. We have the following:

Proposition

- \blacktriangleright Let $\rho_1: P_{\overline{i+1}}(H) \to P_{\overline{i}}(H)$. Let $\rho_2: P_{\overline{i+1}}(H) \to \rho_{i+1}(H)$.
- ► Let $N_{i+1} = \rho_2(Ker(\rho_1))$. Note that $Ker(\rho_1) = P_{\overline{i+1}}(H_{(\Delta_i)})$. Also note that $\rho_2(P_{\overline{i+1}}(H_{(\Delta_i)})) = \rho_{i+1}(H_{(\Delta_i)})$.
- ► So, $N_{i+1} = \rho_{i+1}(H_{(\Delta_i)})$, and $N_{i+1} \leq \rho_{i+1}(H)$.
- \blacktriangleright θ_i : $P_{\overline{i}}(H) \rightarrow \rho_{i+1}(H)/N_{i+1}$ given by $h_1 \rightarrow N_{i+1}h_2 \ \forall$ $(h_1, h_2) \in P_{\overline{i+1}}(H)$ is a surjective homomorphism.
- Elet T_{i+1} be a transversal of N_{i+1} in $\rho_{i+1}(H)$. Let $\hat{\theta}_i : P_{\overline{i}}(H) \to T_{i+1}$ be given by $\hat{\theta}_i(h_1) = t$ if $\theta_i(h_1) = N_{i+1}t$. We require that $1 \in T_{i+1}$.
- ► Let $G = \{ ((h_1, \hat{\theta}(h_1)) | h_1 \in P_{\overline{i}}(H) \}$. Then $P_{\overline{i+1}}(H) = \langle \mathcal{G}, 1 \times N_{i+1} \rangle.$

An iterative algorithm

Claim

At the i-th step, let $S_i = \{ \mathcal{C}_j | 1 \leqslant j \leqslant r, P_{\mathcal{C}_j}(H) \times 1_{\bar{\wedge} \mathcal{C}_j} \subsetneq \mathit{Ker}(\theta_i) \}.$ Then the finest disjoint direct product decomposition of $P_{\overline{i+1}}(H)$ is:

$$
P_{\overline{i+1}}(H) = P_C(H) \times \prod_{C_j \notin S_i} P_{C_j}(H)
$$

where $C = \{i + 1\} \cup \bigcup_{C_j \in S_i} C_j$.

So, at each step, we need to find the set S_i .

Determining S_i (part 1. finding θ_i)

We will compute $\theta_i(P_{\mathcal{C}_j}(H) \times 1_{\bar{\wedge} \zeta_j}).$ Let X be a generating set for H Then:

$$
\theta_i(P_{C_j}(H) \times 1_{\bar{\wedge} C_j}) = \{N_{i+1}\rho_{i+1}(x) | x \in X, P_{\bar{i}}(x) \in P_{C_j}(H) \times 1_{\bar{\wedge} C_j}\}
$$

We don't want to have to loop over all of X for every $\mathit{C}_{j}.$ So we have to choose a generating set in a smart way.

Conjecture

For each i, \exists a generating set X_i for H such that $\forall x \in X_i$, it $P_{\overline{i}}(x)\neq 1$ then \exists a unique C_j such that $P_{\overline{i}}(x)\in P_{C_j}\times 1_{\overline{i}\setminus C_j}.$

Then:

$$
\theta_i(P_{C_j}(H) \times 1_{\bar{j} \setminus C_j}) = \{N_{i+1}\rho_{i+1}(x) | x \in X_i, P_{C_j}(x) \neq 1\}
$$

Now we only have to loop over X_i once for each i.

Interlude: Bases and strong generating sets

- A base for a group H is a set of points $B = [\beta_1, \ldots, \beta_m]$ such that $H_{(B)} = id$.
- ▶ A base defines a sequence of groups $H = H^{[1]} \geqslant \ldots \geqslant H^{[m+1]} = \text{id},$ where $H^{[i+1]} = \text{Stab}_{\beta_i}(H^{[i]}).$ This is called a stabilizer chain.
- Any element $h \in H$ is uniquely identified by its base images $[\beta_1^h, \ldots, \beta_m^h].$
- \triangleright A strong generating set for a group H with respect to the base B is a generating set of H such that $H^{[i]} = \langle X \cap H^{[i]} \rangle.$
- ▶ All of the above can be efficiently found by the Schreier-Sims algorithm.

Interlude: Sifting

The sifting procedure takes a base B for H and a permutation $g \in \mathfrak{S}_n$ and does the following:

- Elet $H^{[i]}$ be the stabilizer chain defined by B.
- Iterate from 1 to m. Let T_i be a transversal of $H^{[i+1]}$ in $H^{[i]}$.
- Attempt to find an element $t_i \in T_i$ such that $\beta_i^{t_i} = \beta_i^g$ $\frac{1}{i}$. If found, set $g := g t_i^{-1}$. Otherwise, terminate. Also terminate when all i have been considered. The final result \boldsymbol{g}' is called the *siftee* of g by B .

▶ $g = g'h$ for some $h \in H$.

Notice that if $g \in H$, then the g' is the identity permutation. Alternatively, if the base images of g' correspond to the identity of H, then the restriction of g' to H is the identity.

Determining S_i (part 2. is $\rho_{i+1}(x) \in N_{i+1}$?)

We will pick an *orbit-ordered* base B for H . Let Y be the associated strong generating set for H . Then notice that, for each $H_{(\Delta_i)},$ $\exists j_i$ such that $B_i = [\beta_{j_i}, \beta_{j_i+1}, \ldots, \beta_{m}]$ is a base for $H_{(\Delta_i)}.$

Proposition

1.
$$
N_{i+1} = \langle \rho_{i+1}(y) | y \in Y \cap H_{(\Delta_i)} \rangle
$$
.

2. Let y' be the siftee of $y \in Y$ by B_i . $\rho_{i+1}(y') = 1$ iff $\rho_{i+1}(y) \in N_{i+1}$.

Proof.

 $B_i = [\beta_{j_i}, \ldots, \beta_m]$ is a base for $H_{(\Delta_i)} . B_{i+1} = [\beta_{j_{i+1}}, \ldots, \beta_m]$ is a base for $H_{(\Delta_{i+1})}$. Then, since elements of a group are in bijection with the base images, we can say $B = [\beta_{j_i}, \ldots, \beta_{j_{i+1}-1}]$ is a base for $\rho_{i+1}(H_{(\Delta_i)}) = N_{i+1}$. Assuming $\rho_{i+1}(y') = 1 \implies$ all base images of y' in B correspond to the identity. Furthermore, $\rho_{i+1}(y) = \rho_{i+1}(y')p$ for some $p \in N_{i+1}$. Therefore, $\rho_{i+1}(y) \in N_{i+1}$.

Determining X_i

To make the test work, we must make sure that the X_i are all strong generating sets with respect to B.

Proposition

Let $X_1 = a$ strong generating set of H with respect to B. Then

$$
X_{i+1} = \{x | x \in X_i, x \in H_{(\Delta_i)}\} \cup \{sift(B_i, x) | x \in X_i, x \notin H_{(\Delta_i)}\}
$$

is such that:

- 1. X_{i+1} is a strong generating set for H with respect to B.
- 2. $\forall x \in X_{i+1}$, if $P_{\overline{i+1}}(x) \neq 1$ then \exists a unique C_j such that $P_{\overline{i+1}}(x) \in P_{C_j} \times 1_{\overline{i+1} \setminus C_j}.$

We have determined S_i and X_i for all i . So we are done.

Algorithm 1 disjoint direct product decomposition

Require: Group H with orbits $\Omega_1, \ldots, \Omega_k$

Ensure: P is the finest partition of H -orbits

- 1: $\mathcal{P} \leftarrow$ disjoint_set $(1 \dots k)$
- 2: B ← concatenate($\Omega_1, \ldots, \Omega_k$)
- 3: $X \leftarrow$ strong generating set(B)
- 4: for $i = 1$ to $k 1$ do
- 5: compute_next_partition (\mathcal{P}, X, B)
- 6: $X \leftarrow$ compute_next_sgs(X, B)
- 7: end for

The final algorithm

Algorithm 3 compute next sgs

Require: a strong generating set X_i and the base B

```
Ensure: a strong generating set X_{i+1}
```
- 1: $X_{i+1} = \{\}\$
- 2: for $x \in X_i$ do
- 3: if $\textsf{sift}(B_i, x) \neq 1$ then

4:
$$
X_{i+1}
$$
.append($slf(x, B_i)$)

- 5: else
- 6: X_{i+1} .append (x)
- $7[°]$ end if
- 8: end for
- 9: return X_{i+1}

The algorithm is available in Sage as a method of PermutationGroup named disjoint_direct_product_decomposition. The algorithm works in time polynomial in $n \cdot |X|$.

References

[1] M. Chang, C. Jefferson, Disjoint direct product decompositions of permutation groups, Journal of Symbolic Computation, Volume 108, 2022, Pages 1-16, ISSN 0747-7171, https://doi.org/10.1016/j.jsc.2021.04.003. arxiv:2004.11618