
UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences
École Doctorale STIC

THÈSE
pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice-Sophia Antipolis

Discipline: Informatique

présentée et soutenue par

Ignacio ARAYA

Exploitation des sous-expressions communes et
de la monotonie des fonctions pour

les algorithmes de filtrage sur intervalles
(Exploiting Common Subexpressions and Monotonicity of Functions for

Filtering Algorithms over Intervals)

Thèse dirigée par Bertrand NEVEU et Gilles TROMBETTONI
et préparée à l’INRIA Sophia-Antipolis, projet COPRIN

Soutenue le 3 mars 2010

Rapporteurs:
M. Benhamou, Frédéric Professeur à l’Université de Nantes
M. Jaulin, Luc Professeur à l’ENSIETA, Brest
M. Michel, Laurent Professeur associé à l’Université du Connecticut, USA

Jury:
M. Benhamou, Frédéric Professeur à l’Université de Nantes
M. Jaulin, Luc Professeur à l’ENSIETA, Brest
M. Neveu, Bertrand Ingénieur en chef des Ponts et Chaussées, ENPC, INRIA
M. Rueher, Michel Professeur à l’Université de Nice Sophia Antipolis
Mme Sam-Haroud, Djamila Professeur assistant à l’EPFL, Lausanne
M. Trombettoni, Gilles Mâıtre de conférences à l’Université de Nice Sophia Antipolis

Abstract

This thesis deals with the solving of nonlinear systems of equations/constraints by interval-
based methods. We present four contributions, all of them aiming at improving constraint
propagation algorithms. Constraint propagation contracts the variable domains of individual
constraints with a revise procedure and propagates the changes to the rest of the system.

Our first two contributions are related to monotonicity of functions and to the dependency
problem that occurs when a variable appears several times in a function f . In this case,
interval-based methods can generally compute only an approximation of the exact range of
f . In the same way, these methods cannot contract optimally the variable domains related
to an individual constraint. First, we propose a new Mohc-Revise algorithm that computes
the optimal contraction of variables (w.r.t. an individual constraint) when the function is
monotonic. The second contribution is an Occurrence Grouping technique that transforms a
function f into an equivalent function fog, such that the range of fog can be better approxi-
mated by using the monotonicity property.

The third contribution is related to the common subexpression elimination technique (CSE).
CSE is a well-known technique mainly used in code optimization. It basically consists in
replacing each subexpression g(X) shared by two or more expressions by an auxiliary variable
v and adding the new constraint v = g(X). In this thesis we prove that the use of CSE
techniques in interval analysis as a preprocessing can improve the filtering power of constraint
propagation algorithms.

Finally, we propose a new partial consistency focusing on well-constrained subsystems of size
k. Contracting these subsystems can bring additional filtering compared to global contractors
(like interval Newton) and revise procedures used in constraint propagation.

Résumé

Cette thèse porte sur les méthodes d’intervalles pour la résolution de systèmes de contraintes
non linéaires. Nous présentons quatre contributions, visant toutes à améliorer les algorithmes
de propagation de contraintes. Ces algorithmes contractent les domaines des variables d’une
contrainte avec une procédure de révision (revise) et propagent les modifications dans le reste
du système.

Nos deux premières contributions sont liées à la monotonie des fonctions et au problème de
dépendance qui se produit quand une variable apparâıt plusieurs fois dans une fonction f .
Dans ce cas, les méthodes d’intervalles ne peuvent généralement calculer qu’une approximation
de l’image de f . De même, ces méthodes ne peuvent pas contracter de manière optimale les
domaines des variables impliquées dans une contrainte.

Premièrement, nous proposons un nouvel algorithme Mohc-Revise qui calcule la contraction
optimale des variables (par rapport à une contrainte individuelle) quand la fonction est mono-
tone. La seconde contribution de regroupement d’occurrences (Occurrence Grouping) est une
technique qui transforme une fonction f en une fonction équivalente fog, telle que l’image de
fog peut être mieux approximée en utilisant la monotonie de fog.

La troisième contribution est liée à la technique d’élimination de sous-expressions communes
(CSE). CSE est une technique bien connue principalement utilisée en optimisation de code.
Elle consiste essentiellement à remplacer chaque sous-expression g(X), partagée par deux
ou plusieurs expressions, par une variable auxiliaire v et à ajouter la nouvelle contrainte
v = g(X). Dans cette thèse, nous prouvons que le prétraitement par des techniques de CSE
peut améliorer le filtrage des algorithmes de propagation de contraintes.

Enfin, nous proposons une nouvelle consistance partielle basée sur les sous-systèmes bien-
contraints de taille k. Contracter ces sous-systèmes peut apporter du filtrage supplémentaire
par rapport aux contracteurs globaux (comme Newton intervalles) et par rapport aux procé-
dures de révision utilisées dans la propagation de contraintes.

Acknowledgements

First of all, I would like to express my gratitude to my supervisors and friends, Bertrand Neveu and
Gilles Trombettoni, whose expertise and understanding have helped me to a great extent in completing
this thesis and becoming a better researcher. I have also appreciated their availability, knowledge and
assistance in writing articles, this thesis and so on.

I would like to thank Frédéric Benhamou, Luc Jaulin and Laurent Michel for having accepted to be
the reviewers of my thesis. Their comments and remarks have been significant for improving the last
version of this thesis. I would also like to thank Michel Rueher and Djamila Sam-Haroud for accepting
to be part of my thesis jury.

A very special thanks goes to all the members of the COPRIN project, in particular Jean-Pierre
Merlet for having accepted me in his team. His experience and remarks have been useful during my
stay. Thanks also go to the other members of the team (David Daney, Odile Pourtallier, Yves Papegay,
Julien Hubert, Raphaël Pereira, Mandar Harshe, Guillaume Aubertin, Christine Claux) for having made
pleasant the three years I have spent at INRIA.

I would like to thank the Chilean (and Hispanic) people who were always ready to help a compatriot
in times of difficulty. Special thanks go to Carlos Grandón, Marcela Rivera, Cristian Ruz and Gabriela
Gallegos.

I would also like to thank my parents for the support they provided me through my whole life. Finally,
I must acknowledge my wife, Marian, for her support, encouragement and love.

This work was partially supported by the National Commission for Scientific and Technological Re-
search (CONICYT), Chile.

iv

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Organization of the document . 4

I State of the Art 7

2 Interval Arithmetic 9

2.1 Basic notions . 10

2.1.1 Intervals . 10

2.1.2 The hull operator . 11

2.1.3 Image of intervals . 12

2.2 Interval Arithmetic . 13

2.2.1 Binary operators . 13

2.2.2 Unary operators . 14

2.2.3 Evaluation of interval expressions . 15

2.2.4 Interval gradient computation . 15

2.2.4.1 Symbolic differentiation . 16

2.2.4.2 Automatic differentiation . 16

2.2.5 Interval Hessian matrix computation . 18

2.2.6 Time complexity of interval evaluation and automatic differentiation 18

2.2.7 Extended interval arithmetic . 19

2.2.8 Intervals and floating point numbers . 19

2.3 Properties of interval arithmetic . 19

2.3.1 Conservativeness . 19

2.3.2 Non-optimal evaluation . 20

2.3.3 Dependency problem . 20

2.4 Interval extensions of real functions . 21

2.4.1 The natural extension . 23

2.4.2 Monotonicity-based extensions . 24

2.4.3 The Taylor extension . 27

2.4.4 The Hansen extension . 30

2.4.5 Symbolic-based extensions . 30

2.4.6 Combining extensions . 33

3 Intervals for solving Systems of Equations 35

3.1 Solving systems of constraints: the classical interval-based strategy 36

3.2 Filtering/contraction algorithms . 38

v

CONTENTS

3.2.1 Operators from interval analysis . 38

3.2.1.1 Gauss-Seidel method . 40

3.2.1.2 Preconditioning . 41

3.2.1.3 The Krawczyk operator . 42

3.2.1.4 Kantorovich’s theorem . 42

3.2.2 Linear relaxation . 43

3.2.3 Constraint propagation algorithms . 44

3.2.3.1 Arc-consistency . 45

3.2.3.2 Hull-consistency . 45

3.2.3.3 Hull-consistency of primitive constraints 46

3.2.3.4 The algorithm HC4-Revise . 49

3.2.3.5 The Box-Revise algorithm . 50

3.2.3.6 Other filtering techniques for enforcing hull-consistency 51

3.2.4 Strong consistency algorithms . 54

3.2.4.1 The 3B algorithm . 54

3.2.4.2 The 3BCID algorithm . 56

3.2.5 Global Hull Consistency and the locality problem 57

3.3 Splitting Algorithms . 58

3.3.1 Variable selection . 59

3.3.2 Value selection . 60

3.4 Other tools related to interval-based methods . 60

3.4.1 Common subexpression elimination . 60

3.4.1.1 A DAG representation of the system . 61

3.4.2 Combining constraints . 62

3.4.3 The IBB algorithm . 63

3.5 Interval-based solving tools . 65

3.6 Other research fields related to intervals . 65

3.7 Conclusion . 67

II Contributions 69

4 An Algorithm Exploiting Monotonicity 73

4.1 Introduction . 73

4.2 The MOnotonic Hull Consistency algorithm . 74

4.2.1 The MinMaxRevise procedure . 76

4.2.2 The MonotonicBoxNarrow procedure . 77

4.2.3 The LeftNarrowFmax procedure . 77

4.3 Advanced features of Mohc-Revise . 79

4.3.1 The user-defined parameter τmohc and the array ρmohc 79

4.3.2 The OccurrenceGrouping procedure . 79

4.4 Understanding and improving Mohc-Revise . 80

4.4.1 MinMaxRevise ensures the existence of a solution in the box 80

4.4.2 Duality of the contraction process . 81

4.4.3 When the narrowing procedures are useless . 81

4.4.4 Improvements . 82

4.5 Properties . 84

4.6 Experiments . 85

4.6.1 Mohc as a subcontractor of 3BCID . 85

vi

CONTENTS

4.6.1.1 Tuning the user-defined parameters . 85

4.6.1.2 Experimental protocol . 86

4.6.1.3 Results . 86

4.6.1.4 Profiling . 88

4.6.2 Mohc as the main contractor . 91

4.6.2.1 Tuning the user-defined parameters . 92

4.6.2.2 Experimental protocol . 92

4.6.2.3 Results . 94

4.7 Advanced MinMaxRevise’ procedure . 94

4.7.1 A motivating example . 94

4.7.2 Evaluations and projections in MinMaxRevise’ . 95

4.8 Related Work . 97

4.9 Conclusion and Future Work . 97

5 A New Monotonicity-based Interval Extension 99

5.1 Introduction . 99

5.2 Evaluation by monotonicity with occurrence grouping . 100

5.3 A 0,1 linear program to perform occurrence grouping . 101

5.3.1 Taylor-based over-estimate . 101

5.3.2 A linear program . 102

5.4 A linear programming problem achieving a better occurrence grouping 104

5.5 An efficient Occurrence Grouping algorithm . 105

5.5.1 Properties . 107

5.6 Experiments . 108

5.6.1 Occurrence grouping for improving a monotonicity-based existence test 109

5.6.2 Occurrence grouping inside Mohc . 109

5.6.3 Performance comparison with Simplex . 110

5.6.4 Evaluation diameter comparison . 111

5.6.5 Frequency of interesting evaluations . 112

5.7 Conclusion . 112

6 Exploiting Common Subexpressions 115

6.1 Properties of HC4 and CSE . 115

6.1.1 Additional propagation . 116

6.1.2 Unary operators . 117

6.1.3 N-ary operators (sums, products) . 118

6.2 The I-CSE algorithm . 120

6.2.1 Step 1: DAG generation . 121

6.2.2 Step 2: Pairwise intersection between sums and products 122

6.2.3 Step 3: Integrating CSs into the DAG . 124

6.2.4 Step 4: Generation of the new system . 126

6.2.5 Advanced Feature: Simplification of redundant expressions 127

6.2.6 Time complexity . 127

6.2.7 Maximal CSs shared by more than two expressions 128

6.3 Implementation of I-CSE . 129

6.4 Experiments . 129

6.5 Perspectives . 131

6.6 Conclusion . 133

vii

CONTENTS

7 A Filtering Algorithm Using Well-constrained Subsystems 135
7.1 Introduction: From decomposable to sparse systems . 135
7.2 Box-k partial consistency . 138

7.2.1 Benefits of Box-k-consistency . 139
7.2.2 Achieving Box-k-consistency in well-constrained subsystems of equations 139

7.3 Contraction algorithm using well-constrained subsystems as global constraints 140
7.3.1 The Box-k revise procedure . 140
7.3.2 The S-kB-Revise variant . 141
7.3.3 Reuse of the local tree (procedure UpdateLocalTree) 142
7.3.4 Lazy handling of a leaf (procedure ProcessLeaf?) 142
7.3.5 Properties of the revise procedure . 143

7.4 Multidimensional splitting . 144
7.5 Experiments . 144

7.5.1 Experiments on decomposed benchmarks . 144
7.5.2 Experiments on structured systems . 146
7.5.3 Benefits of sophisticated features . 147

7.6 Conclusion . 147

8 Conclusions and future perspectives 149

A Proofs of Properties Related to Mohc 153
A.1 Proof of Lemma 4 . 153
A.2 Proof of Lemma 5, page 84 . 154
A.3 Proof of Proposition 10, page 84 . 154
A.4 Proof of Proposition 11, page 84 . 154
A.5 Proof of Proposition 12 (time complexity), page 85 . 154
A.6 The LazyMonotonicBoxNarrow procedure . 155
A.7 The latest version of Mohc-Revise algorithm . 155
A.8 The LeftNarrowFmax procedure revisited . 156

B Proofs of Properties Related to Occurrence Grouping 159
B.1 Proof of Proposition 16, page 108 . 159
B.2 Proof of Proposition 17, page 108 . 161
B.3 Proof of Proposition 18, page 108 . 162
B.4 The average computation used for performing the comparison on evaluation diameters . . 166

References 167

viii

Chapter 1

Introduction

Systems of nonlinear constraints arise in many domains of practical importance such as engineering,
mechanics, medicine, chemistry, and robotics. Solving a system consists in finding all the elements in
the search space that satisfy all the constraints of the system at the same time (i.e., the solutions of the
system). There are several approaches for solving these problems. We may divide them into three main
categories:

1. Symbolic computation methods that solve systems of equations in an exact way.

2. Continuation methods that are effective for problems with algebraic constraints for which the total
degree is not too high.

3. Interval-based methods that are generally robust (i.e., reliable) but tend to be slow.

Contrarily to numerical methods, like continuation and interval-based methods, symbolic computation
methods are able to obtain the set of solutions of a system in an exact and formal way. The main
drawbacks are related with its limited application (only algebraic systems) and the high complexity of
existing algorithms (often exponential). The Gröbner basis methods [Buchberger, 1985] are one of the
most classical symbolic approaches. A Gröbner basis for a system of polynomials is an equivalent and
simpler form of that system, from which information about the roots of the original system can be
derived. The Gröbner basis method can be seen as a nonlinear generalization of the Gaussian elimination
for linear systems. The resultant elimination method [Gelfand et al., 1994] is based on the determinant
theory. It consists basically in solving multipolynomial systems by constructing a univariate polynomial
expression such that all the roots of the original multipolynomial system are represented by roots of the
constructed univariate polynomial. The continuation methods, also referred to as homotopy methods
(see [Hirsch et al., 2007], [Martinez, 1994], [Nielson and Roth, 1999]), basically transform gradually an
initial system of equations into the system to be solved. The solutions of the initial system are known.
At each step i, the current system is solved to find a starting solution for the next system. Each current
system is generally solved by a (local) Newton-based method.

Classical interval-based methods for solving systems of constraints are mainly based on the branch &
prune technique. The domains of variables (search space) are represented by a set of intervals (box).
The branching/bisection consists in dividing the box into two subboxes (i.e., the problem is divided
into two subproblems). The pruning/contraction consists in eliminating values from the bounds of the
current box that do not satisfy the constraints (the entire box is sometimes eliminated). Contraction
methods mainly come from two communities: interval analysis (e.g., the interval Newton method) and

1

1. Introduction

constraint programming (e.g., AC3-like constraint propagation algorithms). Bisections and contractions
are interleaved in the solving process generating a search tree. When a leaf of the search tree reaches
a given precision ε, the corresponding box is returned as a solution. Finally, the set of returned boxes
contains all the solutions of the system.

In this thesis we propose some sophisticated interval-based methods to solve systems of nonlinear con-
straints. These new methods are focused on the contraction algorithms issued from the constraint pro-
gramming community. Constraint propagation algorithms call an atomic Revise procedure for reducing
the domains of variables involved in one constraint c. The procedure eliminates, from the bounds of the
intervals, set of values not satisfying c. The domain reductions are then propagated to all the system.
Different Revise procedures (e.g., HC4-Revise described in Section 3.2.3.4, Box-Revise described in
Section 3.2.3.5) have been proposed. However, none of them is able, in general, to find the smallest box
containing all the solutions of c (hull-consistency) in polynomial time.

More sophisticated algorithms (e.g., 3B) split the domain of the variables one by one. Based on a refutation
principle, they try to prove the inconsistency of the obtained subdomains by applying a constraint
propagation algorithm on the entire system.

We have identified two major problems that hinder the effectiveness of constraint propagation. One is
the so-called dependency problem related to multiple occurrences of variables in an expression: when a
variable appears twice or more in an expression f , the interval methods compute an overestimated image
of the variable domains under f .

Example 1 Consider the following trivial equation involving two variables with domains [x] = [−1, 1]
and [y] = [5, 5]:

y = x− x
Clearly the image of the expression x−x is 0, implying y = 0, for any value of x over the reals. However,
using interval arithmetic the value of y is significantly overestimated ([x]−[x] ⊃ 0). The new domain of y,
computed using the classical (natural) evaluation by intervals, is [y] = [5, 5]∩ ([−1, 1]− [−1, 1]) = [−2, 2].

All the existing interval extensions are impacted by the dependency problem. One of them, the extension
by monotonicity (see Section 2.4.2), is able to compute the optimal image when f is monotonic w.r.t. all
its variables (provided that f is continuous in all the search space). However, existing Revise procedures
for the constraint f(X) = 0, even if f is monotonic, are still non-optimal.

The second difficulty is related to the locality scope of constraint propagation. This locality problem also
prevents constraint propagation algorithms from computing the smallest box containing all the solutions
of a system (global hull-consistency).

Example 2 Consider for instance the following simple linear system:

x+ y = 7

x+ y + z = 12

With domains of variables [x] = [0, 5], [y] = [0, 10] and [z] = [0, 10]. Enforcing the global hull-consistency
by hand is trivial. As x+ y is equal to 7, using the second constraint, z = 12− 7 = 5. Finally, from the
first equation we can deduce that x ∈ [0, 5] and y ∈ [2, 7].

However, constraint propagation algorithms (even if they use an optimal Revise procedure) cannot enforce
the global hull-consistency because they treat each constraint in an independent way. An optimal Revise

2

1.1 Contributions

procedure reduces, using the first equation, the domain of y to [2, 7]. Using the second equation the
procedure does not know that x + y is equal to 7, then it cannot reduce the domain of z to [5, 5]. The
system obtained by the Revise procedure is hull-consistent in the domains but it is far from being global
hull-consistent.

Our contributions in this thesis are related, to a greater or lesser extent, to the dependency and locality
problems.

1.1 Contributions

Exploiting common subexpressions

We call common subexpression (CS) an arithmetic expression appearing several times in the system. The
common subexpression elimination method (CSE) consists in replacing the CSs of a system (e.g., x+y in
Example 2) by auxiliary variables (e.g., v) adding the corresponding new equations. CSE is a significant
technique used in code optimization. It is able to reduce the number of operations of segments of code,
thus improving the execution time of a program. In interval analysis, several experts have used CSE
techniques, manually or automatically, for reducing the size of the system and the number of operations
[Kearfott et al., 1996; Merlet, 2000; Schichl and Neumaier, 2005; Van Hentenryck et al., 1997; Vu et al.,
2004].

Our contributions to this topic are the following:

1. We prove that the benefits of CSE in interval analysis are mainly due to additional contraction (see
Example 3) rather than just a reduction in the number of operations.

2. We state which CSs are useful for bringing an additional contraction (i.e., sums, products and
non-monotonic functions).

3. We propose an ad-hoc algorithm, called I-CSE, that replaces useful CSs implying an additional
contraction.

4. The additional contraction explains why we have obtained gains of one or several orders of magni-
tude on 10 of the 40 tested systems.

Example 3 When CSE is applied to Example 2 the CS x + y is replaced by an auxiliary variable (v).
Thus, we obtain the new system:

v = 7

v + z = 12

v = x+ y

The addition of the variable v and the equation v = x + y allows contraction propagation algorithms to
reduce the domain of z to [5, 5], thus reaching the global hull-consistency.

3

1. Introduction

Exploiting the monotonicity of functions

Using the well-known evaluation by monotonicity (described in Section 2.4.2), we can compute the optimal
image of a box [B] under a function f when f is monotonic w.r.t. all its variables. We can also compute
sharper approximations of the optimal image if f is monotonic w.r.t. only some variables.

Our first contributions related to this topic are:

1. We extend the applicability of the evaluation by monotonicity when the function f is not monotonic
w.r.t. a variable x. In this case, we transform f into a new function fog that replaces some
occurrences of x by two auxiliary variables (xa and xb with [xa] = [xb] = [x]) such that the new
function fog is monotonic w.r.t. xa and xb. The evaluation by monotonicity of fog computes a
sharper approximation than the evaluation by monotonicity of f does.

2. For finding on the fly a good occurrence grouping, we propose a fast linear program that minimizes
a Taylor-based objective function.

The evaluation by monotonicity is commonly used as an existence test for removing boxes that do not
satisfying some equation. Less efforts have been devoted to the use of monotonicity in the contraction of
variable domains.

We propose a new constraint propagation algorithm Mohc which exploits monotonicity of functions. Mohc
uses monotonic variants of the well-known HC4-Revise (used by HC4) and BoxNarrow (used by Box)
algorithms for performing better contractions in presence of monotonicities. When f is monotonic w.r.t.
every variable with multiple occurrences, Mohc is proven to compute the optimal/sharpest box enclosing
all the solutions of the constraint (hull-consistency). Mohc gives promises to become an alternative to the
Box and HC4 algorithms.

Partial consistencies

In the aim of dealing with the locality problem, we investigate the possibility of defining a filter-
ing/contraction algorithm for subsystems of size k.

We propose the revise procedure called Box-k-Revise to contract well-constrained subsystems of size
k. This algorithm is a solver by itself. Using a branch & prune approach, Box-k-Revise is able to
find all the solutions of a subsystem with a given precision. It then returns the smallest box enclosing
all these solutions of the subsystem. The changes to the variable domains are then propagated to other
subsystems thanks to a classical propagation loop. Also, the filtering performed inside a subsystem allows
the solving process to learn interesting multi-dimensional branching points, i.e., to split several variable
domains simultaneously.

1.2 Organization of the document

Part I presents a state of the art. Chapter 2 is an introduction to interval arithmetic. After introducing the
main concepts and notations, we detail the main interval extensions used for computing approximations
of images.

Chapter 3 introduces the main interval-based methods used for solving systems of constraints. We briefly
describe the algorithms from interval analysis and rigorous global optimization. Then we focus on the

4

1.2 Organization of the document

contraction algorithms issued from constraint programming. Finally, we briefly present some background
related to our work.

Part II corresponds to our contributions. Chapters 4 and 5 presents an exploitation of the monotonicity
of functions for improving contraction. The former presents our new constraint propagation algorithm
Mohc; the latter describes occurrence grouping, a new interval extension that improves the evaluation by
monotonicity.

In Chapter 6 we show the benefits of using CSE as a preprocessing technique for improving the perfor-
mance of propagation algorithms. Then we describe the I-CSE algorithm which is dedicated to interval
based methods.

Chapter 7 describes the Box-k-consistency, a new local consistency related to subsystems of equations.
We present an algorithm enforcing this new consistency and the obtained results.

5

1. Introduction

6

Part I

State of the Art

7

Chapter 2

Interval Arithmetic

Contents

2.1 Basic notions . 10

2.2 Interval Arithmetic . 13

2.3 Properties of interval arithmetic . 19

2.4 Interval extensions of real functions . 21

Basics of interval arithmetic have been used throughout the history of mathematics. Archimedes, for
example, in the 3rd century BC calculated lower and upper bounds for π: 223/71 < π < 22/7 using an
interval approximation of

√
3 [Archimedes, Before 212 BC].

In the 20th century, Rosalind Cecily Young proposed rules for calculating with intervals and with other
subsets of the real numbers in her work algebra of many-valued quantities [Young, 1931]. In the 50s, the
essential ideas in interval arithmetic were set forth in an independent and almost simultaneous way by
Mieczyslaw Warmus in Poland [Warmus, 1956], Teruo Sunaga in Japan [Sunaga, 1958] and Ramon E.
Moore in the United States.

Moore wrote in 1966 the book Interval Analysis [Moore, 1966] marking the birth of modern interval
arithmetic. The book includes both previous works and personal researches performed after 1950. Interval
arithmetic is formally defined with the objective of being conservative in the computations of basic
operators (+, −, ×, /), bounding rounding errors in mathematical computation and thus developing
numerical methods that offer reliable results. The basic interval operators applied to intervals (containing
imprecision related to the used methods or the floating point computations) generate new intervals
preserving the imprecisions and adding new imprecisions related to the operator. We say that the
interval arithmetic is conservative. By introducing interval arithmetic into existing solving methods we
can solve problems without losing solutions.

In this chapter we present the fundamentals of interval arithmetic and the descriptions and definitions
of basic interval arithmetic operators and interval extensions of real functions. Interval extensions are
commonly used for computing approximations of the range of functions. Finding good approximations
is one of the most important issues when interval methods are used for solving system of constraints.

9

2. Interval Arithmetic

2.1 Basic notions

2.1.1 Intervals

For any pair of real numbers a and b, where a ≤ b, an interval [a, b] is the set:

[a, b] := {x ∈ R, a ≤ x ≤ b}

IR corresponds to the set of all the intervals. The elements in IR are enclosed in brackets ([x]). In an
interval [a, b], the real number a corresponds to the left bound of the interval and b to the right bound
of it. In the interval [x], the left bound and the right bound are noted resp. x and x. Mid([x]) denotes
the midpoint of [x], i.e., Mid([x]) = 1

2(x+ x) and Diam([x]) = x− x corresponds to the diameter of the
interval. A degenerate interval is an interval with diameter 0 (e.g., [x] = [a, a]).

The minimum and maximum absolute real values in an interval are called resp. mignitude (denoted
〈[x]〉) and magnitude (denoted |[x]|):

〈[x]〉 := min
x∈[x]
|x| =

{
min(|x|, |x|) if 0 6∈ [x],

0 otherwise.

|[x]| := max
x∈[x]

|x| = max(|x|, |x|)

The inclusion relation between two intervals is defined by:

[x] ⊆ [y] ⇔ (x ≥ y) ∧ (x ≤ y)

A Cartesian product of intervals is named a box, and is denoted by [B], [x1] × ... × [xk] or by a vector
([x1], ..., [xk]). Graphically it can be represented by the set of points inside of a k-dimensional rectangle
({x1, x1}, ..., {xk, xk}) leading to 2k vertices. For example, the rectangle in Figure 2.1-left represents the
box [B] = ([x], [y]), where [x] = [1, 7] and [y] = [3, 6]. The four vertices of the box are (1, 3), (1, 6), (7, 3)
and (7, 6).

x

y

1 7

3

6
[B]={[1,7],[3,6]}

x

y

[B] [B1]

[B2]

Figure 2.1: On the left side, a graphical representation of a 2-dimensional box [B] = {[1, 7], [3, 6]}. On the
right side, a graphical representation of the inclusion relations [B1] ⊆ [B] and [B2] ⊆ [B].

The element in the middle of a box [B] = [x1]× ...× [xk] is defined by:

Mid([B]) = (Mid([x1]), ..., Mid([xk]))

A degenerate box is a box containing only degenerate intervals. Consider two k-dimensional boxes
[B1] = ([x1], ..., [xk]) and [B2] = ([y1], ..., [yk]). The inclusion relations between boxes are given by (see a
graphical example in Figure 2.1-right):

10

2.1 Basic notions

[B1] ⊆ [B2] ⇔ ∀i = 1, ..., k: (yi ≤ xi) ∧ (xi ≤ yi)

The relations of superiority and inferiority between intervals are defined as follows:

[x] < [y] ⇔ x < y

[x] > [y] ⇔ x > y

A real α can be mapped onto a zero-diameter interval [α, α]. Then, we can define relations of superiority
and inferiority between an interval and a real number:

[x] < α ⇔ x < α
[x] > α ⇔ x > α

Example 4 Consider the intervals [x] = [1, 4], [y] = [0, 2] and [z] = [−5, 4]. The bounds of [x] are
x = 1 and x = 4; the diameter of [z] is Diam([z]) = 4 − (−5) = 9; the mignitude and magnitude of [x]
are 〈[x]〉 = min(|1|, |4|) = 1 and |[x]| = max(|1|, |4|) = 4, resp.; the mignitude and magnitude of [z] are
〈[z]〉 = 0 and |[z]| = max(|−5|, |4|) = 5, resp.; the midpoints of [x] and [y] are resp. Mid([x]) = 1+4

2 = 2.5
and Mid([y]) = 0+2

2 = 1.

The interval [x] is included in [z] (i.e., [x] ⊆ [z]). The interval [x] is less than [5, 7] and greater than
0 (i.e., [x] ≤ [5, 7] and [x] > 0). The box ([1, 3], [0, 1], [−1, 2]) is included in the box ([x], [y], [z]), i.e.,
([1, 3], [0, 1], [−1, 2]) ⊆ ([x], [y], [z]).

2.1.2 The hull operator

The union (∪) of two or more intervals corresponds to the set of the real numbers included in at least
one interval, i.e.:

[x1] ∪ ... ∪ [xn]; = {x, x ∈ [x1] ∨ ... ∨ x ∈ [xn]}

The union of boxes corresponds to the set of vectors included in at least one box, i.e.: [B1] ∪ ... ∪ [Bn] =
{(x1, ..., xk), (x1, ..., xk) ∈ [B1] or ... or (x1, ..., xk) ∈ [Bn]}

Example 5 Consider the intervals [x] = [2, 6], [y] = [−1, 3] and [z] = [5, 8]. Then:

[x] ∪ [y] = [−1, 6] (2.1)

[x] ∪ [z] = [2, 8] (2.2)

[y] ∪ [z] = [−1, 3] ∪ [5, 8] (2.3)

Observe that the result in 2.3 is not an interval. The set union operation is not closed in IR.

In intervals, the hull operation is used generally instead of the union operation. Consider a set of intervals
S[x]. The hull of this set (Hull(S[x])) corresponds to the smallest interval including every interval in S[x]
(i.e., [x] ∈ S[x] ⇒ [x] ⊆ Hull(S[x])). Thus, the hull of the interval set S[x] can be computed as follows:

Hull(S[x]) =

[
min

[x]∈S[x]

(x), max
[x]∈S[x]

(x)

]

Replacing the union operation in Expression 2.3 by the Hull operation we obtain Hull([y], [z]) = [−1, 8].

11

2. Interval Arithmetic

The hull of a set of boxes S[B] (Hull(S[B])) corresponds to the smallest box including every box in S[B]

(i.e., [B] ∈ S[B] ⇒ [B] ⊆ Hull(S[B])). Consider [xij] the ith interval of a box [Bj]; the hull of a set of n
k-dimensional boxes S[B] = {[B1], ..., [Bn]} provides the following box:

Hull(S[B]) := Hull([x11], ..., [x1n])× ...× Hull([xk1], ..., [xkn])

Figure 2.2 represents graphically the hull operator.

x

y

[Bhull][B1]

[B2]

[B3]

Figure 2.2: Hull of boxes. [Bhull] represents Hull([B1], [B2], [B3])

Example 6 Consider the boxes [B1] = ([0, 3], [1, 7]), [B2] = (−1, 8) and [B3] = ([1, 5], [2, 2]). The hull of
the three boxes is computed:

Hull([B1], [B2], [B3]) = (Hull([0, 3],−1, [1, 5]), Hull([1, 7], 8, [2, 2]))

Hull([B1], [B2], [B3]) = ([−1, 5], [1, 8])

Consider [Bhull] = Hull([B1], [B2], [B3]). Just as we expected [B1], [B2] and [B3] are included in [Bhull]
(i.e., [B1] ⊆ [Bhull], [B2] ⊆ [Bhull] and [B3] ⊆ [Bhull]).

2.1.3 Image of intervals

One of the most important issues in interval methods is to find good approximations of the image of real
functions. As intervals and boxes are mainly used for representing domains of variables, we define the
image of a box [B] under a function f by:

If([B]) = {y ∈ R, ∃(x1, x2, ..., xn) ∈ [B], y = f(x1, x2, ..., xn)} (2.4)

The image of [B] under f is the set of all possible outputs obtained when the function is evaluated at
each element of the box [B]. For example, the image of the interval [x] = [−1, 2] under the function
f(x) = x3 − x is If([−1, 2]) = [−0.3849, 6] (the minimum of f in the interval [−1, 2] is −0.3849, when
x = 1/

√
3. The maximum of f is 6, when x = 2).

The image of an interval under a continuous function is an interval. In the general case the image can be
represented as a set of intervals. We call optimal image the sharpest interval containing If([B]) (i.e.,
the hull of the image). Hull(If([B])) denotes the optimal image of [B] under the function f .

Example 7 Consider the non-continuous function f(x, y) = x/y with domain [B] = [−2,−1] × [−1, 1].
The image of [B] under f is If([B]) = (−∞,−1] ∪ [1,+∞). The optimal image is Hull(If([B])) =
(−∞,+∞).

12

2.2 Interval Arithmetic

2.2 Interval Arithmetic

In this thesis we work with mathematical expressions/functions/constraints that are composed of a set of
basic operations. This set includes binary arithmetic operations (+, −, ×, /) and unary functions such
as sin, cos, exp and log. For example:

x/y + exp(sqr(z × x))− sin(x)/2

In this section we use intervals and interval operators for building interval expressions and interval
functions. An interval function [f] is analogous to a function over the reals, i.e., it is a function
that receives a set of intervals as input and returns an interval as output ([f] : IRk → IR).

In the following, we explain how to map classical arithmetic expressions to interval arithmetic expressions
and functions.

2.2.1 Binary operators

The binary operators of interval arithmetic are trivially extended from the classical arithmetic opera-
tors. Consider the basic binary arithmetic operators of addition, subtraction, multiplication and division
(+,−,×, /). The corresponding interval operators compute the smallest interval containing the image of
the related expression, i.e., if we consider the binary expression f◦(x1, x2) = x1 ◦ x2 over the reals, then
we obtain:

[x1] ◦ [x2] := Hull(If◦([x1], [x2])) (2.5)

where ◦ ∈ {+,−,×, /}. We say that [x1] and [x2] are the input intervals of the operator. Using
Definition (2.4) we could compute the optimal image of the input intervals under the operator ◦:

[x1] ◦ [x2] =

[
min

x1∈[x1],x2∈[x2]
x1 ◦ x2, max

x1∈[x1],x2∈[x2]
x1 ◦ x2

]
(2.6)

All the basic interval operators are defined using (2.6). For instance, as the sum is continuous and
monotonic w.r.t. each of its terms, the interval sum operator is given by:

[x1] + [x2] := [x1 + x2, x1 + x2]

Taking into account properties of continuity and monotonicity, the other operators can be defined in
function of the bounds of the input intervals. Consider [x1] = [a, b] and [x2] = [c, d].

[x1]− [x2] := [a− d, b− c] (2.7)

[x1]× [x2] := [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] (2.8)

1/ [x2] := [1/d, 1/c] 0 6∈ [x2] (2.9)

[x1] /[x2] := [x1]× (1/[x2]) 0 6∈ [x2] (2.10)

Observe that, for the moment, the expression related to each operator requires be continuous in all the
values of the input intervals (e.g., the division operator is not defined if 0 ∈ [x2]). The extended interval
arithmetic (described in Section 2.2.7) removes this limitation, offering some advantages for solving a
system of constraints.

Example 8 Consider the intervals [x] = [1, 5], [y] = [−2, 3] and [z] = [0, 2]. Then,

13

2. Interval Arithmetic

[x] + [y] = [−1, 8] [y]− [z] = [−4, 3]
[x]× [z] = [0, 10] [y]/[x] = [−2, 3]

The interval binary operators and the classical algebraic operators have some equivalent properties (e.g.,
commutativity of the addition and the multiplication). However, other properties of classical operators
are lost (e.g., [x] − [x] 6= 0, the distributivity is replaced by the subdistributivity). In Section 2.3.3 we
explain the reason of this loss and show some new relaxed properties of interval operators.

Interval operators are well used for computing an approximation of domain images under some function.
In this sense, it can be relevant to know how the interval diameter computed by an operator is related
with the diameter of the input intervals:

Diam([a] + [b]) = Diam([a]) + Diam([b])

Diam([a]− [b]) = Diam([a]) + Diam([b])

Diam(α× [b]) = |α| × Diam[b] α ∈ R
Diam([b]/α) = Diam[b]/|α| α ∈ R, α 6= 0

Observe that for example, contrarily to what we might think, the diameter of the subtraction of two
intervals is not equal to the subtraction of the input interval diameters. So we can deduce, for instance,
that [x]−[x] cannot be equal to 0 (except when Diam(x) = 0). In Section 2.3.3 we describe the dependency
problem that is directly related with this observation.

2.2.2 Unary operators

Following the same principle as binary operators, the unary operators of interval arithmetic are defined
from classical arithmetic. Consider f(x) a unary arithmetic operator and [f]([x]) the corresponding
operator over intervals. The operator [f] is defined by:

[f]([x]) := Hull(If([x]) = [min
x∈[x]

f(x),max
x∈[x]

f(x)] (2.11)

Like binary operators, the continuity and monotonicity of f can be used for defining the corresponding
interval operator [f] in function of the bounds of the input intervals. Consider for example the square
operator:

[sqr]([x]) = [x]2 :=

[x2, x2] if [x] > 0,

[x2, x2] if [x] < 0,

[0,max(x2, x2)] = [0, |[x]|2] if 0 ∈ [x].

Example 9 Consider the intervals [x] = [1, 5], [y] = [0, π/4] and [z] = [2, 7]. Then,

[sin]([y]) = [0,
√

2/2] [cos]([y]) = [
√

2/2, 1]
[x]3 = [1, 125] [log]([z]) = [log(2), log(7)] = [0.693..., 1.946...]

14

2.2 Interval Arithmetic

2.2.3 Evaluation of interval expressions

By composition of binary and unary operators we can create more complex interval functions. For
example:

[f]([x], [y], [z]) = [x] + ([y]× [z])2 + 4

For computing the image of this function it is necessary to represent the expression as a syntactic binary
tree (see Figure 2.3). The variables and constants are represented by the tree leaves. The operators are
represented by the nodes and the function or expression corresponds to the root node. The computation
of the image or evaluation of [f] is performed by replacing the variables with the corresponding intervals
and applying the operator definitions recursively from the leaves to the root.

Example 10 Consider the values [x] = [1, 2], [y] = [2, 4] and [z] = [−1, 1]. The evaluation of [f],
represented on Figure 2.3, performs the following computations:

1. [2, 4]× [−1, 1] = [−4, 4],
2. [−4, 4]2 = [0, 16],
3. [1, 2] + [0, 16] = [1, 18],
4. [1, 18] + 4 = [5, 22].

Finally the evaluation of [f]([1, 2], [2, 4], [−1, 1]) is [5, 22].

An interval function [f] obtained by mapping a real function f over the intervals is called natural
extension of f . The evaluation of [f] in a box [B] computes an overestimation of the image of [B] under
f . The natural extension is described in Section 2.4.1.

[2,4] [-1,1]

[-4,4]

[1,18]

[1,2]
[0,16]

[f]([1,2],[2,4],[-1,1]])=[5,22]

1

2

3

4

Figure 2.3: The evaluation of [f]([1, 2], [2, 4], [−1, 1]) performed in the corresponding binary tree.

2.2.4 Interval gradient computation

Several interval-based methods require a procedure for computing the interval gradient (or interval partial
derivatives) of functions. An interval partial derivative of a function f w.r.t. a variable x, denoted

15

2. Interval Arithmetic

[
∂f
∂x

]
([B]) corresponds to an interval enclosing all the partial derivatives of f w.r.t. x in the given box

[B], i.e.:

∀X ∈ [B] :
∂f(X)

∂x
∈
[
∂f

∂x

]
([B])

2.2.4.1 Symbolic differentiation

A simple method for computing the interval gradient related to a function f consists in symbolically
differentiating the function and evaluating it in the box (using the interval arithmetic operators).

Example 11 Consider the function f(x, y) = x2 + 3xy − y with intervals [x] = [−1, 1] and [y] = [1, 2].
The symbolic differentiation produces two new expressions: gx(x, y) = 2x + 3y and gy(x, y) = 3x − 1.
Evaluating the two derivatives in the box we obtain the intervals: [gx]([B]) = [1, 8] and [gy]([B]) = [−4, 2].
As [gx]([B]) > 0, f is monotonic increasing w.r.t. x.

2.2.4.2 Automatic differentiation

[e3]=[0,1]
[gx3]=1
[gy3]=0

[e4]=[0,1]
[gx4]=[-1,0]
[gy4]=0

1 3

4 5

6

[e1]=[π/2,π]
[gx1]=1
[gy1]=0

[e5]=[0,π+1]
[gx5]=[0,1]
[gy5]=[π/2,π]

[e6]=[f]=[0,π+2]
[gx6]=[gx]=[-1,1]
[gy6]=[gy]=[π/2,π]

2

[e2]=[π/2,π]
[gx2]=1
[gy2]=0

Figure 2.4: Example of automatic differentiation using the forward mode. The interval gradient of f(x, y) =
sin(x) + xy is computed.

Another used procedure (which is very often exploited in the new methods presented in this thesis) is
automatic differentiation (AD). This procedure computes an interval gradient without obtaining the
corresponding analytic expressions. Moore [Moore, 1966] was the first to apply it to interval analysis.

Fundamental in AD is the decomposition of differentials provided by the chain rule. For the composition
f(x) = g(h(x)) the chain rule yields:

∂f

∂x
=
∂g

∂h
× ∂h

∂x

There are two modes of performing AD. The forward mode traverses the chain rule from right to left,
that is, one first computes ∂h

∂x and then ∂g
∂h . The reverse mode traverses the chain rule from left to right.

Both use a binary tree representing the expression.

16

2.2 Interval Arithmetic

The forward mode

In the forward mode the tree is traversed from leaves to root (see Figure 2.4). Each node wi evaluates the
related subexpression using the arithmetic operators ([ei]), and computes the interval partial derivative
of the subexpression w.r.t. each variable ([gxi] and [gyi]). The interval derivatives are computed using
gradient operators related to each node. The gradient operators are based on differentiation rules (e.g.,
∂(sin(w1))

∂x = cos(w1)
∂(w1)
∂x , ∂(w1+w2)

∂x = ∂(w1)
∂x + ∂(w2)

∂x , etc.) and use the information of the children
(evaluation and partial derivatives) for computing the partial derivative of the node. For example, the
node w5 of the figure corresponds to a multiplication of two terms: w2 × w3 the partial derivative of w5

w.r.t. x is computed by a gradient operator: [gx5] = [gx2] × [e3] + [e2] × [gx3], where [e2] (resp. [gx2])
is the previously computed evaluation (resp. interval partial derivative) in node w2; [e3] (resp. [gx3]) is
the previously computed evaluation (resp. interval partial derivative) in node w3. The gradient of f is
obtained at the root node.

The backward mode

In the backward mode [Rall, 1981; Speelpenning, 1980], the tree is traversed twice. The first traversal is
achieved from the leaves to the root (see Figure 2.5-left). Each node wi evaluates the related subexpression
using the arithmetic operators ([ei]). The second traversal (reverse pass) is from the root to the leaves
(see Figure 2.5-right). Each node wi computes, using backward gradient operators, the interval partial
derivative of f w.r.t. wi ([gi]). The backward gradient operators are based on differentiation rules

(mainly the chain rule
∂(f(wj(wi)))

∂wi
= ∂f

∂wj
× ∂wj

∂wi
, where wj is the parent of wi). To compute [gi] in a

node wi, the backward operator uses the information of the parent and brother nodes. For example,
in the node w2 the backward gradient operator computes the interval partial derivative of f w.r.t. w2:
[g2] = [g5] × [e3]; observe that the operator uses the chain rule in the composition f(w5(w2)), i.e.,
∂(f(w5(w2))

∂w2
= ∂f

∂w5
× ∂w5

∂w2
where ∂f

∂w5
is [g5] and ∂w5

∂w2
= w3 is [e3]. At the end of the second traversal

the interval partial derivatives w.r.t. each occurrence have been computed. Finally, the interval partial
derivatives w.r.t. each variable is obtained by the sum of the partial derivatives of its occurrences (e.g.,
[gx] = [g1] + [g2] = [0, 1] + [−1, 0] = [−1, 1]).

[e3]=[0,1]

[e4]=[0,1]

[e1]=[e2]=[π/2,π]

[e5]=[0,π+1]

w1 w2 w3

w4 w5

w6 [e6]=[0,π+2]

w1 w2 w3

w4 w5

w6

[g4]=[g6]=1 [g5]=[g6]=1

[g6]=1

[g1]=[g4]cos([e1])=[-1,0]

[g2]=[g5]*[e3]=[0,1]

[g3]=[g5]*[e2]=[π/2,π]

Figure 2.5: Example of automatic differentiation using the backward mode. The interval gradient of
f(x, y) = sin(x1) + x1x2 are computed.

17

2. Interval Arithmetic

2.2.5 Interval Hessian matrix computation

The Hessian matrix is the square matrix of second-order partial derivatives of a function. Consider the
function f(x1, ..., xn), the Hessian matrix of f is defined by:

Hf =

∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂x1∂xn
· · · ∂2f

∂xn∂xn

The interval Hessian matrix [Hf] related to a function f and a box [B] = ([x1], ..., [xn]) is an interval
matrix containing all the values of the Hessian matrix evaluated in each point (x1, ..., xn) ∈ [B], i.e.,

∀(x1, ..., xn) ∈ [B] : Hf (x1, ..., xn) ⊆ [Hf]([x1], ..., [xn])

For computing the elements of the interval Hessian matrix (i.e., intervals enclosing each second-order

partial derivative
[

∂2f
∂xi∂xj

]
([B]) of the function) we can use the following method:

1. Compute symbolically the partial derivatives of the function w.r.t. all its variables: ∂f
∂x1

(X), ..., ∂f∂xn (X).

2. For each xi, compute the intervals
[

∂2f
∂xi∂x1

]
([B]), ...,

[
∂2f

∂xi∂xn

]
([B]). The intervals can be obtained

by differentiating the partial derivative ∂f
∂xi

with AD in the box [B].

Instead of computing symbolically the partial derivatives of the function, we can build directly a DAG
of these derivatives using the backward mode of AD [Iri, 1984]. The elements of the Hessian matrix are
computed then performing the backward mode in the graph.

The main advantage of this method is that some subexpressions (internal nodes) shared by several partial
derivatives are evaluated only once in the DAG.

2.2.6 Time complexity of interval evaluation and automatic differentiation

The time complexity of the interval evaluation and AD depends on the number n of variables, and on
the number e of binary and unary operators of the function f (nodes in the expression tree). A traversal
of the expression tree of f is thus O(e).

The time complexity of the natural evaluation of f (i.e., an interval evaluation of the expression tree) is
O(e).

The time complexity for computing the interval gradient of f using the symbolic form of the partial
derivatives is O(ne) (assuming that the partial derivatives have the same number of binary and unary
operators as the function). AD using the forward mode requires 1 + n computations in each node of the
tree (the evaluation and the gradient operator for each variable). Thus, the complexity of the forward
mode is O(ne). AD using the backward mode requires only two computations in each node (evaluation
and gradient operator) to compute the gradient of f . Thus, the complexity of the backward mode is time
O(e). Observe that the backward mode is the least expensive among the three described methods. The
backward method has been used for testing the algorithms described in this thesis.

The time complexity for computing the interval Hessian matrix with AD in the DAG of partial derivatives
is O(ne) [Iri, 1984].

18

2.3 Properties of interval arithmetic

2.2.7 Extended interval arithmetic

The definition of the basic interval operators requires the expression be continuous over the input intervals
(e.g., [x]/[y] is not defined if 0 ∈ [y]). The extended interval arithmetic removes this limitation by allowing
discontinuities of the expression function (in practice this is the desirable behavior, at least for solving
systems of constraints). For example, the expression

√
[−7, 4] produces an error in classical arithmetic.

However, using the extended arithmetic, we obtain the image [0, 2]. The other well-known extended
operator is the division:

[x]/[y] = (−∞,+∞) if 0 ∈ [y]1

When the expression is discontinuous in the input intervals, the image cannot generally be represented
by a single interval. As the interval operators are defined as the hull of the image and not as a union
(the union operator can produce a combinatorial explosion in space and time), it is possible to obtain
an overestimation in the image computation (see the third case of non-optimal evaluation in Section
2.3.2). To deal with this problem, some atomic operators are implemented using the union instead of the
hull operator (e.g., in [Ratz, 1996], the author has proposed an extension of interval operators aiming
at interval Newton-like methods. The HC4-Revise narrowing operators, described in Section 3.2.3.4, are
also implemented using union).

2.2.8 Intervals and floating point numbers

In practice, when interval-based methods are implemented in computers, the interval bounds are rep-
resented with floating point numbers instead of real numbers. This fact forces all the operations with
intervals to be outwardly rounded in order to maintain the conservativeness. For example, consider the
number π = 3.1415. If our computer allows only two decimals, π would be represented by the interval
[π] = [3.14, 3.15], where the left bound of the interval corresponds to a rounding down of 3.1415 to two
decimals places, and the right bound of the interval corresponds to a rounding up of 3.1415 to two dec-
imals places. The community concerned with operations with floating point numbers has implemented
algorithms for each basic function with the objective of minimizing the number of lost floating point
numbers. Most of the libraries supporting interval arithmetic have optimal arithmetic operators +,−,/,×
(i.e., operators losing less than the distance between two floating point numbers for each bound of the
interval image) and more sophisticated algorithms limiting the overestimation in more complex operators
like trigonometric functions.

2.3 Properties of interval arithmetic

2.3.1 Conservativeness

We say that f is an “arithmetic” expression if it is a composition of binary and unary operators.
Any arithmetic expression can be mapped to an interval function replacing the variables of f by interval
variables and the operators by interval operators.

One of the fundamental properties of intervals is the conservativeness, i.e., the evaluation of the function
[f], mapped from an arithmetic expression f , in the box [B] contains the image of [B] under f .

1The operator is slightly more complicated if the 0 corresponds to a bound of [y].

19

2. Interval Arithmetic

Proposition 1 (Conservativeness) Let f(x1, ..., xk) be a function and [f] the natural extension of f
(i.e., the interval function obtained by mapping f to intervals). Then,

(∀[B] ∈ IRk) Hull(If([B])) ⊆ [f]([B])

Proof 1 Using inductively the definitions of interval operators (2.5) and (2.11) in the syntactic tree of
the expression, we can deduce that any vector X = (x1, ..., xk) ∈ [B] satisfies the relation g(X) ∈ [g]([B])
where g represents any subexpression in the tree. �

Consider Example 10, page 15. For any vector (x, y, z) ∈ [x] × [y] × [z], using (2.5) we deduce that the
evaluation of the subexpression ev1 = y × z is contained in [ev1] = [y]× [z], then using (2.11) we deduce
that the evaluation of ev2 = (y× z)2 = ev21 is contained in [ev2] = ([y]× [z])2 = [ev1]

2, and so on. Finally,
the evaluation of f(x, y, z) is contained in [f]([x], [y], [z]).

2.3.2 Non-optimal evaluation

The image of a real function f is generally not computed optimally by the evaluation of the mapping
of f to intervals. Three important issues make impossible, in the general case, the computation of the
optimal image of real functions.

Rounding errors

The rounding errors are caused by the use, in practice, of floating point numbers instead of real numbers
(see Section 2.2.8).

Continuity

When a real expression is not continuous over the corresponding intervals, it is possible that its interval
evaluation computes an overestimation of the optimal image. Consider for example the expression (1

[x])
2,

with [x] = [−1, 1] (the expression is discontinuous when x = 0). The image of 1
[x] is [−∞,−1] ∪ [1,+∞],

and the evaluation computes the hull [−∞,+∞]. Then, the evaluation of [−∞,+∞]2 is [0,+∞]. However,
the optimal image is [1,+∞].

Due to its importance, the third and most important cause for the non-optimality of interval evaluations
is discussed in the next section.

2.3.3 Dependency problem

The dependency problem is a major obstacle to the application of interval arithmetic. In spite of
rounding errors and discontinuities of the expressions, interval methods can compute the image of basic
operators very accurately. However, this is not always true with more complicated functions. If a variable
occurs several times in a function, each occurrence of it is treated independently by the interval operators.
This may lead to an unwanted expansion of the resulting intervals.

Consider for example the function f(x) = x2 +x. The evaluation using interval arithmetic of the interval
function [f] (mapped from f) over the interval [x] = [−1, 1] is [f]([−1, 1]) = [−1, 1]2 + [−1, 1] = [−1, 2],

20

2.4 Interval extensions of real functions

which is larger than the optimal image of [x]: [−0.25, 2]. It is possible to find a better expression of f
in which the variable x appears only once: f1(x) = (x + 1

2)2 − 1
4 . If we evaluate [f1], then we reach the

optimal image.

Provided that the function is continuous, the optimal image of domains can be achieved if each vari-
able appears only once in the function. However, not every function can be rewritten in this way. The
overestimation caused by the dependency problem makes insignificant the other two causes of overesti-
mation (rounding errors and discontinuities of the function). The dependency problem is reduced when
the input intervals are smaller, thus justifying the main method based on intervals for solving a sys-
tem of constraints: the branch & prune (the branching reduces the diameter of intervals limiting the
overestimation due to multiple occurrences).

In the next section we describe some algebraic properties of interval arithmetic, especially those that are
impacted by the dependency problem.

Properties of interval arithmetic operators

Functions in IR inherit several algebraic properties from functions in R, such as: Commutativity ([x] +
[y] = [y] + [x]), associativity (([x] + [y]) + [z] = [x] + ([y] + [z]), ([x] × [y]) × [z] = [x] × ([y] × [z])),
neutral element of the sum ([x] + [y] = [x] ⇔ [y] = [0, 0]) and neutral element of the multiplication
([x] × [y] = [x] ⇔ [y] = [1, 1]). However, other properties from reals are affected by the dependency
problem of intervals. Some of them verify only relaxed properties.

The multiplication is not distributive but it verifies a relaxed property, the subdistributivity:

[a]× ([b] + [c]) ⊆ [a]× [b] + [a]× [c]

The reason is that the developed form is affected by the dependency problem: the interval [a] appears
twice in the developed form. For example [−1, 1]× ([0, 1] + [−1, 0]) = [−1, 1] ⊂ [−2, 2] = [−1, 1]× [0, 1] +
[−1, 1] × [−1, 0]. The Horner-based extensions (described in Section 2.4.5) are directly related to this
property. The objective of these methods is to factorize the common terms of sums implying a sharper
evaluation of the new expression.

An example often used for explaining the dependency problem is that generally [x] − [x] 6= 0. Only the
inclusion is satisfied:

0 ∈ [x]− [x]

In the same way [x]/[x] 6= 1 but 1 ∈ [x]/[x]. In other words, there is no inverse element for the sum and
the multiplication (when Diam([x]) 6= 0). Furthermore, the subtraction (resp. the division) does not have
an algebraic link with the sum (resp. the multiplication). This implies, for example, that the relation
r1 : [x] = [y] + [z] is not equivalent to r2 : [x]− [z] = [y] because in the algebraic transformation from r1
to r2 we used the property [z] − [z] = 0 which is false. The correct transformation would be from r1 to
r′2 where r′2 : [x]− [z] = [y] + [z]− [z].

2.4 Interval extensions of real functions

Definition 1 (Interval Extension) Let f be a real function involving the vector of variables X =

21

2. Interval Arithmetic

(x1, ..., xk). The interval function [f] :
IRk → IR
[B] 7→ [f]([B])

is an interval extension of f if:

(1) (∀[B] ∈ IRk) Hull(If([B])) ⊆ [f]([B])

(2) (∀X ∈ Rk) f(X) = [f](X)

The condition (1) means that for any domain [B] of variables, the image of [B] under the function f
is contained in the evaluation of [f]. Related to the condition (2), recall that any real value x can be
mapped to the interval [x, x]. In this case, the input vector of variables X in [f](X) corresponds to
a degenerate box, i.e., X = ([x1, x1], ..., [xk, xk]). The condition (2) avoids the definition of pointless
extensions like the following one:

[f] : IR → IR
[x] 7→ [−∞,+∞].

Example 12 Consider the function f(x) = x2 − 4x + 4. The following interval functions are interval
extensions of f .

[f]1([x]) = [x]2 − 4× [x] + 4 [f]2([x]) = [x]× ([x]− 4) + 4
[f]3([x]) = [x]× [x] + 4× (1− [x]) [f]4([x]) = ([x]− 2)2

We can deduce from the example that there exists an infinite number of interval extensions for a given
function. Contrarily to real functions, different interval extensions compute different evaluations, due
mainly to the dependency problem. We say that an interval extension [f] is better for the evaluation than
[g] if [f] computes a sharper interval than [g], i.e., [f]([B]) ⊆ [g]([B]). In Example 12 using [x] = [−1, 2],
we obtain [f]1([x]) = [−4, 12], [f]2([x]) = [−6, 9], [f]3([x]) = [−6, 12] and [f]4([x]) = [0, 9]. The best
extension for the evaluation is [f]4.

The optimal extension [f]opt of a function f computes the optimal image of any box [B] under f , i.e.

(∀[B] ∈ IRk) [f]opt([B]) = Hull(If([B]))

In Example 12 an optimal extension of f is given by [f]4. However, in general, the problem of finding
the optimal extension is NP-hard [Kreinovich et al., 1997]. For this reason an important goal of interval
methods is to compute good and efficient approximations of the optimal image.

Remark that the condition (2) of Definition 1 forces an interval extension to be optimal at least when
it is evaluated in a degenerate box. This is a crucial requirement when interval methods are used for
solving systems of equations. However conditions (1) and (2) are not enough in practice. We also need
that an interval extension gradually decreases the diameter of its evaluation when the diameter of the
input decreases.

Definition 2 (Inclusion Monotonic) Let [f] be an interval function. [f] is an inclusion monotonic
function if

(∀[B1] ∈ IRk)(∀[B2] ∈ IRk) [B1] ⊆ [B2]⇒ [f]([B1]) ⊆ [f]([B2])

Unary and binary operators are inclusion monotonic. Thus, by induction all the interval functions
composed by basic operators are inclusion monotonic too. The next theorem proposed by Moore [Moore,
1966] allows us to prove if an interval function defined by induction corresponds to an interval extension.

22

2.4 Interval extensions of real functions

Theorem 1 (Fundamental Theorem of Interval Arithmetic) Let f(X) be a function over the reals
and [f]([B]) be an interval function. If [f] is inclusion monotonic and (∀X ∈ Rk): f(X) = [f](X) then
[f] is an interval extension of f .

Observe that Theorem 1 is a sufficient condition for interval extensions. Some interval extensions do not
fulfill this condition, in particular the famous Taylor extension (see Section 2.4.3).

Now we have the basic tools for computing approximations of domain images under functions. In the
next sections we present the main existing interval extensions used for achieving this goal.

2.4.1 The natural extension

The natural extension [f] of a real function f corresponds to the mapping of f to intervals.

Proposition 2 (Moore[Moore, 1966]) Let [f] be the natural extension of f(x1, ..., xk). If f is con-
tinuous in [B] = [x1]× ...× [xk], and each variable xi appears only once in f , then

[f]([B]) = [f]opt([B])

However, if a variable occurs more than once in a function f , the interval extension of f generally
computes larger intervals than [f]opt([B]) does due to the dependency problem. One exception is given
by the following property which seems to be new.

Proposition 3 Let [f] be the natural extension of the continuous and differentiable function f(x1, ..., xk).
Given a domain [B], if for each variable xi of f , all the partial derivatives of f w.r.t. the occurrences of
xi have the same sign (e.g., are positive) in each element/point in [B], then

[f]([B]) = [f]opt([B])

Proof 2 Without loss of generality1 consider that the univariate function f(x) is increasing w.r.t. every
occurrence of x in the domain [x]. Using monotonicity properties (see Section 2.4.2) we can compute the
optimal extension:

[f]opt([B]) =

[
min
x∈[x]

f(x),max
x∈[x]

f(x)

]
= [f(x), f(x)]

g(x1, ..., xk) is the function obtained from f where each occurrence of x has been replaced by a different
variable xi, i = 1..k. As we know, a mapping of a real function to intervals (i.e., the natural extension)
treats each occurrence as a different variable (see Section 2.3.3). Then, using Proposition 2: [f]([x]) =
[g]opt([x]k), where [x]k = ([x]× ...× [x]).

As g is increasing w.r.t. each variable xi (because f is increasing w.r.t. each occurrence of x), the
minimum of g over [x]k is g(x, ..., x) = f(x) and the maximum is g(x, ..., x) = f(x). Then [f]([x]) =
[g]opt([x]k) = [f(x), f(x)] = [f]opt([B]). �

Example 13 Consider the function f(x, y) = x+ x2y2− 3y. The natural evaluation in the boxes [B1] =
[0, 1]× [−1, 1.5] and [B2] = [1, 2]× [−5,−3] is:

1Abbreviated in the following to W.l.o.g.

23

2. Interval Arithmetic

[f]([B1]) = [−4.5, 6.25] [f]opt([B1]) = [−4.5, 5]
[f]([B2]) = [19, 117] [f]opt([B2]) = [19, 117]

Observe that the natural evaluation in [B2] is optimal. This is related to Proposition 3: the partial
derivative of f w.r.t. each occurrence of x (resp. y) is positive (resp. negative) in every point of [B2]
then the natural extension computes the optimal image.

2.4.2 Monotonicity-based extensions

A particular attention is paid for this interval extension because an important contribution of this thesis
is based on monotonicity.

A function f is monotonic w.r.t. a variable x in a given domain [B] = [x1]× ...× [xk] if the evaluation
of the partial derivative of f w.r.t. x is positive (or negative) in every point of [B]. If the evaluation
is positive in every element the function is increasing w.r.t. x. On the contrary, if the evaluation is
negative in every element then the function is decreasing w.r.t. x. For the sake of conciseness, we
sometimes write that x is monotonic. A monotonic function is a function that is monotonic w.r.t.
every variable.

x

f [x]

[f]opt([x])

x x x

f [x]

[f]opt([x])

x x

Figure 2.6: A function increasing (left side) and decreasing (right side) w.r.t. x. In both cases the image of
[x] can be computed using only the bounds of the interval.

The optimal image of any continuous function f(x) that is monotonic w.r.t. x can be computed using
the bounds of the domain of x (see Figure 2.6). Thus, if f is increasing w.r.t. x, the image of [x] under
f is:

[f]opt([x]) =

[
min
x∈[x]

f(x),max
x∈[x]

f(x)

]
= [f(x), f(x)] (2.12)

symmetrically, if f is decreasing then:

[f]opt([x]) =

[
min
x∈[x]

f(x),max
x∈[x]

f(x)

]
= [f(x), f(x)] (2.13)

The unary operators have been defined by using this property in the monotonic parts of the function.
For example recall the definition of the square operator:

[sqr]([x]) = [x]2 =

[x2, x2] if [x] > 0,

[x2, x2] if [x] < 0,

[0,max(x2, x2)] = [0, |[x]|2] if 0 ∈ [x].

We can observe three cases. First, when [x] > 0 the square function is monotonic increasing w.r.t. x,
then the operator is computed using (2.12): [x]2 = [x2, x2]. Second, when [x] < 0 the square function is

24

2.4 Interval extensions of real functions

monotonic decreasing w.r.t. x, then using (2.13): [x]2 = [x2, x2]. Third, if 0 ∈ [x] then the operator is
computed dividing the interval into two parts: [x, 0] and [0, x]. The square function is decreasing w.r.t.
the first one and increasing w.r.t. the second one, thus [x]2 = [02, x2] ∪ [02, x2] = [0, |[x]|2].

The monotonicity property of functions can also be extended to several variables.

Proposition 4 Let f(x1, ..., xk) be a continuous function. If f is monotonic w.r.t. xi for all i = 1..k in
the box [B] = [x1]× ...× [xk], then the optimal image of the domain under f can be computed:

[f]opt([B]) = [f(x−1 , ..., x
−
k), f(x+1 , ..., x

+
k)]

where x−i = xi and x+i = xi if xi is increasing. If xi is decreasing then x−i = xi and x+i = xi.

Example 14 Consider the function f(x, y, z) = −x2+xy+yz−z with domains [B] = [6, 8]×[2, 3]×[7, 15].
f is increasing w.r.t. y and z, and decreasing w.r.t. x. Then we can compute the optimal image:

[f]opt([x], [y], [z]) = [f(x, y, z), f(x, y, z)] = [f(8, 2, 7), f(6, 3, 15)] = [−41, 12]

Proposition 4 can be used only in monotonic functions. The extension by monotonicity [Hansen and
Walster, 2003] computes better evaluations than the natural extension does even when the function is
not entirely monotonic, but it is monotonic only w.r.t. some variables.

Definition 3 (Extension by monotonicity) Let f be a function of variables X = {x1, .., xk} and
domain [B] = [x1]× ...× [xk]. [B−] (resp. [B+]) is the box obtained from [B] by replacing each interval
[xi], related to an increasing variable, by xi (resp. xi) and each interval [xj] related to a decreasing
variable by xj (resp. xj). Then, the extension by monotonicity of f in the box [B] is given by:

[f]m([B]) =
[
[f]([B−]), [f]([B+])

]
where [f] is the natural extension (however, any other extension could be used instead).

For a function f , the extension by monotonicity computes an interval larger than or equal to the optimal
extension and sharper than or equal to the natural extension. That is:

[f]opt([B]) ⊆ [f]m([B]) ⊆ [f]([B])

The extension by monotonicity eradicates the dependency problem related to monotonic variables.

Proposition 5 Let f be a continuous function in a box [B]. If f is monotonic in [B] w.r.t. all its
variables appearing several times in the function, then the extension by monotonicity computes the optimal
image, i.e.,

[f]m([B]) = [f]opt([B])

Proposition 5 is slightly more general than Proposition 4. The difference lies in that the former allows the
presence of non monotonic variables in the function. As these variables (appearing once) are optimally
evaluated by the natural extension, they do not need to be monotonic.

25

2. Interval Arithmetic

Example 15 Consider the intervals [x] = [2, 3], [y] = [−1, 1] and the functions f1(x, y) = x − y2x,
f2(x, y) = xy + 3x− 7y and f3(y) = y2 − y. Knowing that f1 is increasing w.r.t. x, and f2 is increasing
w.r.t. x and decreasing w.r.t. y, then we compute the interval extensions by monotonicity:

[f1]m([x], [y]) = [[f1](x, [y]), [f1](x, [y])] = [0, 3]
[f2]m([x], [y]) = [[f2](x, y), [f2](x, y)] = [1, 13]

[f3]m([y]) = [[f3]([y]), [f3]([y])] = [f3]([y]) = [−1, 2]

The extension by monotonicity of f1 (resp. f2) is optimal, because f1 (resp. f2) is monotonic w.r.t. all
its variables appearing several times, i.e., x (resp. x and y). The extension by monotonicity of f3 is not
optimal and it is equivalent to the natural extension.

An algorithm for computing the evaluation by monotonicity is more expensive than an algorithm for
computing the natural evaluation. It basically consists in three steps. Consider the function f(X), the
evaluation [y] = [f]m([B]) is computed by the following algorithm.

1. For each variable xi ∈ X, the algorithm computes the interval partial derivatives [gi] =
[
∂f(X)
∂xi

]
([B]).

0 6∈ [gi] implies that f is monotonic w.r.t. the variable xi in [B]. A well-known method for com-
puting interval gradients is the automatic differentiation (see Section 2.2.4.2).

2. The boxes [B−] and [B+] are generated (initially copied from [B]) for computing the left and the
right bounds resp. of the interval [y]. If f is increasing (resp. decreasing) w.r.t. xi (i.e., [gi] < 0)
the ith interval of [B−] is replaced by xi (resp. xi) and the ith interval of [B+] is replaced by xi
(resp. xi). The remaining intervals of [B−] and [B+] (i.e., every ith interval such that 0 ∈ [gi])
remains unchanged.

3. The two bounds of [y] are finally computed:

y = [f]([B+])
y = [f]([B−])

Observe that if f is monotonic w.r.t. some variables in [B+] (resp. [B−]), then we can compute a better
approximation of the left bound (resp. the right bound) of the optimal image using the evaluation by
monotonicity, that is:

y′ = [f]([B++])
y′ = [f]([B−−])

where [B++] and [B−−] are the boxes generated in the step 2 of the previous algorithm using the
monotonicites of f in [B+] and [B−] resp. The method can be applied recursively until reaching a
fixpoint. This evaluation is implemented in several interval libraries (e.g., ALIAS [Merlet, 2000], Ibex
[Chabert, 2009]). It is formalized as follows.

Definition 4 (Recursive extension by monotonicity) Let f be a function related to the set of
variables X = {x1, ..., xk} and domains [B] = [x1]× ...× [xk]. [B−] (resp. [B+]) is the box obtained from
[B] replacing each interval [xi] related to an increasing variable by xi (resp. xi) and each interval [xj]

26

2.4 Interval extensions of real functions

related to a decreasing variable by xj (resp. xj). Then, the recursive extension by monotonicity of f in

the box [B] is given by:

[f]mr([B]) =

{[
[fmr]([B

−]), [fmr]([B+])
]

if [B−] 6= [B] (or [B+] 6= [B])

[f]([B]) otherwise

Observe that the recursion continues while new monotonicities are found. In other words, while the new
box is different from the previous one ([B−] 6= [B] or [B+] 6= [B]).

In the same way as the extension by monotonicity, the recursive extension by monotonicity can be used
in combination with other extensions. Consider an interval extension [f]x. With the same assumptions of
Definition 4 we can combine the recursive extension by monotonicity with the [f]x extension as follows:

[f]mr+x([B]) =

{[
[fmr]([B

−]), [fmr]([B+])
]

if [B−] 6= [B] (or [B+] 6= [B])

[f]x([B]) otherwise

In Sections 5.6.4 and 5.6.5 we use two variants of the recursive extension by monotonicity: [f]mr+og
using the extension by occurrence grouping ([f]og) described in Chapter 5 and [f]mr+h using the Hansen
extension ([f]h) described in Section 2.4.4.

If AD (see Section 2.2.4.2) is used for computing the interval gradient, then the time complexity for
computing [f]m([B]) is O(e) where e is the number of binary and unary operators in f . The time
complexity of [f]mr is O(ke) where k is the number of monotonic variables in the function. The worst
case occurs when in each recursion only one new variable is found monotonic.

One of the main contributions of this thesis is the proposition of a new extension based on monotonic-
ity. The idea consists basically in generating new monotonic variables by grouping together only some
occurrences of one non-monotonic variable (see Chapter 5).

2.4.3 The Taylor extension

Let f be a continuous and differentiable univariate function in an interval [x]. Then,

(∀a ∈ [x])(∀b ∈ [x])(∃c ∈ [a, b]) : f(b)− f(a) = f ′(c)(b− a)

This theorem is the so-called mean value theorem. Consider the function ha,b(c) = f(a) + f ′(c)(b − a).
Then ∃c ∈ [a, b]: f(b) = ha,b(c). The optimal extension of ha,b(c) is given by [ha,b]opt([x]) = f(a) +

[f ′]opt([x])(b− a), where [f ′]opt is the optimal extension of df(x)
dx . As [ha,b]opt is inclusion monotonic, then

c ⊆ [a, b] ⊆ [x]⇒ [ha,b]opt(c) ⊆ [ha,b]opt([a, b]) ⊆ [ha,b]opt([x])

As b ∈ [x], we obtain finally:

(∀a ∈ [x])(∀b ∈ [x]) : f(b) ⊆ f(a) + [f ′]opt([x])(b− a) (2.14)

Proposition 6 Let f be a continuous and differentiable function in the interval [x] and a be any value
of the interval [x], then

[f]opt([x]) ⊆ f(a) + [f ′]opt([x])([x]− a) ⊆ f(a) + [f ′]([x])([x]− a)

where [f ′] is an interval extension of df
dx .

27

2. Interval Arithmetic

Proof 3 The proposition is obtained by extending to intervals the relation (2.14) and using the property:
[f]opt([x]) ⊆ [f]([x]). �

The first-order Taylor extension in one variable using the midpoint is defined, using Proposition 6, by:

[f]t([x]) = f(Mid([x])) + [f ′]([x])([x]− Mid([x]))

Observe that a has been replaced by the midpoint of the interval.

Figure 2.7 shows an example. The interval function [f]t(x) = f(a) + [f ′]opt([x])(x − a) generates a
cone containing the curve f(x) for any a in the interval [x]. The slopes of the lines bounding the cone

Figure 2.7: The Taylor extension

correspond to the maximum and minimum derivatives of f in the interval [x]. The image of [x] under f
([f]opt([x])) is contained in the image of [x] under [f]t(x), i.e., in the interval f(a) + [f ′]opt([x])([x] − a)
corresponding to the Taylor extension of f .

For the general case, we use the mean value theorem extended to several variables (see the proof in
[Chabert, 2007], page 26):

Theorem 2 (Mean value theorem) Let f be a continuous and differentiable function in the box
[B] = {[x1], ..., [xk]}. X = {x1, ..., xk} is the vector of variables related to f . Then,

(∀A ∈ [B])(∀B ∈ [B])(∃C ∈ [B]) : f(B) = f(A) +
k∑
i=1

∂f(C)

∂xi
(bi − ai)

where ai and bi are the ith values of the vectors A and B resp.

Replacing ∂f(C)
∂xi

by its optimal image for the box [B] (
[
∂f
∂xi

]
opt

([B])), we obtain:

f(B) ⊆ f(A) +

k∑
i=1

[
∂f

∂xi

]
opt

([B])(bi − ai) (2.15)

28

2.4 Interval extensions of real functions

Proposition 7 Let f be a continuous and differentiable function in the box [B], and A be any value of
the box [B], then

[f]opt([B]) ⊆ f(A) +
k∑
i=1

[
∂f

∂xi

]
([B])([B]− ai) ⊆ f(A) +

k∑
i=1

[
∂f

∂xi

]
([B])([B]− ai)

Proof 4 Trivial from (2.15) and using the interval extension property: [f]opt([B]) ⊆ [f]([B]). �

Finally, we deduce the first-order Taylor extension.

Definition 5 (First-order Taylor extension) Let f(X) be a continuous and differentiable function
in the box [B] = [x1]× ...× [xk] where X = (x1, ..., xk) is the corresponding vector of variables of f . The
(centered) Taylor extension is defined by:

[f]t([B]) = f(Mid([B])) +
k∑
i=1

[
∂f

∂xi

]
([B])([xi]− Mid([xi]))

The Taylor extension is not inclusion monotonic (Definition 2), because its evaluation uses an arbitrarily
selected value of the interval [B] (the midpoint).

Using the generalization of the mean value theorem it is possible to obtain the Taylor extension for
greater orders. For instance, the second-order Taylor extension is defined by:

[f]t2([B]) = [f]t([B]) +
1

2

k∑
j=1

(
([xj]− Mid([xj]))×

k∑
i=1

[
∂2f

∂xi∂xj

]
([B])([xi]− Mid([xi]))

)

Remarks and examples

Consider the function f1(x) = 3x3 − 2x2 − x and the interval [x] = [−1, 1]. The derivative of f1 is
f ′1(x) = 9x2− 4x− 1, and the natural extension yields [f ′1]([−1, 1]) = [−5, 12]. The function evaluated in
the midpoint of [x] is f(0) = 0. Then, the Taylor extension computes:

[f1]t([x]) = 0 + [−5, 12]× ([−1, 1]− 0) = [−12, 12]

The optimum image is [f1]opt([−1, 1]) = [−4, 0.098] and the natural extension computes [f1]([−1, 1]) =
[−6, 4]. In this example, the Taylor evaluation is worse than the natural evaluation. This generally occurs
when the interval derivatives have large diameters. Consider now the same function and [x] = [−0.7,−0.6],
the Taylor extension computes:

[f1]t([x]) = f(−0.65) + [f ′1]([−0.7,−0.6])([−0.7,−0.6] + 0.65) = [−1.329,−0.7084]

The optimum image is [f1]opt([−0.7,−0.6]) = [−1.309,−0.768] and the natural extension computes
[f1]([−0.7,−0.6]) = [−1.409,−0.668]. The Taylor evaluation computes evaluations close to the optimal
image when the interval derivative have small diameters. This nice behavior is shared by the extension
by monotonicity, because a small interval partial derivative diameter, related for example to a variable
xi, possibly implies that 0 6∈ [∂f∂xi] (i.e., f is monotonic w.r.t. xi). In the last example, f1 is monotonic
w.r.t. x in the interval [−0.7,−0.6], then the evaluation by monotonicity computes the optimal image.

29

2. Interval Arithmetic

The Taylor extension generally computes sharper images than the extension by monotonicity when the
interval partial derivatives have small diameters but contain zero. Consider the function f2(x, y) =
x2y−xy2−xy with intervals [x] = [−0.2,−0.1] and [y] = [−1.2,−1.1]. The partial derivatives of f w.r.t.
x and y are respectively gx(x, y) = 2xy−y2−y and gy(x, y) = x2−2xy−x. The interval partial derivatives
(computed using the natural extension of gx and gy) are [gx] = [−0.58, 0.47] and [gy] = [−0.58, 0.48]. Then
the Taylor extension computes:

[f2]t([x]) = f2(−0.15,−1.15) + [−0.58, 0.47]× [−0.15, 0.15] + [−0.58, 0.48]× [−0.05, 0.05]

= [−0.11025, 0.12175]

that is sharper than the interval computed by the evaluation by monotonicity: [f]m([x]) = [f]([x]) =
[−0.432, 0.408] ([gx] and [gy] contain 0 so that the monotonicity extension computes the same interval as
the natural evaluation does).

2.4.4 The Hansen extension

Note that the Taylor extension requires that the computation of the interval gradient of the function
considers the entire box.

It is possible to use sharper interval partial derivatives than those used by the Taylor extension and
Proposition 7. The interval partial derivative related to the ith variable can be computed using a box
in which k − i intervals are degenerate. This extension proposed by Hansen and Walster [Hansen and
Walster, 2003] allows a better evaluation of functions than the Taylor extension (see the proof in [Hansen
and Walster, 2003]).

Definition 6 (Hansen extension) Let f be a continuous and differentiable function in the box [B0] =
[x1] × ... × [xk]. X = (x1, ..., xk) is the vector of variables related to f . [B1],...,[Bk] are the set of boxes
defined by [Bi] = [x1]× ...× [xi], Mid([xi+1])× ...× Mid([xk]) (a box with k− i degenerate intervals). The
(centered) Hansen extension is defined by:

[f]h = f(Mid([B])) +
k∑
i=1

[
∂f

∂xi

]
([Bi])([xi]− Mid([xi]))

Remark: Thanks to the automatic differentiation method (see Section 2.2.4.2), the computations of the
interval gradient of a function in a box (as the Taylor extension requires) can be done in two traversals
of the expression tree. In the case of the Hansen extension, each interval derivative is computed in a
different box. If AD is used it would require to traverse twice the expression tree for each variable.
The Hansen extension can be implemented as a recursive version of the Taylor extension. The Hansen
evaluation is better but more expensive than the Taylor evaluation.

Just like the Taylor extension, the Hansen extension can also be generalized to higher orders.

2.4.5 Symbolic-based extensions

We design by symbolic-based extension an extension obtained using a symbolic transformation of the
original function. The main objective of this process is to find a form for the function that computes
sharper evaluations modulo a given extension (e.g., the natural extension, the extension by monotonicity).

30

2.4 Interval extensions of real functions

Consider for instance the function f(x, y) = x− xy with domains x = [−1, 1] and y = [0, 2]. The natural
extension computes [f]([−1, 1], [0, 2]) = [−1, 1] + [−1, 1] × [0, 2] = [−3, 3]. If we factorize the common
term x, we obtain the equivalent function f1(x, y) = x(1− y). The natural extension of f1 computes the
optimal image [−1, 1].

Recall that, in case of multiple occurrence of variables, the natural extension does not generally compute
an optimal image. For this reason, the factorization of common terms is a well-known method for
reducing the dependency problem when the natural extension is used. Reduction in the number of
variable occurrences generally implies better natural extensions, mainly thanks to the subdistributivity
property:

[a]× ([b] + [c]) ⊆ [a]× [b] + [a]× [c]

The ALIAS library, dedicated to solve systems of equations, can use a Maple interface [Merlet, 2000] that
allows it to apply symbolic computation techniques (e.g., heuristics using the Horner scheme explained
above) for reducing the number of occurrences of a variable in each function of the equation system.
Moreover, the symbolic techniques can be applied in any expression that requires being evaluated over
intervals1. In most of the solvers these expressions are numerically evaluated, i.e., without generating
symbolic expressions (e.g., see automatic differentiation in Section 2.2.4.2). The drawback of numer-
ical calculations is that, in general, they do not allow us to reduce the number of occurrences of the
evaluated expression which is computed using the natural extension. More details about the symbolic
transformations implemented by the ALIAS-Maple interface appear in [Merlet, 2000].

Horner-based extensions

For univariate polynomials, the Horner scheme [Horner, 1819] produces the smallest overall number of
arithmetic operations. Consider the polynomial:

f(x) = a0 + a1x+ a2x
2 + ...+ ad−1x

d−1 + adx
d

Then the Horner form of f(x) is

fh(x) = (...((adx+ ad−1)x+ ad−2)x+ ...)x+ a0

The number d of multiple occurrences of x is the same in f(x) and fh(x). We cannot thus deduce that
[fh]([x]) ⊆ [f]([x]) for univariate polynomials. However, due to the decrease in arithmetic operations,
[fh]([x]) is computed faster2.

Example 16 Consider the functions f(x) = x + x4, with the Horner form fh(x) = x(x3 + 1) and the
resp. non-condensed forms g(x) = x + xxxx, gh(x) = x(xxx + 1). Given the interval [x] = [−2, 1] the
natural extensions of the functions compute:

[f]([x]) = [−2, 17] [fh]([x]) = [−7, 14]
[g]([x]) = [−10, 17] [gh]([x]) = [−10, 14]

1For instance, the Jacobian matrix (or partial derivatives) used for computing the Taylor extension (see Section 2.4.3)
and required by the interval Newton method (see Section 3.2.1); the projection functions used for enforcing an approximation
of the hull-consistency (see Section 3.2.3.2), etc.

2In practice, when interval methods are used for solving systems of equations, the impact over the total time depends
less on the number of operations of f than on the filtering power.

31

2. Interval Arithmetic

[f]([x]) and [fh]([x]) are not comparable in terms of evaluation. However, the subdistributivity law guar-
antees the relation [gh]([x]) ⊆ [g]([x]) between the non-condensed forms.

Carrizosa et al. [Carrizosa et al., 2004] propose a Horner-based interval extension for a univariate function
f . This extension consists in bisecting the domain of the variable in zero and evaluating each subdomain
using the Horner extension (i.e., the natural extension of the Horner form). This new extension computes
an interval sharper than or equal to the natural and the Horner extensions of f .

In multivariate polynomials, the Horner’s scheme can be applied to one variable at a time, considering
all the other variables as constants. As we can imagine, the resulting form depends on the order in which
the variables are treated. Consider the function f(x1, x2, x3) = x31x2 + x21x3 + x21x2x3. If we apply the
Horner’s scheme to x1 we obtain:

fh(x1)(x1, x2, x3) = x21(x2x3 + x3 + x1x2)

If we now select the variable x3 we obtain:

fh(x1.x3)(x1, x2, x3) = x21(x3(x2 + 1) + x1x2)

Observe that, contrarily to univariate polynomials, the Horner’s scheme applied to multivariate polyno-
mials reduces the number of occurrences of variables. Consider the interval [x1] = [−1, 1], [x2] = [−8, 1]
and [x3] = [−3, 4]. The natural extensions of f and fh(x1.x3) compute:

[f]([x1], [x2], [x3]) = [−43, 36] [fh(x1.x3)]([x1], [x2], [x3]) = [−36, 29]

Ceberio and Kreinovich propose in [Ceberio and Kreinovich, 2004] two greedy algorithms for selecting
the order in which the variables should be treated by the Horner’s scheme. The ALIAS-Maple interface
used by the ALIAS library [Merlet, 2000] applies the Horner scheme to expressions using heuristics aiming
at reducing the number of variable occurrences.

The nested extension [Ceberio and Granvilliers, 2001; Stahl, 1995]

Consider the quasi-polynomial (i.e., a polynomial with expressions as coefficients):

f(X) = a0(X) + a1(X)m1(X) + a2(X)m2(X) + ...+ ad(X)md(X)

where X is a vector of variables, ai(X) is a non-monomial (e.g., sin(x+y)) and mi(X) is a monomial (e.g.,
x2y). The nested form is a quasi-polynomial obtained from a sequence of factorizations of two products
which are selected if the total degree (the sum of exponents) of their common factors is maximal.

Example 17 Consider the function f(x) = 2xy2z − y2z2 + exp(x)x2z. First, the nested form factorizes
the product y2z appearing in the first and second term of the sum, i.e.

fn(y2z)(x) = (2x− z)y2z + exp(x)x2z.

Finally the nested form is obtained by factorizing the function by z, i.e.,

fn(y2z,z)(x) = ((2x− z)y2 + exp(x)x2)z

Consider the interval [x] = [1, 1], [y] = [0, 1] and [z] = [0, 1]. The natural extension of f computes
[−1, 4.72], and the nested extension of f , i.e., the natural evaluation of fn(y2z,z), computes [0, 4.72].

More details about the nested form can be found in [Stahl, 1995] and [Ceberio and Granvilliers, 2001].

32

2.4 Interval extensions of real functions

2.4.6 Combining extensions

The ideal would be to know a priori which extension is the best for evaluating a given expression. This
problem is not trivial, because it depends on the form of the expression but also on the domain of
variables.

A naive approach is to intersect the intervals computed by the different extensions. However, this
approach may result in a lot of useless computations.

A good criterion is to use the known properties of the different extensions. For example, we know
that if all the variables appear once in a function (provided the function is continuous over the box),
the natural extension computes the optimal image. When the intervals are small, possibly the interval
partial derivatives will also be small, then the Taylor extension, the Hansen extension and the extension
by monotonicity can be good options. Remark that both the Taylor extension and the extension by
monotonicity, need to compute the interval gradient in a box. Then, it seems reasonable to use these
extensions together.

Suppose [y] = [f]m([B]), where [y] is the interval obtained by evaluating by monotonicity the function f
in the box [B]. Recall that the bounds of [y] are computed using the natural extension in the boxes [B−]
and [B+] with degenerate intervals (see Definition 3 in Section 2.4.2). Instead of the natural evaluation,
we can use the Taylor (or Hansen) extension for evaluating the bounds of [y] then a combined extension
monotonicity-Taylor could be:

[f]m+t([B]) =
[
[f]t([B

−]), [f]t([B+])
]

The same reasoning can be used for combining the recursive extension by monotonicity with the Taylor
(or Hansen) extension.

If the only objective of a problem is to compute a good approximation of the domain image under a
complicated function, a strategy splitting the variables could be more effective. The box is divided in
several subboxes, each subbox is evaluated with some extensions. At the end the different evaluations
are hulled. This method is effective (but expensive) for evaluating one function.

Conclusion

In this chapter we have introduced the basic concepts of interval arithmetic: (e.g., basic operators, interval
extensions) mainly related with the evaluation (or image computation) of a function in a given domain.
In the next chapter we describe several interval-based techniques used for solving systems of constraints.

33

2. Interval Arithmetic

34

Chapter 3

Intervals for solving Systems of
Equations

Contents

3.1 Solving systems of constraints: the classical interval-based strategy 36

3.2 Filtering/contraction algorithms . 38

3.3 Splitting Algorithms . 58

3.4 Other tools related to interval-based methods . 60

3.5 Interval-based solving tools . 65

3.6 Other research fields related to intervals . 65

3.7 Conclusion . 67

The first motivation to use interval methods for solving systems of equations is the reliability of the
computations and the offered control of rounding errors over the floating point numbers. Consider for
example the equation 2x+ 1/3 = 1. If we solve it allowing 3 decimal places, possibly we will obtain the
solution x = 0.333. However, when we will try to verify the result evaluating the left side of the equation,
we will obtain 2x+ 1/3 = 0.666 + 0.333 = 0.999 6= 1. If the computations are performed using intervals
we would obtain x ∈ [0.333, 0.334], that is, the solution of x is certainly in the interval [0.333, 0.334].
Evaluating the left side of the equation using interval arithmetic we obtain 2[x]+[1/3] = [0.999, 1.002] 3 1.

The second motivation comes from the complete treatment of systems of nonlinear constraints (equations,
inequalities) provided by interval methods. A complete treatment means that interval methods are able
to find all the solutions or to prove that there is no solution in the system. This is the main motivation
behind the work presented in this thesis.

Moore [Moore, 1966] proposed the first algorithmic strategy for solving systems of nonlinear equations.
This strategy uses a Newton-Raphson operator extended to intervals (described in Section 3.2.1) for
converging onto solutions (or to an empty box) when the search space is small enough. Many versions
of this operator have been the main concern of the interval analysis community during decades. Moore’s
strategy also uses a branching operator: the bisection of the domains of variables (box) into two subboxes.
The branching allows a complete exploration of the search space with the intent that the Newton-Raphson
operator effectively converges onto solutions.

Due to the combinatorial aspect of Moore’s method, operators enforcing local consistencies have been
added for reducing the search space in polynomial time (local consistency techniques and constraint
propagation algorithm are described in Section 3.2.3).

35

3. Intervals for solving Systems of Equations

Recently, thanks to the increasing performance of these methods, scientists of different fields in applied
mathematics or physics start using interval techniques for solving their problems.

In this chapter we describe the most well-known interval-based strategies and algorithms for solving
systems of constraints. Several of them are used by the algorithms proposed in this thesis.

3.1 Solving systems of constraints: the classical interval-based strat-
egy

Using the material introduced in of Chapter 2 we can present a method for finding the set of real solutions
of a system of constraints (equations/inequalities) or numerical CSP.

Definition 7 (Numerical CSP) A numerical CSP (NCSP) P = (X,C, [B]) contains a set of con-
straints C and a set X of n variables. Every variable xi ∈ X can take a real value in the interval [xi]
and [B] is the Cartesian product (called a box) [x1]× ...× [xn]. A solution of P is an assignment of the
variables in X satisfying all the constraints in C.

Consider the NCSP P = (C,X, [B0]) related to the set of constraints C : {f1(X) = 0, ..., fm(X) = 0}.
The set of solutions of P is given by:

SX = {Xs, Xs ∈ [B0](∀i = 1..m) : fi(Xs) = 0},

Consider a precision ε > 0. An interval-based strategy finds a set of boxes S[B], with interval diameters
less than ε, enclosing all the points in SX (solutions of P), i.e.,

Xs ∈ SX ⇒ ∃[Bs] ∈ S[B] such that Xs ∈ [Bs]

Preferably, a “solution” box contains at least one solution of P .

If it is not properly fixed the ε parameter can cause disastrous results. For example in systems with
continuous solutions ε = 10−6 could return millions of small solutions, decreasing the performance of the
solver, while the same value offers good results when the system contains only zero-dimensional solutions.

An algorithm based on the branch & prune method interleaves the following two procedures:

• Evaluation: For each function fi the algorithm computes an approximation of the image of the
current box [B] under fi (using some interval extension [fi]). If the approximated image does not
contain zero (0 6∈ [fi]([B])) then the full system has no solution in [B].

• Splitting/Bisection: The interval of one variable in X is split into two parts, generating two new
boxes. The procedure (evaluation, bisection) is executed recursively in one box and then in the
other. This procedure performs a tree search and carries out a combinatorial solving process.

The recursive process ends (i.e., a leaf of the search tree is reached) when the current box becomes atomic
(i.e., all the interval diameters of the box are less than ε) or when the evaluation proves the non-existence
of solution in the current box.

This solving method has very low performance in practice. The actual solving tools replace the bisec-
tion/evaluation strategy by a bisection/contraction one, where contraction algorithms reduce domains of
variables by eliminating inconsistent values from the bounds of the box with no loss of solutions.

36

3.1 Solving systems of constraints: the classical interval-based strategy

The Solver algorithm (Algorithm 1) performs a depth-first search in a tree implemented as a stack. It
achieves an exhaustive exploration of the search space with the objective of finding a set of atomic boxes
containing all the solutions. The procedure is initialized with a box [B0] containing the initial domain
of each variable in the system. The algorithm ends with two sets of atomic boxes: certifiedSolutions
and nonCertifiedSolutions.

Algorithm 1 Solver(in: F , X, [B0], ε; out: certifiedSolutions, nonCertifiedSolutions)

L← {[B0]}
while L 6= 0 do

[B]← L.Pop()
[B]← ContractICP([B], ...)
if [B] 6= ∅ then

([B],certified?) ← ContractNewton([B], ...)
end if
if [B] 6= ∅ then

if Diam([B]) < ε then
if certified? then
certifiedSolutions ← certifiedSolutions ∪ {[B]}

else
nonCertifiedSolutions ← nonCertifiedSolutions ∪ {[B]}

end if
else

/* Splitting/bisection */
([Bl], [Br])← Split([B], ...)
L.Push([Bl]); L.Push([Br])

end if
end if

end while

The main procedures of the algorithm are:

• ContractICP: Filters the box using contractors from (interval) constraint programming. The main
objective is to reduce the current box [B] on its bounds with no loss of solutions or, in the ideal
case, to obtain an empty box, proving the non-existence of solution. This type of contractors is
described in Section 3.2.3.

• ContractNewton: Similar to ContractICP, the aim of this procedure is the filtering of the box.
In addition, if some conditions are satisfied, these operators can determine if the current box
[B] contains a unique solution (certified? is set to true). When this occurs, some iterations
of ContractNewton quickly converge to an atomic box containing the certified solution. These
operators are described in Section 3.2.1.

• Split: When the current box becomes neither an atomic box nor an empty box, the interval of
one variable is split into two parts (bisection), which generates two new boxes [Bl] and [Br] that
are pushed into L. Observe that the management of L as a stack implements a depth-first search.
More clever splitting techniques for selecting the next variable interval to be split are described in
Section 3.3.

37

3. Intervals for solving Systems of Equations

3.2 Filtering/contraction algorithms

Filtering/contraction consists in eliminating values from the domains of variables (search space) that do
not satisfy one or more constraints in the system. Consider the function f(x, y) = x2 + y, with domains
[x] = [−1, 2] and [y] = [−1, 0]. The equation f(x, y) = 0 is inconsistent when x is greater than 1. Indeed,
if x > 1 then there does not exist any value y ∈ [y] such that f(x, y) = 0. Then, a filtering technique
could reduce the domain of x to [−1, 1]. Remark that filtering techniques do not lose any solution of the
system.

Definition 8 (Filtering) Let P = (C,X, [B0]) be an NCSP, where C is the set of constraints and X
is the set of variables. We call filtering (or contractor) a function ΦP that accepts as input a box
[B] ⊆ [B0] and returns a box ΦP ([B]) such that:

If Xs ∈ [B] is a solution of P then Xs ∈ ΦP ([B]) (conservative)
ΦP ([B]) ⊆ [B] (contractive)
If [B′] ⊆ [B] then ΦP ([B′]) ⊆ ΦP ([B]) (monotonic)

In this thesis, we distinguish three kinds of contraction algorithms:

• Contractors from interval analysis.

• Contractors from constraint programming, including constraint propagation algorithms and algo-
rithms achieving stronger partial consistencies.

• Linear relaxation algorithms.

In the next sections, we detail these contractors with a focus on the constraint propagation algorithms.

3.2.1 Operators from interval analysis

One of the most effective filtering algorithms used in interval analysis is the extension of the Newton
method to intervals (interval Newton). The objective of the classical Newton method is to find successively
better approximations to the zeros of a real function. Consider a continuous and differentiable function
f(x) and its derivative f ′(x). If x(l) is an approximation of a solution of the equation f(x) = 0, then a
better approximation is obtained by:

x(l+1) = x(l) − f(x(l))

f ′(x(l))

The interval Newton method generalizes the procedure to intervals. Consider a function f(x) and an
initial interval [x]. The procedure applies successively the contraction step [x(l+1)] ← [x(l)] ∩ N([x(l)])
for contracting the interval (l indicates the iteration number), where N is the Newton operator. If the
iterations converge to a fixpoint, then the procedure will return an atomic interval containing the only
solution of the equation f(x) = 0 in [x]. If an iteration returns an empty interval, then there is no solution
in [x]. When the iterations do not converge to a fixpoint, we cannot predict the presence or absence of
solutions in [x].

For deducing the Newton operator, we use the mean value theorem:

(∀x ∈ [x])(∀xm ∈ [x])(∃c ∈ [x]) : f(x) = f(xm) + f ′(c)× (x− xm) (3.1)

38

3.2 Filtering/contraction algorithms

where f ′ is the derivative of f . As f(x) = 0 we can isolate the variable x from (3.1) as follows:

f(x) = 0 ⇒ (∀xm ∈ [x])(∀x ∈ [x])(∃c ∈ [x]) : 0 = f(xm) + f ′(c)× (x− xm) (3.2)

f(x) = 0 ⇒ (∀xm ∈ [x])(∀x ∈ [x])(∃c ∈ [x]) : x = xm −
f(xm)

f ′(c)
(3.3)

Finally, the Newton contractor is obtained by an interval extension (e.g., the natural extension) of the
right side of the equation (3.3):

N([x]) = xm −
f(xm)

[f ′]([x])
(3.4)

where [f ′] is an interval extension (e.g., the natural extension) of f ′ and xm = Mid([x]) (or any other
point chosen from the interval [x]).

The method explained above is called univariate interval Newton. Due to the discontinuity of the
division operator (when 0 ∈ [f ′]([x])) it is possible that the natural evaluation of N([x]) is overestimated.
To avoid this overestimation, it is necessary to use an extended version of the interval division to return
a union instead of the hull of the intervals (for more details see the work of Ratz [Ratz, 1996]). The
intersection and subtraction should also be modified accordingly.

Example 18 Consider the function f(x) = x2 − 4 with the initial domain [x] = [1, 5]. The first three
iterations of the Newton method compute:

[x]← [x] ∩N([x]) = [1, 5] ∩ 3− f(3)
[f ′]([1,5]) = [1, 2.5]

[x]← [x] ∩N([x]) = [1, 2.5] ∩ 1.75− f(1.75)
[f ′]([1,2.5]) = [1.9375, 2.21875]

[x]← [x] ∩N([x]) = [1.9375, 2.21875] ∩ 2.07813− f(2.07813)
[f ′]([1.9375,2.21875]) = [1.9959, 2.00633]

The generalization of the method to n variables and n equations is obtained by using the mean value
theorem (see Section 2). It consists in replacing in (3.2) the variable x by a vector of variables X =
{x1, ..., xn}, f by a vector of functions F = {f1, ..., fn} and the derivative of f by the Jacobian matrix.
This matrix contains in each cell (i, j) the partial derivative of fi w.r.t. the variable xj (∂fi∂xj

).

F (X) = 0⇒ (∀Xm ∈ [B])(∃A ∈ [A]) : 0 = F (Xm) + A.(X −Xm) (3.5)

where [A] is an interval evaluation of the Jacobian matrix in the box [B].

The relation can also be written as follows:

F (X) = 0⇒ (∃A ∈ [A]) : A.Y = −F (Mid([B])) (3.6)

where Xm has been replaced by Mid([B]) and Y = X − Mid([B]). In sections 3.2.1.1 and 3.2.1.2, we
describe classical techniques for finding a box [Ys] ⊆ [B] that contains all the solutions that satisfy the
linear system in the right side of the relation 3.6, i.e.,

[Ys] ⊇ {Y, Y ∈ ([B]− Mid([B])) , (∃A ∈ [A]),A.Y = −F (Mid([B]))} (3.7)

As X = Mid([B]) + Y , the multivariate interval Newton operator is obtained extending to intervals the
left side of the equation:

N([B]) = Mid([B]) + [Ys] (3.8)

39

3. Intervals for solving Systems of Equations

Example 19 Consider the two equations f1(x1, x2) = x21+x22−1 = 0 and f2(x1, x2) = (x1−1)2+x22−1 =
0 and the initial intervals [x1] = [0.2, 0.8] and [x2] = [0.6, 0.9] ([B(0)] = {[x1], [x2]}).

First we find a box [Ys] that satisfies the relation (3.7), where [A] =

(
[0.4, 1.6] [1.2, 1.8]

[−1.6,−0.4] [1.2, 1.8]

)
is the

interval Jacobian matrix evaluated in [B(0)] (from [Bliek, 1992]).

The interval Newton operator uses the box [Ys] to obtain the first domain reduction ([B(1)] = Mid([B(0)])+
[Ys]):

[B(1)] = {[0.406, 0.594], [0.854, 0.9]}
The following iterations make the box converge quickly to the unique solution of the system in [B(0)]:

[B(2)] = {[0.499, 0.501], [0.8658, 0.8664]}
[B(3)] = {[0.4999999, 0.5000001], [0.86602538, 0.86602544]}

There exist many variants of the interval Newton method differing in:

1. The used matrix (instead of the Jacobian matrix).

2. The use of symbolic manipulation of the matrix coefficients with the objective of decreasing the
number of multiple occurrences of variables [Merlet, 2002].

3. The way the system is linearized. For instance, Krawczyk (see Section 3.2.1.3), Borsuc, Kantorovich
(see Section 3.2.1.4), etc.

4. The technique used for solving the linear system: matrix inversion, Gauss-Seidel, Hansen-Bliek
[Hansen and Walster, 2003], Gauss elimination, LU, etc.

5. The use of preconditioning for obtaining more effective contractions.

For instance, the interval Newton contractor implemented in Ibex [Chabert, 2009; Chabert and Jaulin,
2009c] (the interval library used for our experiments) uses the preconditioned Hansen matrix and solves
the linear system using a Gauss-Seidel procedure.

The main strength of interval Newton contractors is that it considers all the system as one only global
constraint reducing all the variables at the same time. The main drawback is that it only works with
square well-constrained systems (i.e., square systems of independent equations with a finite number of
solutions) only converging when the box is small enough and contains a unique solution. Local contractors
(contractors that consider one constraint at a time) from interval constraint programming seem to be a
good alternative when the Newton iteration is not effective (see Section 3.2.3).

In the next section, we describe the Gauss-Seidel method. This technique is often used in solvers for
solving the linear system (3.7). Section 3.2.1.2 describes the preconditioning, a technique commonly used
for improving the performance of the method (e.g., Gauss-Seidel) used for solving the linear system (3.7).

3.2.1.1 Gauss-Seidel method

The Gauss-Seidel method is a well-known iterative method for solving linear systems of equations. The
extension of the method to intervals is commonly used by the interval Newton procedure for finding a
set of values [Ys] ⊆ [Y] satisfying the relation (3.7), i.e.,

[Ys] ⊇ {Y ∈ [Y], (∃A ∈ [A]),A.Y = D}

40

3.2 Filtering/contraction algorithms

where [A] is a square interval matrix and D is a vector. The Gauss-Seidel method applies the iteration
[Y] ← [GS]([Y]) until reaching the fixpoint converging to the solution. [GS] is the Gauss-Seidel
operator. Each element of the vector [GS]([Y]) = ([GS1]([y1]), ...[GSm]([ym]))T is given by:

[GSi]([yi]) = −

∑
i 6=j

[aij][yj]− di

[aii]
,

where di is the ith element of the vector D and [aij] is the value of the cell (i, j) of the interval matrix
[A].

3.2.1.2 Preconditioning

The preconditioning is a technique that transforms the problem of finding the set

{Y ∈ [Y], (∃A ∈ [A]),A.Y = D}

into finding the set
{Y ∈ [Y], (∃A′ ∈ P.[A]),A′.Y = P.D}

by performing a left multiplication of [A] and D by a punctual matrix P such that the new problem has
a better “numerical behavior” and contains the set of solutions of the original one.

The preconditioning is commonly used in the interval Newton method for improving the precision of the
solution [Ys] (see the relation (3.7)) when it is solved by some solving technique (e.g., Gauss-Seidel).

Example 20 Consider the well-known ill-conditioned Hilbert matrix. Each cell aij in the Hilbert matrix
is equal to 1

i+j−1 . Then the 3× 3 (approximated) Hilbert matrix is:

A =

 1 0.5 0.333
0.5 0.333 0.25

0.3333 0.25 0.2

If we solve the equation A.Y = D using a classic method, with D = (1, 1, 1)T we obtain:

Ys = (3.04,−24.21, 30.19)

Now, if we add a small uncertainty: D = (1.1, 1.1, 1.1)T the new result amplifies the uncertainty:

Ys = (3.95,−27.84, 33.22)

In intervals methods, the ill-conditioning implies large intervals producing a big overestimation in the
resolution of the interval equation.

The most used preconditioning consists in using the matrix P = Mid([A])−1, where Mid([A]) is a real
matrix obtained by replacing each interval element of the interval matrix [A] by its midpoint. This
preconditioning implies that each interval [a′ii] on the diagonal of P.[A] is large and the intervals [a′ij]
(j 6= i) are small. Consider that [a′ij] represents an element of the preconditioned matrix (P.[A]), [yi]
represents an element of the vector [Y] and d′i represents an element of the vector P.D. If the Gauss-
Seidel method is used for solving the system, the following iteration is applied in each equation i (the
procedure iterates over all the equations until reaching the fixpoint):

[yi]← [yi] ∩ −
[a′1i][y1] + ...+ [a′(i−1)i][yi−1] + [a′(i+1)i][yi+1] + ...+ [a′ni][yn] + d′i

[a′ii]

41

3. Intervals for solving Systems of Equations

As the intervals in the numerator of the fraction are small, the operator probably will perform a good
contraction over the interval [yi].

The preconditioning performs a kind of reparation of an ill-conditioned matrix in order to obtain a more
precise solution of the related linear system.

3.2.1.3 The Krawczyk operator

The Krawczyk operator ([Krawczyk, 1969]) can be used as an alternative of the Newton operator defined
by (3.8), page 39. Thus, the contraction step using the Krawczyk operator is given by:

[B]← [B] ∩K([B])

where K is the Krawczyk operator.

In the same way as the Newton operator, the Krawczyk operator is deduced from the extension of the
mean value theorem to intervals, i.e.:

(∀Xm ∈ [B])(∀X ∈ [B])(∃M ∈ [A] : F (X)− F (Xm) = M(X −Xm)

where [A] is the interval Jacobian matrix of the function F in the box [B]. However, instead of using the
mean value theorem to obtain a linear system with interval coefficients, M is decomposed into (M−I)+I.
This decomposition still allows us to isolate X:

F (X) = 0⇒ (∀Xm ∈ [B])(∃M ∈ [A]) : X = Xm − F (Xm) + (I −M)(X −Xm)

Thus, extending the result to intervals, the Krawczyk operator is defined by:

K([B]) = Xm − F (Xm) + (I− [A])([B]−Xm)

where Xm = Mid([B]) (or any other point arbitrarily chosen from the interval [B]).

Like for the Newton operator, the interval Jacobian matrix can be preconditioned as shown in Section
3.2.1.2.

3.2.1.4 Kantorovich’s theorem

Kantorovich’s theorem (described in [Demidovitch and Maron, 1973; Ortega and Rheinboldt, 1970; Tapia,
1971]), using the second derivatives of the function (the Hessian matrix), allows us to construct, under
certain conditions imposed by the theorem, a box [B′] such that X0 ∈ [B′] ⊂ [B], where X0 is the starting
point of the method.

If [B′] is successfully generated, then two interesting properties are verified:

• There exists a unique solution in [B′].

• A classical interval Newton method starting with X0 is able to converge to the solution.

Kantorovich’s theorem can be used to prove the existence and uniqueness of solutions in a box. Moreover,
the theorem can be used to eliminate boxes that do not contain any solution or to filter boxes that are
close to a certified solution ([Merlet, 2000]).

42

3.2 Filtering/contraction algorithms

3.2.2 Linear relaxation

Linear relaxation is often used in global optimization problems that consist in minimizing an objective
function under nonlinear constraints. Linear relaxation based methods are commonly used to speed up
the convergence to a global optimum.

The principle consists in approximating the nonlinear constraints by a set of enclosing linear inequalities
generally treated by a Simplex algorithm. We can make three important remarks:

• The enclosing linear system explains the term relaxation. Indeed, the linear system contains more
solutions than the nonlinear system. In case of optimization, relaxing the objective function allows
us to find a lower bound of the optimal value.

• If the linearization is performed without taking into account some considerations due to floating
point numbers, it is possible, in pathological cases, to miss the conservativeness property of intervals,
thus resulting in a loss of solutions. In this respect QuadSolver [Lebbah et al., 2005] and GlobSol

[Kearfott et al., 1996] are rigorous (i.e., they do not lose solutions), contrarily to Baron [Sahinidis
and Twarmalani, 2002].

• Most of the available Simplex algorithms handle floating point numbers and are not rigorous.
For obtaining reliable upper bounds for the optimum, QuadSolver implements, for example, a
cheap postprocessing procedure introduced in [Neumaier and Shcherbina, 2004], based on directed
roundings and interval arithmetic.

Linear relaxation is used in several tools like Globsol, QuadSolver or Baron.

In the case of solving system of constraints, the contraction algorithm Quad [Lebbah et al., 2005] combines
linear relaxation and the algorithm HC4 (detailed in Section 3.2.3.4) of constraint programming. The basic
steps of the Quad contractor are:

1. The system is reformulated: the nonlinear terms are replaced by a new variable (e.g., x2 by yi).

2. The new system is extended by introducing redundant linear constraints to provide tight linear
approximations of the nonlinear terms. Then, a Simplex algorithm is used to reduce the bounds
of each variable x (i.e., x = min x in LP and x = max x in LP , where LP corresponds to the
subsystem of linear constraints).

3. The reductions performed in step 2 are propagated to the whole system (including the nonlinear
terms) by using the HC4 algorithm.

The main differences among the algorithms in this community come from the way the linear relaxation
is obtained. For an exhaustive description of the existing techniques see [Sherali and Adams, 1999].

Due to the success of these approaches in combinatorial global optimization, it seems important to make
a comparison with the methods of interval analysis and with interval constraint programming. Arnold
Neumaier and the COCONUT project have contributed to integrate the 2B algorithm inside Baron. The
algorithm CIRD [Vu et al., 2009a], the global optimization tool by Lebbah, Rueher, Michel, Goldsztejn
[Lebbah et al., 2005; Rueher et al., 2008] and the tool by Baharev and Ré [Baharev and Rév, 2009] are
first examples integrating linear relaxation with constraint programming algorithms.

43

3. Intervals for solving Systems of Equations

3.2.3 Constraint propagation algorithms

The constraint propagation algorithms are issued from constraint programming over intervals. These
algorithms focus on the domain reduction w.r.t. only one equation/constraint. A propagation algorithm,
similar to the well-known AC3 algorithm in finite domain CSPs, is used for propagating the reductions to
all the system until reaching a fixpoint. Algorithm 2 describes the basic procedure. var(c) corresponds
to the set of variables implied in the constraint c.

Algorithm 2 Propagation(in: C,X, τpropag); out: [B]

Q← {c, c ∈ C}
while Q 6= ∅ do
c← Q.Pop()
[B′]← Revise(c,X, [B])
/* [B] = {[x1], ..., [xk]} and [B′] = {[x′1], ..., [x′k]} */

for all xi ∈ var(c) such that
Diam([xi])−Diam([x′i])

Diam([xi])
> τpropag do

/* Constraint propagation */
for all c′ ∈ C such that xi ∈ var(c′) and c′ 6= c do
Q.Push(c′)

end for
end for
[B]← [B′]

end while

At first, the propagation queue Q is initialized with all the constraints of the system. Then, an iteration
handles each constraint in Q until the queue becomes empty. The Revise procedure performs the
contraction, i.e., it eliminates inconsistent values from the bounds of the box that do not satisfy the
constraint c.

After that, each variable xi implied in c with a reduction ratio on the domain size superior to τpropag
propagates the changes to the other constraints involving xi (in the code, every c′ involving xi is pushed
into Q).

Fixpoint of constraint propagation

The fixpoint of the Propagation algorithm is reached when no variable is reduced more than τpropag with
the current Revise procedure.

τpropag is a precision parameter used for avoiding a slow convergence of the propagation. In Algorithm 2
τpropag corresponds to a relative size of the interval. It is also commonly implemented as a fixed interval
size. In Ibex the default value of the τpropag parameter used in the propagation algorithm HC4 is fixed to
10%.

The final contraction depends on the order in which the constraints are treated by the propagation. Due
to the fact that computers work with floating point numbers, τpropag must be greater than or equal to the
diameter of two consecutive floating point numbers. When τpropag is equal to this diameter, the filtering
performed by the propagation algorithm is unique even when the order between the constraints changes.

The propagation algorithms used by interval-based methods all use a similar AC3-like propagation pro-
cedure. They mainly differ in the Revise procedure.

44

3.2 Filtering/contraction algorithms

In the next sections we review the main Revise methods enforcing partial consistencies with the objective
of reducing the domains of variables. We will start with the well-known Arc-consistency issued from finite
domain CSPs.

3.2.3.1 Arc-consistency

Definition 9 (Arc-consistency for numerical CSPs) Let c be a constraint involving the vector of
variables X = (x, y1, ..., yk). [B] = [x] × [y1] × ... × [yk] is the domain of X. The pair (c, x) is arc-
consistent if for every value v ∈ [x] there exists a vector (v1, ..., vi−1, vi+1, ..., vn) ∈ [y1]× ...× [yk] such
that c(v, v1, ..., vn) is satisfied.

An NCSP P = (C,X, [B]) is arc-consistent if each pair (c, x) with c ∈ C and x ∈ X is arc-consistent.

In general, enforcing arc-consistency in a constraint system can lead to a combinatorial explosion [Hyvönen,
1992].

Example 21 Consider the constraint c1 : sin(x) = y with domains [x] = [0, 31416] and [y] = [0.5, 0.7].
Due to the periodicity of the sine function, enforcing arc-consistency leads to the union of 104 intervals
for the variable x.

Partial consistencies arising from finite domain CSPs guarantee conditions over all the elements of a
domain. This does not seem reasonable when we lead with constraints on the real numbers (actually
on the floating point numbers) due to the very large domains. Thus, a more reasonable approach is to
guarantee conditions only over the bounds of the domain avoiding combinatorial explosion. This brings
the community to the definition of new partial consistencies.

3.2.3.2 Hull-consistency

Consider the constraint c : f(X) = 0. Close to the idea of computing the exact/optimal range of an
interval function f , the objective of a revise procedure is the optimal filtering of [B], i.e., the elimination
of all the values, from the bounds of [B], that do not satisfy c. The elimination of inconsistent values
from the domain of a variable is called projection. The smallest box containing all the solutions of c
in [B] is called hull-consistent or 2B-consistent [Lhomme, 1993]. The hull-consistency is close to the
bound-consistency used in finite domain CSPs [Van Hentenryck et al., 1994].

Definition 10 (Projection of a constraint) Let c be a constraint involving the variables {x1, ..., xk}.
and [B] = [x1]× ...× [xk] be the corresponding domains. The projection of c over xi restricted to the box
[B] (denoted Πc

x([B])) is:

Πc
x([B]) = {vi ∈ [xi],∃(v1, ..., vi−1, vi+1, ..., vk) ∈ [B] such that c(v1, ..., vk) is satisfied}

Note that the projection of a constraint over a variable does not necessarily yield an interval. When
the function is discontinuous or non-monotonic over the domain, the corresponding projections may
correspond to a set of intervals. For simplicity we sometimes call projection the hull of this set of
intervals, although the correct term should be projection hull.

45

3. Intervals for solving Systems of Equations

Example 22 Consider the constraint c : x2 = y with domains [x] = [−2, 2] and [y] = [1, 4], the projection
of c over x is Πc

x([B]) = [−2,−1] ∪ [1, 2]. The projection hull is Hull(Πc
x([B])) = [−2, 2].

Definition 11 (Hull-consistency) Let c be a constraint involving the vector of variables
X = (x, y1, ..., yk). [B] = [x] × [y1] × ... × [yk] is the domain of X. The pair (c, x) is hull-consistent in
[B] if:

∃v1, ..., vk ∈ [y1]× ...× [yk] such that c(x, v1, ..., vk) is satisfied,
∃v1, ..., vk ∈ [y1]× ...× [yk] such that c(x, v1, ..., vk) is satisfied.

A constraint c is hull-consistent if for all x ∈ var(c), (c,x) is hull-consistent. An NCSP P = (C,X, [B])
is hull-consistent if each pair (c, x) with c ∈ C and x ∈ X is hull-consistent in [B].

The hull-consistency is restricted to the bounds of the variable domains, but some values inside the
domain may be inconsistent.

Projections over the variables of a constraint are idempotent, and the results are the same regardless
of the order in which they are applied. Then, for enforcing the hull-consistency of a constraint c, it
is enough to project once over each variable involved in c. In practice however, projections are often
computed using a precision (ε). Thus, the results could depend on the order in which they are applied.

3.2.3.3 Hull-consistency of primitive constraints

There exist several difficulties for computing optimal projection hulls (thus for enforcing hull-consistency)
in polynomial time. The reasons are the same as for obtaining an optimal evaluation, i.e., rounding errors,
discontinuity of the function and the dependency problem (see Section 2.3.2).

Consider the constraint c : x+ y = z with x = [−1, 1], [y] = [1, 2] [z] = [1, 1]. The more intuitive method
to compute the projection of c over x consists in isolating the variable and computing the projection using
interval arithmetic, i.e., intersecting the current interval [x] with an interval evaluation of the expression
z − y, i.e.,

[x]← [x] ∩ ([z]− [y]) = [−1, 1] ∩ ([1, 1]− [1, 2]) = [−1, 0]

In this simple example the projection is optimal. However, if z or y appears several times, we will face
with the dependency problem in the projection evaluation. If the variable x appears several times in c,
the isolation will become difficult or impossible.

As variables with multiple occurrences cannot generally be isolated, the method adds the projection
functions corresponding to the isolation of each occurrence of variables. This method enforces the hull-
consistency of the primitive constraints related to a constraint [Collavizza et al., 1999]. The primitive
constraints of a constraint c are obtained by decomposing c into a set of binary or ternary constraints
semantically equivalent to c.

Remark

The ALIAS framework, implemented by Jean-Pierre Merlet [Merlet, 2002], improves the filtering power
of each projection function in Maple by using symbolic computations (for example reducing the multiple
occurrences of variables using the Horner form, see Section 2.4.5). Moreover, if the option allowing the
use of derivatives is activated, the projection functions are evaluated by monotonicity (see Section 2.4.2).

46

3.2 Filtering/contraction algorithms

Example 23 Consider the constraint c : x2 − x + y = 0 with domains [x] = [1, 8] and [y] = [−1, 1].
For computing the approximate projection of c over x, we generate two projection functions isolating the
occurrences of x:

p1(x, y) =
√
x− y

p2(x, y) = x2 − y

The functions are then evaluated using the natural extension, i.e., [x] ← [x] ∩ [p1]([x], [y]) = [1, 8] ∩√
[1, 8]− [−1, 1] = [1, 3] and [x]← [x] ∩ [p2]([x], [y]) = [1, 3] ∩ ([1, 3]2 − [−1, 1]) = [1, 3]. The approximate

projection obtained is [1, 3].

HC3-Revise [Benhamou et al., 1994] and HC4-Revise [Benhamou et al., 1999] are cheaper methods for
computing the hull-consistency of primitive constraints.

HC3-Revise decomposes the constraint c into a set of primitive constraints. The primitive constraints
are projected over their variables using arithmetic evaluations and narrowing operators. HC4-Revise

performs a kind of automatic projection (similar to the automatic differentiation method presented in
Section 2.2.4.2) with no need of decomposing the constraint.

Narrowing operators

The narrowing operators (also called inverse operators) are analogous to the basic interval operators
used for evaluating binary and unary expressions (see Section 2.2). They allow us to optimally compute the
projections associated to primitive constraints (e.g., w = x1 + x2, w = x1 × x2, w = sin(x), w = log(x)).
Like arithmetic operators we distinguish two types: the unary operators (related to binary constraints
w = f(x), where f ∈ {cos, sin, log, ...}), and the binary operators (related to ternary constraints w =
x1 ◦ x2 where ◦ ∈ {+,−,×, /}).

Definition 12 (Unary narrowing operator) Let c : w = f(x) be a constraint. f is a primitive

function (i.e., f ∈ {cos, sin, log, ...}) [x] and [w] are the related domains of variables. Nf
x is the narrowing

operator of f over x if:

Nf
x ([w], [x]) = Hull(Πc

x([w], [x]))

The narrowing operator of a unary function f can be obtained from the generated expression by isolating
the variable x from the constraint c. For example, the narrowing operator for the square operator
(c : w = x2) is Nx2

x ([w], [x]) = [x] ∩ Hull(−
√

[w],
√

[w]). When the Hull operator is used before the
intersection, it is possible to obtain an overestimation of the projection. Thus, it is advisable to perform
the computation using the union operator and to apply the hull only after the intersection. In the case
of the square operator, the narrowing operator is modified to:

Nx2

x ([w], [x]) = Hull([x] ∩ −
√

[w], [x] ∩
√

[w])

Consider the intervals [x] = [4, 10] and [w] = [25, 36]. The narrowing using the hull operator before the
intersection computes a non-optimal projection Nx2

x ([w], [x]) = [4, 10]∩Hull([−6,−5], [5, 6]) = [4, 6]. The
optimal projection is obtained using the union before the hull operator:

Nx2

x ([w], [x]) = Hull(([4, 10] ∩ [−6,−5]) ∪ ([4, 10] ∩ [5, 6])) = [5, 6].

47

3. Intervals for solving Systems of Equations

Definition 13 (Binary narrowing operator) Let c(w, x1, x2) : w = f(x1, x2) be a constraint. [x1],
[x2] and [w] are the domains of the variables. The narrowing operators of f over x1 and x2 are:

Nf
x1([w], [x1], [x2]) = Hull(Πc

x1([w], [x1], [x2]))

Nf
x2([w], [x1], [x2]) = Hull(Πc

x2([w], [x1], [x2]))

The binary narrowing operators are defined for the four basic operators (i.e., +, −, ×, /). They can be
obtained by finding the roots of x1 (and x2) in function of the other variables of the related primitive
constraint. Then, the roots are evaluated using the natural evaluation and intersected with the current
domain of variables. For example, the narrowing operators related to the product (×) are deduced from
the constraint w = x1 × x21:

Nx1×x2
x1 ([w], [x1], [x2]) = [x1] ∩ ([w]/[x2])

Nx1×x2
x2 ([w], [x1], [x2]) = [x2] ∩ ([w]/[x1])

In the same way as for unary narrowing operators, the evaluation of the expression [x1]/[w] should
consider the exact image set and not only the hull.

Example 24 Consider the constraint c(x, y, z) : (x− y)2 = z, with domains [x] = [8, 10], [y] = [0, 4] and
[z] = [5, 6]. The algorithm HC3-Revise performs a decomposition of c into the set of primitive constraints:

c′1(x, y, w1) : w1 = x− y
c′2(w1, w2) : w2 = w2

1

c′3(z, w2) : z = w2

The initial domains of the auxiliary variables w1 and w2 are [−∞,+∞]. The domains of [w1] and
[w2] are intersected by the natural evaluation of the right side of the first two constraints, i.e., [w1] =
[−∞,+∞] ∩ [8, 10]− [0, 4] = [4, 10] and [w2] = [−∞,+∞] ∩ [4, 10]2 = [16, 100]. In c′3, [w2] is intersected
with the domain of [z], then [w2] = [16, 100] ∩ [25, 36] = [25, 36]. The reduction of [w2] is propagated to
c′2, then [w1] is reduced by the corresponding narrowing operator:

[w1] = Nw12

w1
([w2], [w1]) = [4, 10] ∩ ([−6,−5] ∪ [5, 6]) = [5, 6]

Finally the reduction of [w1] is propagated to the constraint c′1:

[x] = Nx−y
x ([w1], [x], [y]) = [8, 10] ∩ ([5, 6] + [0, 4]) = [8, 10]

[y] = Nx−y
y ([w1], [x], [y]) = [0, 4] ∩ ([8, 10]− [5, 6]) = [2, 4]

HC3-Revise enforces the hull-consistency in the set of primitive equations (if the constraint has not the
trivial expressions xx, x − x nor x/x). Due to the locality scope of local consistencies (reduction of
one constraint at a time), enforcing the hull-consistency in the set of primitive constraints results in
a larger box than (or equal to) enforcing the hull-consistency in the original constraint. In particular,
if the original (non primitive) constraint c has no multiple occurrence of variables (and the function is
continuous and bijective in the domain [B]), HC3-Revise enforces the hull-consistency of c.

1The implementation should also consider some pathological cases that occur when 0 ∈ [x1], 0 ∈ [x2] and/or 0 ∈ [w].

48

3.2 Filtering/contraction algorithms

3.2.3.4 The algorithm HC4-Revise

As we have mentioned, like the HC3-Revise algorithm, HC4-Revise also enforces the hull-consistency of
primitive constraints. However, HC4-Revise performs an automatic projection of the constraint c over
all its variables avoiding the decomposition of c into primitive constraints. The algorithm, motivated
by automatic differentiation (see Section 2.2.4.2), uses a tree representation of the constraint, where the
leaves are constants or variables, and internal nodes correspond to the basic operators. An interval is
associated to every node.

HC4-Revise works in two phases. The evaluation phase is recursively performed from the leaves to the
root. This phase computes, using the interval operators of interval arithmetic, the natural evaluation
of the subexpressions represented by the tree nodes. Consider for example the node w2 = w2

1. The
related interval evaluates [w1]

2 = [4, 10]2 = [16, 100]. The narrowing phase traverses the tree top-down
from root to leaves and applies in every node the related narrowing operator (see Figure 3.1-right).
The narrowing operator reduces the intervals of the nodes eliminating inconsistent values w.r.t. the
corresponding unary or binary basic operator. In Figure 3.1, the intervals in bold have been narrowed.
If an empty interval is obtained during the narrowing phase, this means that the initial domains do not
satisfy the constraint, then an empty box is returned. Consider for example, the node w1 corresponding
to the sub-expression w1 = x−y in Figure 3.1-right. The projection over y is performed by the narrowing
operator

Nx−y
y ([w1], [x], [y]) = [0, 4] ∩ ([8, 10]− [5, 6]) = [2, 4]

Figure 3.1: Evaluation and projection phases of the HC4-Revise procedure in the constraint (x − y)2 = z
with domains [x] = [8, 10], [y] = [0, 4] and [z] = [25, 36].

HC3-Revise and HC4-Revise compute the same narrowed box. However, HC4-Revise is more efficient
[Benhamou et al., 1999].

Let e be the number of nodes in the expression tree, i.e., e is the number of basic (binary or unary)
operators in the function. The time complexity of the HC4-Revise procedure is O(e).

HC4-Revise performs the natural evaluation of the projection functions related to each occurrence au-
tomatically (i.e., it avoids to generate symbolically each projection). It is trivial to deduce then, that if
a constraint f is continuous and bijective in the domain and each variable appears only once in f then
HC4-Revise computes the hull-consistency of the constraint f(X) = 0 (as the variables appear only once
in each projection function, the natural evaluation is optimal, see Section 2.4.1).

A combinatorial variant of the algorithm, called TAC-Revise [Chabert, 2007; Chabert et al., 2005] enforces
the hull-consistency allowing discontinuities in the function and in the corresponding projection functions.

49

3. Intervals for solving Systems of Equations

In TAC-Revise all the operators compute the exact image of the related intervals instead of performing
the hull (the images are maintained as a union of several intervals adding the consequent combinatorial
aspect to the computations). At the end of the narrowing phase, for each variable, the obtained union
of intervals is hulled and the resulting box is returned.

In practice, the additional work performed by TAC-Revise is often useless and HC4-Revise computes the
same box as TAC-Revise. After a few bisections, i.e., very high in the search tree, the functions generally
become continuous in the current search space.

On the other hand, when the constraint has multiple occurrences of variables, it is necessary to use other
procedures for improving the contraction.

3.2.3.5 The Box-Revise algorithm

The Box algorithm [Benhamou et al., 1999, 1994; Van Hentenryck et al., 1997] increases the contraction
power of HC4-Revise in a constraint c by calling a stronger contraction procedure called BoxNarrow

(or Box-Revise) on each variable appearing several times in c. It was the main constraint propagation
algorithm used in Numerica [Van Hentenryck et al., 1997].

In particular, if only one variable x appears several times in a constraint c (and the constraint is continuous
in the studied box), then the BoxNarrow procedure generally1 computes the optimal projection of c over
x (with a given precision ε).

Definition 14 (Box-consistency) Consider the equation c : f(x1, ..., xk) = 0. The pair (c, xi) is box-
consistent in the box [B] = [x1]× ...× [xk] if:

0 ∈ [f]n([x1], ..., [xi−i], [xi, xi
+], [xi+1], ...[xk]);

0 ∈ [f]n([x1], ..., [xi−i], [xi
−, xi], [xi+1], ...[xk]).

a+ (resp. a−) is the smallest (resp. largest) floating point number greater than (resp. smaller than) a.
[f]n is the natural extension of f .

The BoxNarrow procedure enforces the box-consistency for each variable appearing several times in the
function. Consider the constraint c : f(x1, ..., xk) = 0. For enforcing the box-consistency of the pair (fi,
xi) BoxNarrow works with the interval function:

[fi](xi) = [f]n([x1], ..., [xi−i], xi, [xi+1], ..., [xk])

Observe that all the variables, excepting xi, have been replaced by their domains, i.e., they are constants.
In Figure 3.2 we can see an example of the interval function [fi]. BoxNarrow tries to calculate the smallest
interval containing all the zeros of this function (black line). After a dichotomic process, the procedure
is able to obtain a thin/sharp approximation of the leftmost and rightmost quasi-zeros (specifically,
BoxNarrow computes two intervals [l] and [r] of diameter one u.l.p. such that 0 ∈ [fi]([l]) and 0 ∈
[fi]([r])). At the end, the algorithm contracts the domain of [xi] to [l, r]. Note that due to floating point
imprecisions, interval-based methods cannot predict that the atomic interval [r] in the figure ([r] = [r−, r])
does not contain a zero of the function, buat a quasi-zero.

BoxNarrow executes two procedures for obtaining the interval [l, r]: one for finding the leftmost quasi-zero
of [fi](x) (LeftNarrow) and the other for finding the rightmost quasi-zero (RightNarrow). Algorithm

1Excepting cases related to quasi-zeros of the function (see Figure 3.2).

50

3.2 Filtering/contraction algorithms

3 describes an implementation of the LeftNarrow procedure (based on the BC3-Revise version of the
algorithm described in [Benhamou et al., 1999; Van Hentenryck et al., 1997]).

Algorithm 3 LeftNarrow(in: [xi], [fi], f)

[l]← [xi]
if 0 6∈ [fi]([l]) then return ∅
[l]← univariateNewton([fi],

∂f
∂xi
, [l])

if l ≤ l+ then return [l] /* [l] is atomic */
if [l] = ∅ then return ∅
([l1], [l2])← Bisect([l])
[l]← LeftNarrow([l1], [fi], f)
if [l] = ∅ then return LeftNarrow([l2], [fi], f)
return [l]

The interval [l], used for finding the leftmost quasi-zero, is initialized with the domain of [xi]. The
search is recursively performed in a “dichotomic” way aided with Newton steps for performing additional
contraction to [l], thus accelerating the process. If all the values of the current interval are inconsistent,
then the algorithm returns an empty interval. If the diameter of the current interval [l] is less than or
equal to 1 u.l.p. and 0 ∈ [fi]([l]), then the procedure returns [l].

The univariateNewton procedure computes a fixpoint of the univariate Interval Newton algorithm (de-
scribed in Section 3.2.1). In each iteration, the procedure performs the evaluations of [fi](Mid[l]) and
[∂f∂xi]([l]). The contraction of [l] performed in an iteration of Newton is given by:

[l]← [l] ∩

(
Mid([l])− [fi](Mid([l]))

[∂f∂xi]([l])

)
(3.9)

Figure 3.2 shows the steps followed by the dichotomic process. The top (resp. the bottom) side of the
figure details the work performed by LeftNarrow (resp. RightNarrow). The last step (17) achieved by
BoxNarrow replaces the interval [x] by the new interval [l, r].

In practice, the Box algorithm obtains some good results, especially when the constraints have only one
variable appearing several times. In general, when several variables appear several times, the additional
work of BoxNarrow w.r.t. HC4-Revise is not rewarded enough by the additional contraction.

One of the main contributions reported in this thesis is the proposition of a new contractor, called
Mohc-Revise, aiming at the general case where several variables appear several times. This algorithm
uses a more effective variant of BoxNarrow called only when the function is monotonic w.r.t. the variable
in the current box (described in Chapter 4).

Remark that the LeftNarrow and RightNarrow procedures are not really dichotomic: the complexity
in the worst case is time O(d) with d the number of floating points between x and x (if a precision ε,
expressed as a ratio of the initial diameter of [xi], is given then d = 1/epsilon).

3.2.3.6 Other filtering techniques for enforcing hull-consistency

In this section we describe the algorithm Octum proposed in [Chabert and Jaulin, 2009b]. This algorithm
presents some similarities with a procedure of our algorithm Mohc presented in Chapter 4. Octum and
Mohc have been initiated independently in the first semester of 2009.

51

3. Intervals for solving Systems of Equations

[l]

[r]

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
[fi]

Figure 3.2: The BC3-Revise procedure. The algorithm returns the interval computed in the step 17. (To
simplify the figure, the additional contraction performed by Newton is not considered.)

Octum is a polynomial-time algorithm that enforces hull-consistency in a monotonic function f (i.e., that
optimally projects over all the variables of f). We say that a function f is monotonic, when the partial
derivatives of f w.r.t. each variable is positive (resp. negative) in every element of the domain (for more
details and basic concepts related to the monotonicity, see Section 2.4.2).

Octum allows us to extend the cases of optimal projection to monotonic functions with several occurrences
of variables. The algorithm is based on the extension by monotonicity (this extension computes an optimal
image of monotonic functions, see Section 2.4.2) and on the idempotence of the projection (Section 3.2.3.2),
i.e., it is enough to project (optimally) once over each variable of f to obtain the hull-consistency.

The Octum algorithm uses a BoxNarrow procedure for contracting the domain of the variables ([B] =
[x1] × ... × [xk]) by the constraint f(X) = 0. Consider the procedure LeftNarrow of Octum (that
we call LeftNarrow-Octum) applied to the interval [xi]. Recall that the goal of the LeftNarrow pro-
cedure is to find the leftmost zero in [xi], i.e., the minimum point l ∈ [xi] satisfying the relation 0 ∈
[f]([x1], ..., [xi−1], [l, l

+], [xi+1], ..., [xk]) (where [f] is generally the natural extension). Octum uses the eval-
uation by monotonicity instead of the natural extension. One important advantage of using the evaluation
by monotonicity is that it is optimal for monotonic functions, i.e., 0 ∈ [f]m([x1], ..., [xi−1], [l, l

+], [xi+1], ..., [xk])
implies that the interval [l, xi] is hull-consistent on the left bound of xi.

Instead of working with an interval function for contracting the left bound of the interval [xi] (symmet-
rically for the right bound), Octum uses the punctual function:

fi(xi) = f(x+1 , ..., x
+
i−1, xi, x

+
i+1, ..., x

+
k),

if xi is increasing and the symmetric function:

fi(xi) = f(x−1 , ..., x
−
i−1, xi, x

−
i+1, ..., x

−
k),

if xi is decreasing, where [B+] = (x+1 , ..., x
+
k) and [B−] = (x−1 , ..., x

−
k) are the boxes used by the evaluation

by monotonicity to compute resp. the left and right bound of [f]m([B]) (see Definition 3, page 25). As

52

3.2 Filtering/contraction algorithms

the function is monotonic, all the intervals in [B−] (and [B+]) are degenerate. fi(xi) corresponds to the
maximum of the image of [B] under f in function of the variable xi (resp. fi(xi) corresponds to the

minimum of the image). See an example in Figure 3.3. The function [fi](x) = [fi(x), fi(x)] (i.e., the thick

gray curve on the figure; the upper black border represents the function fi(xi) whereas the lower border
represents fi(xi)) corresponds to the optimal image of [B] under f in function of xi.

l=xli
r xi

[fi(xi)]

fi [xi]

[f]opt([B])

fi(xi)

fi(xi)

Figure 3.3: The functions used by the LeftNarrow-Octum procedure.

For finding l, the univariate interval Newton method searches the zero of fi(x) in the interval [xi]. As fi
is a real function and is monotonic w.r.t. x in the interval [xi], the method converges to l in O(log(1/ε))
(where ε is the desired precision expressed as a ratio of the initial diameter of [xi]) if we use the midpoint
in the Newton iteration (as in (3.9) page 51).

Furthermore, using the following proposition based on monotonicity properties, Octum avoids projecting
over all the variables of one constraint.

Proposition 8 Let f be a continuous and monotonic function in the box [B] = [x1]×× [xk] such that
the image of [B] under f contains zero, i.e., 0 ∈ If([B]). Assume that f is increasing w.r.t. xi. If xli is
the leftmost zero in the interval [xi], i.e.,

xli = inf{v, v ∈ [xi], 0 ∈ If([x1], ..., [xi−1], v, [xi+1], ..., [xk])},

then one of two options holds:

1. xli = xi
2. f(x+1 , ..., x

+
i−1, xli, x

+
i+1, ..., x

+
k) = 0.

Where for all j 6= i, x+j = xj if xj is increasing and x+j = xj if xj is decreasing.

The proof is described in [Chabert and Jaulin, 2009b].

Proposition 8 indicates that if the optimal projection of a monotonic function f over an increasing variable
xi reduces the domain [xi], then an optimal projection cannot reduce one bound of any other variable
xj (the left bound if xj is decreasing and the right bound if it is increasing). The proposition is used for
avoiding some calls to LeftNarrow-Octum and RightNarrow-Octum procedures.

In Chapter 4 we present our algorithm Mohc containing a similar procedure (i.e., MonotonicBoxNarrow)
for narrowing monotonic variables.

53

3. Intervals for solving Systems of Equations

3.2.4 Strong consistency algorithms

The locality problem, described in Section 3.6, is intrinsic to local consistencies and can be reduced by
enforcing stronger consistencies. Contractors enforcing stronger consistencies take into account more
than one constraint at a time to perform filtering.

3.2.4.1 The 3B algorithm

Definition 15 (3B-consistency) Consider a NCSP P = (C,X, [B]) with a set of constraints C =
{c1, ..., ck} and a set of variables X = {x1, ..., xk}. A variable xi is 3B-consistent in [B] = [x1]× ...× [xk]
if:

the system is hull-consistent in the box [B] = [x1]× ...× [xi−1]× [xi, xi
+]× [xi+1]× ...× [xk]

the system is hull-consistent in the box [B] = [x1]× ...× [xi−1]× [xi
−, xi]× [xi+1]× ...× [xk]

a+ (resp. a−) is the smallest (resp. largest) floating point number greater than (resp. smaller than) a.
A system is 3B-consistent if all the variables are 3B-consistent.

The contraction algorithm 3B, proposed by Olivier Lhomme [Lhomme, 1993] during his Phd thesis with
Michel Rueher, enforces a weak form of 3B-consistency. The procedure basically consists in splitting
the domain of a variable xi in several slices. In each slice an algorithm enforcing a weak form of hull-
consistency is applied (e.g., HC4). Each inconsistent slice is removed from the domain of x.

The basic 3B algorithm is described in Algorithm 4.

Algorithm 4 3B(in-out: [B]; in: C, X, SubContractor, εouter, εinner)

[B0]← [B]
repeat

for all i = 1..k do
VarShaving([B], C,X, i, Subcontractor, εinner)

end for
until StopCriterion(εouter, [B], [B0])

The input of the 3B procedure includes the system (i.e., the set of constraints C and the set of variables
X = {x1, ..., xk}) and the current box [B]. It also requires 3 user parameters: Subcontractor which is
a contraction procedure (e.g., HC4, Box called in a given slice); the parameters εouter and εinner which
are interval diameters allowing stopping the algorithm when a certain precision is reached. We design by
3B(HC4) (resp. 3B(Box)) the 3B algorithm parameterized with the HC4 (resp. Box) subcontractor. In
Numerica [Van Hentenryck et al., 1997] the algorithm 3B(Box) is called BoundConsistency.

The for all loop processes all the variables iteratively. The StopCriterion procedure tests whether
one interval in [B] has been reduced more than εouter; if this is the case the process is repeated.

The heart of the algorithm is the VarShaving procedure. This procedure (Algorithm 5) performs the
contraction of the interval bounds of a variable xi using the subcontractor. VarShaving attempts to
narrow [xi] on the left side by dividing the interval into r slices [sj] of size εinner. Then, the slices are
processed iteratively from left to right. For each slice [sj] a new box [B′] is generated by replacing the
interval [xi] of [B] by [sj]. The subcontractor is applied to the system using [B′] as the initial box. If

54

3.2 Filtering/contraction algorithms

1 2 3

45

f

g

x

y

Input interval

Output interval

Figure 3.4: The VarShaving procedure applied to a variable x.

the subcontractor returns an empty box, then the slice is removed from [xi] (i.e., the left bound of the
interval is updated: xi ← sj). Otherwise, the slice has only been contracted (not removed). The left
bound of [xi] is updated with the left bound of the contracted slice (i.e., xi ← [B′]i) and the loop stops.
The contraction on the right bound is performed in a similar way.

Figure 3.4 shows an example of the algorithm applied to a variable x. The solution is represented by
the dark gray area above the curve g and below the curve f . The system is hull-consistent in the initial
domains (each constraint is satisfied at the bounds of the box). The domain of the variable x is split into
slices by the VarShaving procedure. The first two processed slices from left to right are discarded by the
subcontractor and are removed from the interval [x]. The third slice is only reduced, implying a smaller
reduction in [x]. The process is repeated symmetrically from right to left.

Remarks

The 3B algorithm is not an incremental procedure, i.e., the repeat loop performs the reduction over all
the variables, because the reductions obtained by the subcontractor are caused by the entire system (that
is why it is a strong consistency algorithm). 3B(propag) brings a better filtering than propag, i.e., the
box obtained by the former is contained in (or equal to) the box obtained by the latter.

The generalization of the 3B-consistency (see Definition 15) is recursive, i.e., the kB algorithm is equiv-
alent to Algorithm 4 using as subcontractor the (k-1)B algorithm. For example the 4B uses as subcon-
tractor the 3B algorithm.

The 3B algorithm is a polynomial time algorithm. 3B performs choice points splitting the intervals,
similarly to bisections. However, the obtained reductions are hulled in only one interval (i.e., VarShaving
returns a single box), avoiding the combinatorial explosion of the search tree.

The principle of VarShaving is similar to the procedure BoxNarrow. In fact, similarly to BoxNarrow, a
more classical implementation of VarShaving builds the slices in a dichotomic way. The main difference is
that BoxNarrow can only remove slices by using one constraint. VarShaving uses a constraint propagation
on all the system for trying to remove a slice related to a variable x. The cost for refuting a given slice is
also low if an incremental propagation is run with only the constraints involving x. This is an interesting
property that explains the generally better performance obtained by versions of the 3B algorithm.

55

3. Intervals for solving Systems of Equations

Algorithm 5 VarShaving(in-out: [B] = {[x1], ..., [xk]}; in:C, X, i SubContractor,εinner)

([s1], ..., [sr])← Split([xi], εinner)
/* The slices are treated from left to right (s1 → sr) */
for all j = 1..r do

[B′]← {[x1], ..., [xi−1], [sj], [xi+1], ..., [xk]}
[B′]← SubContractor([B′], C,X)
if [B′] = ∅ then
xi ← sj /* the slice is removed */
if i = k then return ∅ end if /* all the slices have been removed */

else
xi ← [B′]i /* the slice has only been reduced */
break

end if
end for

/* The slices are treated from right to left (sr → sj+1) */
for all j′ = r..j + 1 do

[B′]← {[x1], ..., [xi−1], [sj′], [xi+1], ..., [xk]}
[B′]← SubContractor([B′], C,X)
if [B′] = ∅ then
xi ← sj′ /* the slice is removed */

else
xi ← [B′]i /* the slice has only been reduced */
break

end if
end for

3.2.4.2 The 3BCID algorithm

The algorithm 3BCID is an improved version of 3B. It has been proposed in [Trombettoni and Chabert,
2007] and it is based on the constructive disjunction principle used to treat an extension of the CSP
model to disjunctive constraints. This idea can also be applied to a finite domain of a classical CSP,
where each domain can be represented by a disjunction of unary constraints.

Constructive Interval Disjunction (CID) implements this domain constraint disjunction over intervals.
The algorithm is close to the 3B algorithm excepting that the VarShaving procedure is replaced by a
VarCID procedure. The VarCID procedure, applied to an interval [x] (see Figure 3.5-a), splits the initial
box into s subboxes (in the figure, s = 9). Each subbox is contracted using a filtering algorithm (e.g.,
HC4). The final contraction brought by VarCID is obtained by performing the hull of the reduced subboxes.
Observe that the contraction on [x] is equivalent to the one performed by VarShaving. However, VarCID
adds an additional contraction on [y].

The 3BCID algorithm uses a procedure called Var3BCID that combines the features of the two procedures:
VarShaving and VarCID. It is parameterized with a precision εinner and with a number of slices scid. The
principle is described below and is illustrated in Figure 3.5-b:

1. A shaving procedure is performed over the interval [x] using the parameter εinner (in the figure:
steps 1-3 on the left bound and 4-5 on the right bound of the interval). The only difference with
VarShaving is that the last contracted subboxes ([Bl] and [Br]) are saved.

56

3.2 Filtering/contraction algorithms

1 2

f

g

x

y
5 43

Input box

Output box

6

[Bl] [Br]

[Bhull]

[x]'

1 2 6
y

5 943

Input box

Output box

7 8

(b)(a)
g

x

f

Figure 3.5: (a) The VarCID procedure applied to a variable x. (b) The Var3BCID procedure applied to a
variable x.

2. The remaining interval [x]′ is treated by the VarCID procedure, i.e., the interval is split in at
most scid slices that are contracted using the subcontractor. The procedure returns the hull of the
contracted boxes [Bhull]. In the figure scid = 1, then the subcontractor has been applied to all the
remaining box.

3. The algorithm returns:

Hull([Bl], [Bhull], [Br])

In the example of the figure, the algorithm 3BCID returns the same box that CID while performing less
steps.

Note that 3B is equivalent to 3BCID using scid = 0. The authors advise to fix the parameter scid to
1 [Trombettoni and Chabert, 2007]. In practice, the contraction performed by 3BCID is comparable to
the one performed by 3B, however it generally reaches the (quasi) fixpoint faster due to the contraction
in several dimensions performed by VarCID. In other terms, the total number of calls to Var3BCID is
generally even inferior to the number of calls to VarShaving for obtaining a same contraction.

In this thesis, 3BCID is the main filtering algorithm used to compare the results of our implementations.
3BCID(Mohc) seems also to be a very promising contractor based on our new Mohc algorithm.

3.2.5 Global Hull Consistency and the locality problem

Definition 16 (Global Hull Consistency) Consider the NCSP P = (C,X, [B]). P is global hull-
consistent if [B] is the smallest box containing all the solutions of P .

The locality problem generally prevents from obtaining a global hull-consistent box by local filtering
algorithms. The problem is due to the reduced scope of constraint propagation techniques. For instance,
Figure 3.6-left illustrates a system made of two constraints c1 and c2. The system is hull-consistent
because each constraint is hull-consistent and cannot be reduced independently. Stronger consistency
techniques (in particular kB-consistencies) can partially solve this problem (Figure 3.6-right). However
in practice, when the systems have several variables and constraints, enforcing kB-consistency with k > 3
is computationally expensive.

Interval Newton methods deal with this problem too. These methods treat the whole system as one
global constraint and perform the global hull-consistency using a relaxed linear system. However, their

57

3. Intervals for solving Systems of Equations

x

y

x

y
3B contraction

HC contraction

Hull consistent

Figure 3.6: Example of locality problem. On the right a hull-consistent system affected by the locality
problem. On the left, 3B and hull-consistency algorithms are performed and reduce the locality problem.

effectiveness is limited by the characteristics of the system in the current box [B]: Interval Newton can
only converge in square well-constrained systems with only one solution in [B], when [B] is sufficiently
small.

3.3 Splitting Algorithms

After having performed the contraction of the current box, the splitting algorithms are in charge of
dividing the box into two or more subboxes, thus continuing the combinatorial solving process.

Definition 17 (Splitting) Consider the box [B]. A splitting operator divides [B] into a set of n
subboxes {[B1],, [Bn]} such that:

[B] = [B1] ∪ ∪ [Bn]

In particular, a bisection operator is a splitting operator that divides the box into only two subboxes.

Example 25 Consider the box ([1, 3], [0, 6]). If we divide the box in the middle of each interval we obtain
4 subboxes

[B1] = ([1, 2], [0, 3]); [B2] = ([2, 3], [0, 3]); [B3] = ([1, 2], [3, 6]); [B4] = ([2, 3], [3, 6])

The obtained boxes satisfy the relation: [B] = [B1] ∪ [B2] ∪ [B3] ∪ [B4]

Consider a problem P = (C,X, [B]). In general, each subproblem Pi = (C,X, [Bi]) is easier to solve
because the problem has no solutions or because some filtering algorithm (e.g., interval Newton, 3BCID)
is more effective (recall that smaller domains of variables imply a reduction of the dependency and locality
problems).

A splitting/bisection consists of two steps: the selection of the variable(s) to be split and the selection of
the value(s) in which the box will be split. In the next section we describe the main heuristics used for
performing these choices.

58

3.3 Splitting Algorithms

3.3.1 Variable selection

An splitting is preceded by the selection of the variable(s) to be split. The most common methods select
only one variable. In the following, we list the most commonly used strategies for determining the variable
to be split.

Round-Robin: It is one of the simplest and most used methods. It does not require any information
on the system. If the current k-dimensional box [B] was obtained by bisecting the interval [xi] then the
round-robin method will select the variable xj , with j= (i + 1) mod k. The objective is to not forget
any variable. One weakness of this strategy is that a bad initial order of variables can lead to disastrous
performance.

Largest-First: The largest domain is bisected first. It is based on the assumption that intervals with
large diameters have a greater influence on the function evaluation. In the same way as the Round-Robin
technique, the largest-first method does not forget any variable.

Smear-based [Kearfott and Novoa III, 1990]: These methods use the information of the system for
obtaining the most important variable w.r.t. a criterion. The criterion reflects the impact of a variable x
over all functions that involve x and can be deduced from the Taylor extension (see Section 2.4.3):

[f]t([B]) = f(Mid([B]) +
k∑
i=1

[
∂f

∂xi

]
([B])([xi]− Mid([xi]))

Observe that the diameter of [f]t([B]) can be computed in function of the diameter of the interval partial
derivatives. Knowing that:

• Diam(f(Mid(B]))) = 0,

• Diam

(
k∑
i=1

[wi]

)
=

k∑
i=1

Diam([wi]),

• [xi]− Mid([xi]) = [−Diam([xi])
2 , Diam([xi])2] and

• Diam([∂f∂xi]([B])× [−a/2, a/2]) = Diam([−|[∂f∂xi]([B])| × a/2, |[∂f∂xi]([B])| × a/2] = |[∂f∂xi]([B])| × a,

we deduce:

Diam([f]t([B])) =

k∑
i=1

Diam

([
∂f

∂xi

]
([B]))([xi]− Mid([xi]))

)
=

k∑
i=1

∣∣∣∣[∂f∂xi
]

([B])

∣∣∣∣× Diam([xi])

Thus, the impact of the variable xi on the diameter of [f]t([B]) is s(xi, f, [B]) = |[∂f∂xi]([B])| × Diam([xi]).

The smear value of a variable xi w.r.t. a system F (X) = 0 in a box [B] is given by the maximum impact
of the variable w.r.t. each function in F , i.e.,

smear(xi, F (X) = 0, [B]) = max
f∈F

(s(xi, f, [B])).

The bisection strategy selects the variable with maximum smear value. A variant described in [Hansen
and Walster, 2003] uses the sum of impacts.

The main drawback of this method is that some variable domains may never be split, either because
their interval widths are small w.r.t. the largest interval diameter, or because their partial derivatives

59

3. Intervals for solving Systems of Equations

have low values in the box. Anyway, these strategies can be combined in order to avoid this problem.
For example, the ALIAS [Merlet, 2000] library has the option of combining the largest-first with the
smear-based bisection methods.

This hybrid heuristic seems to have a good and more stable behaviour than the round-robin and largest-
first heuristics.

3.3.2 Value selection

Once the variable has been selected, one needs to select the value at which the related interval will be
split. The most used strategy consists in just bisecting (in two parts) the interval in the middle (or close
to the middle). Other strategies use the information on the contraction methods for predicting goods
splitting points.

There exist other strategies based on gap detection for splitting domains. The gaps consist of boxes
without solutions inside the current box. In [Ratz, 1994] the author proposes to split variable domains
inside a gap detected when applying the interval Newton method.

More recent strategies for splitting domains based on gap detection during the filtering phases have been
suggested in [Benhamou et al., 1999], and studied in [Batnini et al., 2005; Chabert et al., 2005].

3.4 Other tools related to interval-based methods

In this section we describe some other techniques based on intervals for helping to solve or directly solving
a system of equations. The common aspect of these three techniques is their focus on the locality problem
(described in Section 3.6). They are useful to better understand two of our contributions: I-CSE (see
Chapter 6) and Box-k (see Chapter 7).

3.4.1 Common subexpression elimination

CSE is a very common method in code optimization. It consists in searching identical or common
subexpressions (CSs) and to analyze if is worthwhile replacing them with a single variable. Consider for
example the assignment:

x ← a× b+ c

y ← a× b× c

The computation of x and y may be achieved faster if the common subexpression a× b is replaced by an
auxiliary variable tmp and the corresponding new assignment is added, i.e.:

tmp ← a× b
x ← tmp+ c

y ← tmp× c

The cost/benefit analysis performed by an optimizer calculates whether the cost of storing the new
variable tmp is less than the cost of the saved multiplication.

60

3.4 Other tools related to interval-based methods

CSE generally speeds up the programs by reducing the number of instructions. Symbolic tools like
Mathematica or Maple uses a DAG representation of expressions. In this representation the nodes with
several parents correspond to CSs.

In interval analysis, several experts have been interested in eliminating the common subexpressions of
systems of constraints. Van Hentenryck, Michel and Deville performed some replacements manually
in their experimentations with Numerica [Van Hentenryck et al., 1997]. Merlet applies CSE manually
before solving some systems with ALIAS [Merlet, 2000]. He also uses Maple (in the ALIAS-Maple variant)
for rewriting systems into a DAG form. Following the DAG representation used by symbolic tools,
Kearfott performs a replacement in his solver GlobSol [Kearfott et al., 1996]. Vu, Schichl, Neumaier
and Sam-Haroud use a DAG representation of the system taking into account the CSs [Schichl and
Neumaier, 2005; Vu et al., 2004, 2009b]. The community of interval analysis thought that the obtained
gains were due, like in code optimization, to a reduction in the number of operations implying a faster
evaluation/projection/differentiation of the functions.

In Chapter 6 we prove that, in interval constraint propagation algorithms, the gains brought by the
reduction in the number of operations are negligible w.r.t. the gains due to additional contraction. In
fact, the new system generated by CSE (represented by a DAG obtained by adding auxiliary variables)
contracts better (in particular using HC4) than the original one due to the addition of new constraints.
This explains the reported gains of several orders of magnitude on several systems.

Independently from our work, Rendl et al. [Rendl et al., 2009a,b] propose the use of CSE during flattening.
Flattening consists of the decomposition of expressions formulated in a rich, solver-independent constraint
modelling language into a conjunction of simpler expressions that conform to the constraints provided by
a specific solver. The method (i.e., a flattening technique using CSE) has been tested in several discrete
problems. The results and conclusions of their works are similar to ours: CSE improves the contraction
power of constraint propagation algorithms (also with finite domain of variables).

3.4.1.1 A DAG representation of the system

The basic operators used by interval methods are based on a tree representation of the expression. Schichl
and Neumaier, following the DAG representation used by symbolic computation tools, propose a unique
directed acyclic graph (DAG) to represent the whole system of equations [Schichl and Neumaier, 2005].

The DAG representation allows us to eliminate some common subexpressions in the system. Consider
the system of two equations:

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2

(x2 + y3)(x2 + cos(y)) + 14

x2 + cos(y)
= 8

Figure 3.7 shows an equivalent n-ary DAG of the system. Schichl and Neumaier use a binary DAG for
maintaining the same unary or binary operators of evaluation and projection as with HC4.

The leaves of the DAG correspond to variables and constants and the roots correspond to the function
expressions. The internal nodes correspond to the subexpressions. The variables and some subexpres-
sions, occurring several times in the system, are represented by one node with several parents (e.g., nodes
11, 12 and 13 in the figure. For the sake of clarity each variable is represented by several nodes instead
of only one).

The evaluation, the automatic projection performed by HC4-Revise, and the automatic differentiation

61

3. Intervals for solving Systems of Equations

1

2 3

4

5

6

7 8

9

10
11

12 13 14

Figure 3.7: DAG representation of a system of two equations.

have been redefined on this data structure. Vu, Schichl and Sam-Haroud have described in [Vu et al.,
2004, 2009b] how to carry out the propagation in the DAG. In particular, an interval is attached to
internal nodes and the propagation is performed in a sophisticated way: two queues are managed, one
for the evaluation, the other for the narrowing/projection, and the top-down narrowing operations have
priority over the bottom-up evaluations.

The results are encouraging, the propagation in the DAG outperforms the HC4 propagation loop by one
or more orders of magnitude. The authors think that the good results are due to the reduction in the
number of operations performed by CSE. However, we think that the gains are almost only due to the
additional contraction allowed by CSE, as shown in Chapter 6.

3.4.2 Combining constraints

Theoretically, if we transform a system S into only one constraint cs, then enforcing the hull-consistency
in the constraint would be equivalent to enforcing global hull-consistency in the whole system, i.e., we
would find the smallest box containing all the solutions of S!

Consider for example the set of two equations C = {x+ y = 0, x− y = 0}. This is a very simple problem
but it cannot be solved in one iteration by the HC4-Revise procedure due to the locality problem. We
can transform C into a constraint with the same set of solutions: c : (x + y)2 + (x − y)2 = 0. Using
symbolic operations we obtain c : x2 + y2 = 0. HC4-Revise is able to find the only solution of the
constraint/system.

However, this is an exceptional case. In general, we can enforce hull-consistency only partially. If we
cannot apply symbolic-based operations for reducing the number of variable occurrences in the new
constraint, we cannot contract the domains further (compared to the initial form).

[Yamamura, 2000] presents a simple linear combination of nonlinear constraints. For instance from the
two constraints f(X) = 0 and g(X) = 0 the redundant constraint f(X) + g(X) = 0 is generated. This
method is useful in some quasi-linear systems (with few nonlinear subexpressions), mainly due to the
elimination of common terms/variables.

[Ceberio and Granvilliers, 2002] introduces a more sophisticated strategy. The method consists of a
preprocessing of a system of nonlinear equations of size m, where each constraint ci is rewritten as a sum

62

3.4 Other tools related to interval-based methods

of linear and nonlinear terms: ∑
j∈Ji

ajxj +
∑
k∈Ki

bkgk(x1, ..., xn) = di

where Ji is the set of indexes related to the linear terms of ci (aj is the coefficient of the jth linear term)
and Ki is the set of indexes related to the nonlinear terms of ci (bk is the coefficient of the kth nonlinear
term gk(x1, ..., xn)). The method consists in first replacing the nonlinear terms gk by temporary variables
uk. Equivalent terms are replaced by the same temporary variable (like in CSE). Suppose that there are
r different nonlinear terms in the original system. The obtained system is made of two subsystems, a
linear one (Lc) corresponding to the original constraints:

Lc :=

∑
j∈Ji

ajxj +
∑
k∈Ki

bkuk = di, ∀i = 1..m

and a nonlinear one (Ac) related to the temporary variables:

Ac := {uk = gk(x1, ..., xn), ∀k = 1..r}

The next step consists in applying a Gaussian elimination to Lc.

The last step is the inverse of the first step, i.e., the temporary variables are replaced back by the related
terms in the system Lc yielding a system L′c. The branch and contract solving process is finally applied
to L′c.

Remark

Note that the last step contrasts with that we said about CSE in Section 3.4.1. The better results
obtained by this kind of inverse CSE are possibly due to the use of the Box algorithm. Contrarily to
HC4, applying a CSE technique in a system can lead to worse contractions of the Box algorithm. This
problem can be avoided by using a DAG representation that maintains the values of the internal nodes
during the propagation (see more details in Section 3.4.1.1). Other possible reason for the worse results
is the unknown behavior of bisecting the new variables generated by CSE (it is difficult to predict if the
bisection of the new variables improves or gets worse the results, but splitting more variables may have a
bad impact on performance because it increases the size of the search space). For the moment, to avoid
disastrous results due to the combinatorial explosion related to the splitting, we propose to not bisect
variables generated by CSE.

Another combination of constraints is performed in actual Newton-based interval methods (described in
Section 3.2.1). Recall that these methods transform the nonlinear system into a relaxed linear system us-
ing techniques from linear algebra (e.g., the Taylor extension of the equations). By using a multiplication
of the Jacobian matrix by a preconditioning matrix (see Section 3.2.1.2) we obtain a linear combination
of the constraints in the relaxed system.

3.4.3 The IBB algorithm

IBB (Inter-Block Backtracking) is an algorithm proposed by Neveu et al. [Neveu et al., 2006, 2005].
The focus of the algorithm is the solving of a system previously decomposed by a decomposition technique
as GPDOF [Trombettoni and Wilczkowiak, 2006] or recursive rigidification.

63

3. Intervals for solving Systems of Equations

The decomposition techniques produce a set of well-constrained subsystems or blocks. A well-constrained
subsystem contains k independent equations, k variables and a finite set of solutions. All these blocks
form a direct acyclic graph (DAG) as shown in Figure 3.8. Each block, represented by an ellipse, is
composed by a well-constrained subsystem. The DAG indicates the order in which the blocks should be
solved. For example, the block 4 requires that blocks 2 and 3 be solved before it because the solutions of
these two blocks (values for variables x2, x3 and x4) are used as inputs by the block 4 (i.e., constraints
c5 and c6). Thus, the resolution algorithm should treat the subsystems respecting the order imposed by
the DAG.

The IBB algorithm solves each block b using a bisection/contraction strategy. Each found solution is
passed to each child block of b and the process is repeated until all the blocks are solved. The solutions
of the leave blocks are solutions of the whole system: the values of the variables are given by the input
values and the found solution. For example, if the block 4 finds the solution x5 = v5, x6 = v6 with the
inputs x2 = p2,..., x4 = p4, then the related solution of the system is Xs = (p1, p2, p3, p4, v5, v6).

The interval method used in each block is a classical contraction/bisection approach (see Algorithm 1 in
Section 3.1), where the used contractors are HC4 (or 3BCID(HC4)) and interval Newton.

The main drawback of IBB is its limitation to solve decomposable systems. If the system is not decom-
posable, then IBB only applies the contraction/bisection approach to the whole system.

c1

c2 c3
c4

c5

x1

x2 x3
x4

x5

c6 x6

1

2
3

4

Figure 3.8: Example of DAG obtained using a decomposition technique over a system of 6 equations
(c1, ..., c6) and 6 variables (x1, ..., x6).

The link between IBB and the locality problem is not so clear. To find this relation, we should view IBB

as an algorithm that treats subsystems of equations as global constraints performing a strong consistency
in each block (similar to (k+1)B-consistency in blocks of size k). This idea and the limitation of IBB
to decomposable systems motivate us to propose a new algorithm for generalizing the method to sparse
non-decomposable systems (see Chapter 7).

64

3.5 Interval-based solving tools

3.5 Interval-based solving tools

There exist several interval-based solvers or libraries for solving problems using the intervals. We briefly
introduce some of the most used, influential and/or promising tools.

• Numerica (presented in [Van Hentenryck et al., 1997]) is one of the first autonomous tools proposed
by P. Van Hentenryck, L. Michel and Y. Deville. It allowed minimizing nonlinear objective functions
with or without constraints. It is not supported anymore and can be found in a C++ library of
Ilog Solver (IlcNum). The authors of Numerica intend to integrate a new interval library in the
tool/language Comet ([Van Hentenryck and Michel, 2005]). Comet is currently dedicated to local
search and finite domain CSPs.

• RealPaver ([Granvilliers and Benhamou, 2006]) was designed in the nineties. It is specialized in
the resolution of systems of equations using interval methods. Since 2008 it is available as a C++

library.

• ALIAS ([Merlet, 2000]) is the tool used by the COPRIN team for robotic applications. It is oriented
to the resolution of systems of equations using operators from interval analysis and constraint
programming. The Maple-ALIAS version is the first solver integrating interval-based methods and
techniques of symbolic computation.

• Icos ([Lebbah et al., 2005]) is specialized in robust constrained global optimization. The library
contains algorithms coming from constraint programming, interval analysis, and linear relaxation
techniques. It also contains an interface to some linear programming and local optimization solvers
(e.g., Coin/Clp, Cplex, and IpOpt).

• GloptLab, developed in Matlab by Ferenc Domes ([Domes, 2009]), is specialized in quadratic sys-
tems. It implements several contraction algorithms: scaling, constraint propagation, linear relax-
ations, strictly convex enclosures and conic methods.

• Ibex ([Chabert, 2009]) is the library used for implementing the algorithms proposed in this thesis.
Ibex has been developed by Gilles Chabert. For the moment, it is limited to the resolution of
systems of equations. Since 2008 a new high-level language (Quimper [Chabert and Jaulin, 2009c])
has been implemented on the top of Ibex, allowing non-specialist engineers to use the library more
easily.

3.6 Other research fields related to intervals

Interval-based methods are not only used for solving systems of equations. Several researchers also
use these methods for solving global optimization problems and finding continuous solutions of under-
constrained systems (paving).

Global optimization

The global optimization problem consists in minimizing a nonlinear objective function subject to nonlinear
equations and inequalities.

Classical approaches based on linear relaxations and local methods are the most successful ones due to
their efficiency. The most famous implementation is the global optimizer called Baron. However, these

65

3. Intervals for solving Systems of Equations

methods are not rigorously implemented. That is, the result of these algorithms could be an overestimation
or, even worse, an underestimation of a global optimum.

The interest in interval methods is mainly due to the safe bounding of the global optimum. For instance,
the optimization framework QuadSolver [Lebbah et al., 2005] uses safe linear relaxations to reduce the
domains of the variables. Linear relaxations are combined with local consistencies as well as interval
methods (e.g., interval Newton) to provide an efficient and safe framework to obtain the solutions of
nonlinear optimization problems.

Continuous solution sets

Several interval-based approaches have been proposed for treating systems with infinite sets of solutions.
The classical approach consists in extracting from this set one solution minimizing a given criterion
(global optimization).

For representing the continuous solutions in a compact way, an alternative is to work with inner and outer
boxes. The outer boxes are the boxes that do not contain any solution. The standard interval-based
contractors described in Section 3.2 (e.g., HC4, 3B) can guarantee the absence of solutions in a given
box. An inner box is a box [B] where all the elements are solutions of the system. Consider the system:
{F (X) = 0, G(X) ≤ 0, H(X) ≥ 0}. [B] is an inner box if:

∀V ∈ [B] : F (V) = 0, G(V) ≤ 0, H(V) ≥ 0

In other words, an inner box is contained inside the solution set of the system. Inner boxes are not
bisected and are immediately considered as a solution of the system. Thus, effective (and efficient) inner
tests are required for improving the performance of the solver.

An inner test, (that is, the test for proving that a box is in fact an inner box), for a system made of
inequalities C : {c1, ..., cn} must satisfy the relation:

Sat∀?(c1, [B]) ∧ ... ∧ Sat∀?(cn, [B])⇔ true

where Sat∀?(ci, [B]) is true if the constraint ci is satisfied for every element in [B]. The simplest way to
prove that a box is inside the solution set is to transform the relation using a double negation:

Sat∃?(¬c1, [B]) ∨ ... ∨ Sat∃?(¬cn, [B])⇔ false

and to prove the unsatisfiability of each negative constraint. (Sat∃?(ci, [B]) is false if every element in
[B] does not satisfy ci.) Tests based on this idea are used in several applications developed by Luc Jaulin
[Jaulin et al., 2001] and JP Merlet [Merlet, 2007]. It has also been formalized in [Rueher et al., 2008]
and [Benhamou and Goualard, 2004] and implemented in different solvers (e.g., Ibex [Chabert, 2009;
Chabert and Jaulin, 2009a]).

Only continuous solution sets in low dimension (3 or less) can be inner and outer sharply approximated
by interval-based methods.

In [Sam-Haroud and Faltings, 1996], the authors propose to use 2k trees for representing regions of
feasible solutions related to k variables. They also propose strong consistency algorithms, that terminate
in polynomial time, to reduce the search space using this kind of representation.

66

3.7 Conclusion

3.7 Conclusion

In the present chapter we have described several interval-based techniques used for solving systems of
constraints. They are mainly based on a branch & prune method performing a tree search. In each node
one or more contractors reduce the domains of the variables. We distinguish three kinds of contractors:
contractors based on the interval Newton method, treating all the system as one global constraint; linear
relaxation contractors using linear inequalities for approximating the nonlinear constraints; and constraint
programming contractors, including constraint propagation algorithms.

Our main contributions are focused on the last category. The basic constraint propagation algorithms
try to enforce the hull-consistency in the system, i.e., to find the smallest box satisfying each constraint
independently (similar to enforce arc-consistency in finite domain CSPs). The algorithms perform a
revise procedure consisting in projecting each constraint over each of its variables implying a reduction
of the domains. Then, the reductions are propagated to the rest of the system. Algorithms enforcing
stronger consistencies increase the scope of the basic constraint propagation algorithms and allow better
reductions.

The most important limitations of the constraint propagation algorithms, and in general any other
interval-based method, are due to the dependency problem and to the locality problem. The dependency
problem is the main cause of non-optimal evaluations of functions but also, analogously, the main cause
of non-optimal projections of functions (approximating hull-consistency).

Just as the dependency problem is the main reason for which we cannot enforce (local) hull-consistency
over a constraint, the locality problem is the main reason for which we cannot enforce global hull-
consistency over the whole system (i.e., finding the smallest box containing all the solutions of the
system). The locality problem is mainly caused by the locality scope of filtering algorithms.

In Part 2 of this thesis we present our contributions mainly related with the dependency and the locality
problems.

67

3. Intervals for solving Systems of Equations

68

Part II

Contributions

69

Introduction

In the second part of this thesis we present our contributions. The first two of them are related to the
dependency problem.

In Chapter 4 we propose a new constraint propagation algorithm (Mohc) for better approximating hull-
consistency. The algorithm is based on the two classical procedures HC4-Revise and Box-Revise that
have been adapted for using monotonicity. Our procedure MinMaxRevise (based on HC4-Revise) allows
us to project using the monotonicity on variables that are not monotonic and those that appear once in
the function (a further version MinMaxRevise’ allows us to project on all the variables). Our procedure
MonotonicBoxNarrow (based on Box-Revise) reduces the domain of each monotonic variable1 appearing
several times in the function. While the classic Box-Revise algorithm has a worst-case time complexity
of O(1/ε) (where ε is the required precision), our algorithm performs a dichotomic process having a time
complexity of O(log(1/ε)). Mohc is able to enforce the hull-consistency in functions that are monotonic
w.r.t. all their variables appearing several times.

In Chapter 5 we present Occurrence Grouping (OG), a new interval extension based on monotonicity
and used by Mohc. OG transforms each non-monotonic variable into a convex sum of three auxiliary
variables, two of them being monotonic. The new expression computes the same natural evaluation as
the original one but a sharper evaluation by monotonicity.

The following two contributions are related to the locality problem.

In Chapter 6 we prove that eliminating common subexpressions in a system (see Section 3.4.1) improves
the filtering of constraint propagation algorithms, in particular HC4. Then we propose I-CSE, an algorithm
able to find all the maximal common subexpressions shared by each pair of equations. I-CSE replace
them by auxiliary variables. When two or more CSs are in conflict, I-CSE adds the necessary redundant
equations to solve it.

The second contribution related to the locality problem is described in Chapter 7. We propose a new
algorithm for enforcing strong consistencies using well-constrained subsystems. The idea is inspired from
the IBB algorithm (for solving decomposable systems) but it is extended to systems that are sparse while
irreducible.

1In the sake of conciseness, when a function is monotonic w.r.t. a variable x, we say that x is monotonic, otherwise we
say that x is non-monotonic.

71

72

Chapter 4

An Algorithm Exploiting Monotonicity

Contents

4.1 Introduction . 73
4.2 The MOnotonic Hull Consistency algorithm . 74
4.3 Advanced features of Mohc-Revise . 79
4.4 Understanding and improving Mohc-Revise . 80
4.5 Properties . 84
4.6 Experiments . 85
4.7 Advanced MinMaxRevise’ procedure . 94
4.8 Related Work . 97
4.9 Conclusion and Future Work . 97

In this chapter we present Mohc-Revise, a new revise procedure that can be used in a constraint prop-
agation algorithm (see Section 3.2.3). The algorithm reduces the dependency problem of a constraint
f(X) = 0 when f is monotonic w.r.t. one or several variables with multiple occurrences1.

When f is monotonic w.r.t. all the variables with multiple occurrences (and f is continuous and differen-
tiable), Mohc-Revise is proven to compute the hull-consistency, i.e., it returns the smallest box enclosing
all the solutions of the constraint.

(A part of the material presented in this chapter is published in [Araya et al., 2009b].)

4.1 Introduction

Recall that the monotonicity properties of functions are used in several interesting ways by interval meth-
ods. For instance, the basic operators of interval arithmetic (+, −, ×, /, sin, log, ...) use these properties
for computing optimal images of atomic expressions (see more details in Section 2.2). The extension by
monotonicity also uses these properties for computing sharper evaluation of more complicated functions
(see Section 2.4.2).

The ALIAS library [Merlet, 2000], the Octum algorithm [Chabert and Jaulin, 2009b] and the proposal
described in [Goldsztejn et al., 2009] are three examples of how we can use the monotonicity for con-
tracting domains. Goldsztejn et al. use monotonicity of functions in quantified NCSPs to easily contract

1Thanks to the occurrence grouping extension (see Section 4.3.2 and Chapter 5) it is enough that f is monotonic w.r.t.
some occurrences of a single variable for improving the contraction.

73

4. An Algorithm Exploiting Monotonicity

a universally quantified variable that is monotonic. The method used by ALIAS (when the related option
is activated) contracts the domain of each occurrence o involved in a constraint f(X) = 0 by evaluating
the projection function of o using the extension by monotonicity. The projection function of an occurrence
o is obtained by isolating o in the constraint f(X) = 0 (see Section 3.2.3.2). (In addition, contrarily to
HC4-Revise or Mohc-Revise, ALIAS generates the projection functions symbolically before using them.)
The constraint propagation algorithm Octum is briefly described in Section 3.2.3.6 and is similar to one
of the main procedures in Mohc-Revise (see Section 4.2.2).

Due to the dependency problem (see Section 2.3.3) when a variable occurs more than once in an equation,
the evaluation and contraction performed by the HC4-Revise algorithm are generally not optimal (see
Section 3.2.3.4), i.e., the algorithm cannot compute the hull-consistency. In equations with only one
variable x occurring several times BoxNarrow can project optimally over x. However, if several variables
occur several times, there is no efficient technique to compute the optimal projections of all the variables.

When a function f is monotonic w.r.t. a variable x in a given box, it is well-known that the monotonicity-
based interval extension of f produces no overestimation related to the multiple occurrences of x (see
Section 2.4.2). However, this property has not been exploited for computing optimal projections.

4.2 The MOnotonic Hull Consistency algorithm

The MOnotonic Hull Consistency algorithm (in short Mohc) is a new constraint propagation algorithm
that exploits monotonicity of functions to better contract a box. The propagation loop is exactly the
same AC3-like algorithm performed by the famous HC4 and BC3 (see Section 3.2.3). Its novelty lies in
the Mohc-Revise procedure handling one constraint individually and described in Algorithm 6.

Algorithm 6 Mohc-Revise (in-out [B]; in f , Y , W , ρmohc, τmohc, ε)

HC4-Revise(f(Y,W) = 0, Y,W, [B])
if W 6= ∅ and ρmohc[f] < τmohc then

([G], [Go])← GradientCalculation(f,W, [B])
(fog,W)← OccurrenceGrouping(f,W, [B], [Go])
(fmax, fmin, X,W)← ExtractMonotonicVars(fog,W, [B], [G])
MinMaxRevise([B], fmax, fmin, Y,W)
MonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)

end if

This procedure aims at narrowing the current box [B]. It works on a unique equation1 f(Y,W) = 0, in
which the variables in Y occur once in the expression f whereas the variables in W occur several times
in f .

Mohc-Revise starts by a call to HC4-Revise (an exception terminating the procedure is raised if an
empty box is obtained, proving the absence of solution). If f contains variables with multiple occurrences
(W 6= ∅) and if another condition is fulfilled (see Section 4.3.1), then five procedures are called to detect
and exploit the monotonicity of f .

The GradientCalculation function computes the gradient of f . More precisely, for each variable w
in W it computes the interval partial derivative of f w.r.t. w and the interval partial derivative of f
w.r.t. each occurrence of w in the box [B] resulting in interval vectors [G] and [Go] respectively. The

1The procedure can be straightforwardly extended to handle an inequality.

74

4.2 The MOnotonic Hull Consistency algorithm

interval gradient is computed using the backward automatic differentiation method (AD) described in
Section 2.2.4.2.

The OccurrenceGrouping function is not required in Mohc-Revise and can be viewed as an improvement
of it. It rewrites the expression f into a new form fog such that the image [fog]M ([B]) computed by the
monotonicity-based interval extension is sharper than, or at worst equal to, the image [f]M ([B]). This
sophisticated function is briefly introduced in Section 4.3.2 and deeply explained in Chapter 5.

The ExtractMonotonicVars procedure uses the vector of interval partial derivatives [G] for finding
the monotonic variables in W and to move them to X. For every variable wi ∈ W the procedure
checks whether 0 ∈ [gi], where [gi] ∈ [G] is the interval partial derivative related to wi in the box (i.e.,

[gi] =
[
∂f
∂wi

]
([B])). If it does not, it means that fog is monotonic w.r.t. wi, so that wi is removed from

W to be added into X. At the end:

• X contains variables with multiple occurrences that are monotonic.

• W contains variables that are not detected to be monotonic.

• Y contains variables that appear only once in the function.

In the following, [B] = [X] × [Y] × [W]. Consider a variable xi ∈ X (X = (x1, ..., xn)). We denote
x−i ∈ [xi] the value of the variable xi that minimizes fog for any combination of the other elements in
[B]. Thus, if fog is increasing (resp. decreasing) w.r.t. xi, then x−i = xi (resp. x−i = xi). Symmetrically,
x+i is the value of xi that maximizes f in the box. We also define two real vectors X+ = (x+1 , ..., x

+
n) and

X− = (x−1 , ..., x
−
n).

The ExtractMonotonicVars procedure generates two real functions fmin and fmax:

fmin(Y,W) = fog(X−, Y,W)

fmax(Y,W) = fog(X+, Y,W)

Observe that the natural extension of these functions provides the bounds of the evaluation by mono-
tonicity (see Definition 3 in Section 2.4.2), i.e.,

[fog]M ([B]) =
[
[fmin]([Y], [W]), [fmax]([Y], [W])

]
The next two routines are in the heart of Mohc-Revise and are detailed below. They mainly work with
the two functions fmin and fmax. The procedure MinMaxRevise narrows the variables in Y (appearing
once in f and thus in fog) and those in W . The procedure MonotonicBoxNarrow narrows the monotonic
variables in X.

At the end, if Mohc-Revise has contracted the interval of a variable in W (more than a user-defined
ratio τpropag), then the constraint is pushed into the propagation queue in order to be handled again in
a subsequent call to Mohc-Revise. Otherwise, we know that a fixpoint in terms of filtering has been
reached (under some assumptions). Indeed, nice properties presented in Section 7.3.5 explain why, when
W = ∅, MinMaxRevise contracts [Y] optimally while MonotonicBoxNarrow contracts [X] optimally. The
constraint is thus not pushed into the propagation queue.

Note that a variable y in Y , appearing once in f , is handled by MinMaxRevise, and not by
MonotonicBoxNarrow, even if it is monotonic. We have made this choice because MinMaxRevise is less
costly than MonotonicBoxNarrow (see Proposition 12, page 84) and has the same filtering power on [y]
(see Lemma 4, page 84).

75

4. An Algorithm Exploiting Monotonicity

4.2.1 The MinMaxRevise procedure

Algorithm 7 MinMaxRevise (in-out [B]; in fmax, fmin, Y , W)

HC4-Revise(fmin(Y,W) ≤ 0, Y,W, [B]) /* also called MinRevise */
HC4-Revise(fmax(Y,W) ≥ 0, Y,W, [B]) /* also called MaxRevise */

MinMaxRevise brings a contraction on variables in Y and W .

Since

(∃X ∈ [X])(∃Y ∈ [Y])(∃W ∈ [W]) : f(X,Y,W) = 0⇒ fmin(Y,W) ≤ 0 and 0 ≤ fmax(Y,W)

the MinMaxRevise contractor for the constraint f(X,Y,W) = 0 is obtained calling HC4-Revise on the
constraints fmin(Y,W) ≤ 0 and 0 ≤ fmax(Y,W).

Thus, MinMaxRevise narrows intervals of variables in Y and W using the monotonicity of variables in
X.

^2 x

-

3 x

y
+ 0

=

x[4,10] [4,10]

[-80,14]

[0,0]

[16,100]

[-14,88]

[-94,118]

[-80,30][12,30]

[0,0]

[-14,80]

HC4-Revise(f(x,y)=0)

^2 x

-

3 4

y
+ 0

≤

4

[-80,-4]

[-76,0]

[16,16]

[-76,18]

[-80,14][12,12]

[-76,0]

[4,4]

HC4-Revise(fmin(y)≤0)

^2 x

-

3 10

y
+ 0

≥

10

[-70,-4]

[0,66]

[100,100]

[-10,66]

[-80,-4][30,30]

[0,66]

[70,70]

HC4-Revise(fmax(y)≥0)

Figure 4.1: HC4-Revise (Left), MinRevise (Center) and MaxRevise (Right) applied to x2 − 3x+ y = 0.

Figure 4.1 illustrates how the first part of Mohc-Revise narrows the box [x]× [y] = [4, 10]× [−80, 30] of
the constraint: f(x, y) = x2 − 3x+ y = 0.

HC4-Revise works in two phases (Figure 4.1-left). The evaluation phase evaluates every node bottom-up
and attaches the result to the node. The second phase, due to the equality node, starts by intersecting the
top interval [−94, 118] with 0, and proceeds top-down by applying the narrowing operators (more details
about the HC4-Revise algorithm and the narrowing operators are provided in Section 3.2.3.4). After
this step, OccurrenceGrouping detects that the function is monotonic w.r.t. x (trivial case when the
derivative is positive so that f = fog), hence ExtractMonotonicVars puts x in the set X of monotonic
variables.

Figure 4.1-center shows the first step of MinMaxRevise. The tree represents the inequality fmin(y) =
f(4, y) ≤ 0. Calling HC4-Revise on this expression produces a new contraction on y because x is replaced
by x− = x = 4. On the top of the tree, the narrowing phase intersects [−76, 18] with [−∞, 0] (inequality),
and the first narrowing operator yields [y] ← [−80, 14] ∩ ([−76, 0] − [4, 4]) = [−80,−4]. Following the
same principle, MaxRevise applies HC4-Revise to fmax(y) = f(10, y) ≥ 0 and narrows [y] to [−70,−4]
(see Figure 4.1-right).

Note that MinMaxRevise does not contract the monotonic variables in X. These variables are contracted
by the MonotonicBoxNarrow procedure.

76

4.2 The MOnotonic Hull Consistency algorithm

4.2.2 The MonotonicBoxNarrow procedure

The procedure MonotonicBoxNarrow has similarities with the BoxNarrow algorithm described in Section
3.2.3.5 and the Octum algorithm described in Section 3.2.3.6. It aims at narrowing the interval of every
monotonic variable xi in X. For performing the narrowing of xi, MonotonicBoxNarrow works with two
interval functions:

[fximin](xi) = [fog]n(x−1 , ..., x
−
i−i, xi, x

−
i+1, ..., x

−
n′ , [Y], [W]) (4.1)

[fximax] (xi) = [fog]n(x+1 , ..., x
+
i−i, xi, x

+
i+1, ..., x

+
n′ , [Y], [W]) (4.2)

Observe that all the variables in X, excepting xi, have been replaced by one bound of the related
interval. The variables in Y and W have been replaced by their domains. [fximax] and [fximin] denote
univariate thick/interval functions depending on xi (see Figure 4.3).

MonotonicBoxNarrow calls two subprocedures:

• If xi is increasing it calls LeftNarrowFmax and RightNarrowFmin.

• If xi is decreasing it calls LeftNarrowFmin and RightNarrowFmax.

W.l.o.g. consider in the following that f is increasing. The LeftNarrowFmax procedure attempts to find
the leftmost zero of the function [fximax] in the interval [xi] for improving the left bound of the interval. In
the same way, RightNarrowFmin attempts to find the rightmost zero of the function [fximin] and narrows
the right bound of [xi].

We detail below how the left bound of [xi] is improved by the LeftNarrowFmax procedure. Note that if
MonotonicBoxNarrow is called, this required MinMaxRevise be terminated with no failure. This means
that LeftNarrowFmax will never return an empty interval for [xi]: either [xi] is left unchanged, or [xi] is
narrowed to a non-empty interval (see Lemma 1 in Section 4.4.1).

4.2.3 The LeftNarrowFmax procedure

This procedure has a close connection with the LeftNarrow procedure used by the well-known Box

algorithm (see Section 3.2.3.5 or [Benhamou et al., 1999; Van Hentenryck et al., 1997]). However, because
f is monotonic w.r.t. xi, the contraction process is faster, that is, it is a true dichotomic, and thus log-
time, process.

Algorithm 8 LeftNarrowFmax (in-out [x]; in [fxmax], [g], ε)

if [fxmax](x) < 0 /* test of existence */ then

size← ε× Diam([x])

[l]← [x]

while Diam([l]) > size do

xm ← Mid([l]); zm ← [fxmax](xm) /* zm ← [fxmin](xm) in {Left|Right}NarrowFmin */

[l]← [l] ∩ xm − zm
[g] /* Newton iteration */

end while

[x]←
[
l, x
]

end if

77

4. An Algorithm Exploiting Monotonicity

Let us illustrate LeftNarrowFmax (Algorithm 8) applied to the [fxmax] function depicted in Figure 4.2.
Starting with [l0] = [x] (the index corresponds to the iteration number), the goal is to contract [l] for
providing a tight approximation of the point L, i.e., the new left bound of [x]. LeftNarrowFmax provides
a sharp enclosure of L and keeps only its left bound at the end (last line of Algorithm 8 and step 4 on
the figure).

A first existence test checks that [fxmax](x) < 0, i.e., the point A in Figure 4.2-left is below zero. Otherwise,
[fxmax] ≥ 0 is satisfied in x so that [x] cannot be narrowed, leading to an early termination of the procedure.

A dichotomic process is then run until Diam([l]) ≤ size. A classical Newton iteration is iteratively
launched from the midpoint xm of [l], e.g., from the point B (middle of [l0]) and from the point C
(middle of [l1]) in the figure.

[fmax]
x

[l0]=[x]

x

A

B

C

1

2

3

L

[x]←[l,x]

4

[l1]

[l2]

Figure 4.2: Interval Newton iterations for narrowing the left bound of [x].

Graphically, an iteration of the univariate interval Newton (described in Section 3.2.1) intersects [l] with
the projection on the x axis of the cone (two lines emerging from B and C) enclosing the function. The
slopes of the lines bounding the cone are equal to the bounds of the interval partial derivative of x. Note
that the cones forms an angle of at most 90 degrees because the function is monotonic and the interval
partial derivative [g] is positive1. This explains why the diameter of [l] is divided by at least 2 at each
iteration. Indeed, if zm < 0 (point B in Figure 4.2), then the term − zm

[g] is positive and the dichotomic

process will continue in the right side of xm (step 2). If zm > 0 (point C), then − zm
[g] < 0 and one will

proceed with the left side of xm (step 3). (The following property can also be obtained if we remove the
Newton iteration from the procedure.)

Proposition 9 The procedures LeftNarrowFmax, RightNarrowFmin, LeftNarrowFmin,
RightNarrowFmax terminate and run in time O(log(1ε)), where ε is a precision expressed as a ratio of
interval diameter.

At the end, the procedure computes a new left bound for [x] (step 4).

1Every Newton iteration could recompute a more narrow interval derivative [g] (implying a thinner cone) although we
do not perform it in our implementation.

78

4.3 Advanced features of Mohc-Revise

Observe that Newton iterations called inside LeftNarrowFmax and RightNarrowFmax work with zm =
[fxmax](xm), that is, a degenerate curve (in bold in the figure), and not with a thick function. In the
same way, LeftNarrowFmin and RightNarrowFmin work with zm = [fxmin](xm). As zm is a floating point

number, it overestimates the real evaluation [fxmax](xm) (or underestimates the evaluation of [fxmin](xm)).
For this reason it is possible, in some cases, to lose the unique solution. In Section A.8 we propose a
modification for avoiding this problem.

4.3 Advanced features of Mohc-Revise

In this section we describe some advanced features of our algorithm.

4.3.1 The user-defined parameter τmohc and the array ρmohc

The user-defined parameter τmohc ∈ [0, 1] allows the monotonicity-based procedures to be called more or
less often (see Algorithm 6). For every constraint, ρmohc[f] tries to predict whether the monotonicity-
based treatment that follows is promising: the procedures exploiting monotonicity are called only if
ρmohc[f] < τmohc. These ratios are computed in a preprocessing procedure called after every bisection
(i.e., choice point) on the current box [B], as follows1:

ρmohc[f] =
Diam([f]M ([B]))

Diam([f]([B]))
=

Diam
([

[fmin]([B]), [fmax]([B])
])

Diam([f]([B]))

This ratio thus indicates whether the monotonicity-based image of a function is sufficiently sharper than
the natural one. As confirmed by the experiments detailed in Section 4.6, this ratio is relevant for the
bottom-up evaluation phases of MinRevise and MaxRevise, and also for MonotonicBoxNarrow.

The experiments, reported in Section4.6.2, show that the parameter τmohc is useful when Mohc is a
subcontractor of 3BCID [Trombettoni and Chabert, 2007]. In this case, Mohc is called many times between
two branching points, so that the CPU time required by the preprocessing procedure filling the array ρmohc
is negligible. This trend would also be true for any other sophisticated contractor calling a constraint
propagation subcontractor, such as 3B [Lhomme, 1993], Quad [Lebbah et al., 2005] or Box-k (described
in Chapter 7). When Mohc is called only once between two branching points, the parameter τmohc seems
to be less effective.

4.3.2 The OccurrenceGrouping procedure

(See Chapter 5 for more details.) The OccurrenceGrouping procedure rewrites the expression f into a
new form fog such that the image [fog]M ([B]) computed by the monotonicity-based interval extension is
sharper than, or at worst equal to, the image [f]M ([B]) = [f]([B]).

For example, consider the function f1(x) = −x3 + 2x2 + 6x, with [x] = [−1.2, 1]. f1 is not detected
monotonic since the image of [−1.2, 1] by natural evaluation of the derivative f ′1(x) = −3x2 + 4x + 6

1To compute ρmohc[f], the preprocessing procedure calls almost the same procedures as Mohc-Revise, i.e.,
GradientCalculation (computing [f]([B])), OccurrenceGrouping, ExtractMonotonicVars and the evaluation phase of
MinMaxRevise (computing [fmin]([B]) and [fmax]([B])).

79

4. An Algorithm Exploiting Monotonicity

contains 0. OccurrenceGrouping produces:

f1(x) = fog1 (xa, x) = −x3a + 2(0.35xa + 0.65x)2 + 6xa

where xa is an increasing variable in the new function fog1 . Then, we can observe that:

[fog1]M ([x]) = [−5.472, 7] ⊆ [f1]M ([x]) = [−8.2, 10.608]

At the end, OccurrenceGrouping returns the new expression fog and a new set W that includes the new
variables (e.g., xa), if any. (ExtractMonotonicVars transfers xa into the set X of monotonic variables.)

To maintain the equivalence between the initial expression and the new one, we should add the con-
straint relating the new auxiliary variables with x (i.e., x = xa). However, as fog lives only inside the
Mohc-Revise procedure, we prefer to evaluate xa using the interval [x] (i.e., [xa] ← [x]) and to update
the interval [x] immediately after a contraction of [xa], i.e., [x]← [x] ∩ [xa].

The OccurrenceGrouping procedure has a time complexity of O(k log2(k)) for each variable occurring k
times in a function f (see Section 5.5, page ??).

4.4 Understanding and improving Mohc-Revise

The aim of this section is to better understand the process performed by Mohc-Revise, especially by its
two most interesting procedures: MinMaxRevise and MonotonicBoxNarrow. Then, we propose improve-
ments that are detailed in Section 4.4.4.

4.4.1 MinMaxRevise ensures the existence of a solution in the box

Lemma 1 Consider a function f continuous in the box [B] = [X]× [Y]× [W]. When MinMaxRevise is
successfully applied in f for contracting [B], it certifies that there exists a vector V ∈ [X] that satisfies
0 ∈ [f]M (V, [Y], [W]).

Proof 5 After having successfully called the MinMaxRevise procedure, the following conditions are sat-
isfied:

[fmax]([Y], [W]) = [f](X+, [Y], [W]) ≥ 0

[fmin]([Y], [W]) = [f](X−, [Y], [W]) ≤ 0

There exist two cases:

• If [fmin]([Y], [W]) (resp. [fmax]([Y], [W])) contains 0, then the vector V = X− (resp. V = X+)
satisfies the relation 0 ∈ [f]M (V, [Y], [W]).

• If [fmin]([Y], [W]) < 0 and [fmax]([Y], [W]) > 0, i.e., [f]opt([B]) ⊆ [fmin]([Y], [W]) < 0 and

[f]opt([B]) ⊆ [fmax]([Y], [W]) > 0, then 0 ∈ [f]opt([B]).
As f is continuous in [B], 0 ∈ [f]opt([X], [Y], [W]) implies that there exists a vector V ∈ [X] such
that 0 ∈ [f]opt([X], [Y], [W]) ⊆ [f]M (V, [Y], [W]). �

Thus, Lemma 1 implies that MonotonicBoxNarrow called after MinMaxRevise cannot result in an empty
box.

80

4.4 Understanding and improving Mohc-Revise

4.4.2 Duality of the contraction process

During MinMaxRevise, every xi ∈ X is replaced by one of its bounds xi or xi. These bounds could
been modified by the next call to MonotonicBoxNarrow, forcing to repeat the process. Fortunately, the
following lemma shows that iterating over these two methods does not improve the contraction.

Lemma 2 If after applying MinMaxRevise and MonotonicBoxNarrow to a box [B] = [X]×[Y]×[W], [W]
is not contracted, then a second call to MinMaxRevise or MonotonicBoxNarrow cannot further contract
[B].

Proof 6 Let us detail this point on Tfmax (the same reasoning holds for Tfmin), the expression tree
representing fmax, and with an increasing variable xi. Before the call to MaxRevise, since xi is increasing,
it is replaced by xi in Tfmax. During MaxRevise, at the end of the bottom-up evaluation phase of Tfmax,
the root interval is [z] = [fmax]([Y], [W]) = [z, z]. Three cases may occur according to the signs of z and
z. Figure 4.3 illustrates the two interesting cases.

The first case (case A in Figure 4.3) occurs when z ≤ 0 ≤ z, resulting in [z′] = [0, z] after intersection
of [z] with [0,+∞] in the top of Tfmax (because [fmax]([Y], [W]) ≥ 0), and thus in a potential con-
traction of [yj]. However, MonotonicBoxNarrow cannot contract the right bound of [xi] (using [fximin])
since xi is already a zero (xi ∈ [L,R] in the figure). This implies that the RightNarrowFmin proce-
dure of MonotonicBoxNarrow (resp. the LeftNarrowFmin procedure for decreasing variables) is useless if
z = [fmax]([Y], [W]) ≤ 0. The situation is symmetric if [fmin]([Y], [W]) ≥ 0.

The second case (case B in Figure 4.3) occurs when 0 < z < z. [z] does not change after being intersected
with [0,+∞]. Since [z] is not narrowed, no [yj] (with yj ∈ Y) is contracted in the top-down narrowing

phase of Tfmax. Next, MonotonicBoxNarrow reduces xi to x′i, but 0 < z′ < z′ remains true (see figure).
Thus, a second call to MaxRevise could not further contract [yj].

A last trivial case occurs when z < z < 0. MaxRevise detects that there is no solution due to an empty
intersection with [0,+∞]. �

Cases A and B of the proof highlight the duality of the contraction process. This duality explains why
we do not push the revised constraint again into the propagation queue when there is no reduction of
[W].

4.4.3 When the narrowing procedures are useless

Lemma 3 If MonotonicBoxNarrow reduces the interval of a variable xi ∈ X using [fximax] (resp. [fximin])
or, if 0 ∈ [fximax](x−i) (resp. 0 ∈ [fximin](x+i)), then, for all j 6= i, [f

xj
min] (resp. [f

xj
max]) cannot bring any

additional narrowing to [xj].

Proof 7 With no loss of generality, let us explain the principle assuming that f is increasing w.r.t. xi.
Since xi is increasing LeftNarrowFmax is called to narrow the left bound of [xi]. Three cases may occur
according to xi, as illustrated in Figure 4.3.

In the cases 1 and 2 (i.e., intervals [xi]1 and [xi]2 in the figure), and not in the case 3, there exists a
point vi ∈ [xi] which is a zero in [fximax] (i.e., which belongs to the segment in bold). That is:

∃vi ∈ [xi] s.t. 0 ∈ [fximax](vi) (4.3)

81

4. An Algorithm Exploiting Monotonicity

xi' xi

z

z

z'

z'

z

z

L
xi

z

R

[fmin]xi

[fmax]xi

A

B

[xi]2

[xi]3

xi

[xi]1

Figure 4.3: Two main cases in Mohc-Revise when MaxRevise is applied to fmax.

The relation (4.3) implies:

∀j 6= i,∀vj ∈ [xj] : [f
xj
min](vj) ≤ [fximax](vi) ≤ 0

The rightmost inequality comes directly from (4.3). The leftmost inequality comes from the study of
monotonicity of f : the values for X (excepting xi = vi) used by [fximax](vi) (see relation (4.1), page 77)
maximize f while the values for X (excepting xj = vj) used by [f

xj
min](vj) (see relation (4.2), page 77)

minimize f . As j 6= i [f
xj
min](vj) ≤ [fximax](vi)

1. �

Thus, in the cases 1 and 2 of the figure, we know that [f
xj
min](vj) ≤ 0 for every j 6= i. This means that

[f
xj
min] cannot bring any additional narrowing to [xj], the relation used to shave the interval being always

true. In other terms, if xj is increasing (resp. decreasing), then it is useless to call RightNarrowFmin
(resp. LeftNarrowFmin) to contract [xj]. The same reasoning is used symmetrically for predicting if
LeftNarrowFmax (resp. RightNarrowFmax) will be useless.

4.4.4 Improvements

Lemmas 1, 2 and 3 lead to some improvements of our algorithm.

Improving the MonotonicBoxNarrow procedure

Lemmas 2 and 3 result in Algorithm 9, a more sophisticated version of the MonotonicBoxNarrow proce-
dure described in Section 4.2.2.

The MonotonicBoxNarrow procedure contains two important improvements. First, if xi is increasing
then LeftNarrowFmax (resp. RightNarrowFmin) is called only if [fmin]([B]) < 0 (resp. [fmax]([B]) > 0),
otherwise they are not useful (lines 2 and 9). This is due to the first case detailed in Section 4.4.2.

1 We assume here that the interval gradient is computed using automatic differentiation. Otherwise, the punctual
functions [f

xj
min] and [f

xj
min] may not have the same monotonicities as f .

82

4.4 Understanding and improving Mohc-Revise

Algorithm 9 MonotonicBoxNarrow (in-out [B]; in fmax, fmin, X, [G], ε)

1: for all variable xi ∈ X do

2: if [fmin]([B]) < 0 and applyFmax[i] then
3: if [gi] > 0 then
4: LeftNarrowFmax([xi], f

xi
max, [gi], ε)

5: else
6: RightNarrowFmax([xi], f

xi
max, [gi], ε)

7: end if
8: end if

9: if [fmax]([B]) > 0 and applyFmin[i] then

10: if [gi] > 0 then
11: RightNarrowFmin([xi], f

xi
min, [gi], ε)

12: else
13: LeftNarrowFmin([xi], f

xi
min, [gi], ε)

14: end if
15: end if
16: end for

Second, the observations of Section 4.4.3 are also used to avoid unnecessary calls to the narrowing pro-
cedures. We add two new boolean arrays applyFmin and applyFmax. If xi is increasing and the boolean
applyFmin[i] (resp. applyFmax[i]) is set to false then the LeftNarrowFmin (resp. RightNarrowFmax)
procedure is useless for narrowing [xi] (lines 2 and 9). For every monotonic variable xi ∈ X, the booleans
are initialized to true and are updated in the four procedures LeftNarrowFmax, RightNarrowFmax,
LeftNarrowFmin and RightNarrowFmin in accordance with the last paragraph of Section 4.4.3.

This advanced feature is a slight generalization of the feature proposed in [Chabert and Jaulin, 2009b].
In their paper, f

xj
min and f

xj
max are punctual functions because there are no sets Y and W .

Lazy evaluations of fmin and fmax

Mohc-Revise is optimized in the aim of reusing as much as possible the different evaluations of fmin
and fmax. In Algorithm 9, intervals [zmin] = [fmin]([B]) and [zmax] = [fmax]([B]) (lines 2 and 9) do not
need to be recomputed at each iteration. Indeed, these intervals have been previously computed in the
bottom-up evaluation phases of MinMaxRevise and can be transmitted to MonotonicBoxNarrow.

The value zmax can also be used to add a first and cheap call to a Newton iteration at beginning of

LeftNarrowFmax. More precisely, we replace the third line in Algorithm 8 by: [l]← [x] ∩
(
x− zmax

[g]

)
.

Finally, the existence test of LeftNarrowFmax makes it possible to reuse the value [zl] = [fxmax](x).
This allows us to add, just after the third line in Algorithm 8, a second cheap Newton iteration: [l] ←
[l] ∩

(
x− zl

[g]

)
.

The final version of the LeftNarrowFmax procedure is described in Appendix A.8.

The LazyMohc variant

LazyMohc is a simplified version of Mohc in which the MonotonicBoxNarrow procedure is replaced by the

83

4. An Algorithm Exploiting Monotonicity

LazyMonotonicBoxNarrow procedure (see the pseudocode in Appendix A.6). LazyMonotonicBoxNarrow
only calls the first and cheap Newton iteration described above for every bound of xi in X. In other
words, the LazyMohc variant runs MinMaxRevise, two cheap Newton iterations per monotonic variable
(the LazyMonotonicBoxNarrow procedure), but no dichotomic process.

4.5 Properties

A very interesting property concerning Mohc is that the Mohc-Revise procedure can compute an optimal
box w.r.t. an individual constraint if certain conditions are fulfilled. These conditions thus identify a
polynomial subclass (Proposition 10) of the hull-consistency problem, i.e., searching for the smallest box
containing all the solutions of the constraint (hull-consistency is discussed in Section 3.2.3.2). Recall
that the problem is difficult when there exist multiple occurrences of variables. (The corresponding
propositions appear below and the proofs can be found in Appendix A.)

Proposition 10 Let c : f(X,Y,W) = 0 be a constraint such that f is continuous and differentiable w.r.t.
every variable in the box [B] = [X]× [Y]× [W]. Variables in X and W appear several times in f while
variables yi ∈ Y appear once. For every xi ∈ X, f is monotonic w.r.t. xi in [B].

If W is empty and if for all yi ∈ Y, 0 /∈
[
∂f
∂yi

]
([B]) (implying that yi is monotonic), then:

One call to Mohc-Revise computes the hull-consistency of the constraint c in [B] (with a precision ε).

The proof is based on the lemma 4 related to the box [Y] contracted by MinMaxRevise, and on the
lemma 5 related to the box [X] contracted by MonotonicBoxNarrow.

Lemma 4 With the same hypotheses as in Proposition 10, if W is empty and if for all yi ∈ Y, 0 /∈[
∂f
∂yi

]
([B]) (implying that yi is monotonic), then:

One call to MinMaxRevise contracts optimally every [yi] ∈ [Y].

Lemma 5 With the same hypotheses as in Proposition 10:

One call to MonotonicBoxNarrow (following a call to MinMaxRevise) contracts optimally every [xi] ∈ [X].

Proposition 11 is in a sense stronger than Proposition 10 because no monotonicity hypothesis is required
for the variables yi occurring once in the expression. However, a stronger and more expensive procedure
is used instead of HC4-Revise. Replacing HC4-Revise with a so-called TAC-revise is a way to make a
system hull-consistent when all the constraints contain only variables with single occurrence. The fact
that a given function f , having only variables with single occurrence, is continuous ensures that the
image produced by the natural extension [f] is optimal. But the top-down narrowing phase manages in
a sense inverse functions of f that are not necessarily continuous. HC4-Revise returns the hull of the
different continuous subparts provided by the piecewise analysis performed at each node for the inverse
functions. Instead, TAC-revise combinatorially combines the continuous subparts of different nodes for
optimally narrowing the variables, thus achieving hull-consistency. Details about TAC-revise can be
found in [Chabert et al., 2005] and in Section 3.2.3.4.

Proposition 11 Let c : f(X,Y,W) = 0 be a constraint such that f is continuous and differentiable w.r.t.
every variable in the box [B] = [X]× [Y]× [W]. Variables in X and W appear several times in f while

84

4.6 Experiments

variables yi ∈ Y appear once. For every xi ∈ X, f is monotonic w.r.t. xi. Let us call Mohc-Revise’ a
variant of Mohc-Revise in which HC4-Revise is replaced by TAC-revise in MinMaxRevise.

If W is empty, then:
One call to Mohc-Revise’ computes the hull-consistency of the constraint c in [B] (with a precision ε).

This proposition is significant because in practice, after only a few bisections in the search tree, HC4-Re-
vise generally computes a box as sharp as TAC-revise does, except in pathological cases. Thus,
Mohc-Revise (calling the standard HC4-Revise procedure) often computes hull-consistency when all
the variables appear once or are monotonic.

Finally, Proposition 12 details the time complexity of Mohc-Revise.

Proposition 12 Let c be a constraint. Let n be its number of variables, e be the number of unary and
binary operators in the constraint (i.e., at least equal to the total number of occurrences of variables), and
k be the maximum number of occurrences of a variable (thus, nk ≤ e). Let ε be the precision expressed
as a ratio of interval diameter.

With no call to OccurrenceGrouping, Mohc-Revise is time O(n e log(1ε)).
LazyMohc-Revise is time O(e+ n) = O(e).

With OccurrenceGrouping, Mohc-Revise is time O(n (e log2(
1
ε) + k log2(k))) = O(n e log2(

k
ε)).

LazyMohc-Revise is time O(e+ n+ nk log2(k)) = O(e log2(k)).

4.6 Experiments

We have implemented Mohc and LazyMohc with the interval-based C++ library Ibex [Chabert, 2009;
Chabert and Jaulin, 2009a]. Mohc has been tested on 17 benchmarks with a finite number of zero-
dimensional solutions issued from COPRIN’s web page [Merlet, 2009]. We have tested Mohc in two
different ways: as a main contractor between two bisections or as a subcontractor embedded in the 3BCID
contractor (described in Section 3.2.4.2).

We have selected all the NCSPs with variables with more than two occurrences in a same constraint
which have been found in the first two sections (polynomial and non polynomial systems) of the web
page. We have added Brent, Butcher, Direct Kinematics and Virasoro from the section describing
the difficult problems. All the competitors are also available in Ibex, thus making the comparison fair.

All the experiments have been performed on an Intel 6600 2.4 GHz, and a timeout of at least one hour
has been chosen for each benchmark.

4.6.1 Mohc as a subcontractor of 3BCID

4.6.1.1 Tuning the user-defined parameters

The first experiments allow us to get an idea of relevant values for τmohc (see Section 4.3.1) and ε. The

curves of Figure 4.4-left show how the ratio T ime(Mohc)
T ime(LazyMohc) evolves when ε decreases (i.e., when the

reached precision in MonotonicBoxNarrow increases). It appears that tuning ε has no significant impact
on performance. For most of the NCSPs, the best value falls between 1

32 and 1
8 , and the curves are rather

flat. We have thus fixed ε to 10% (at least when Mohc is a subcontractor of 3BCID).

85

4. An Algorithm Exploiting Monotonicity

Figure 4.4: Tuning the user-defined parameters. Left: Tuning ε. Right: Tuning τmohc.

The curves of Figure 4.4-right show how the ratio T ime(Mohc)
T ime(HC4) evolves when τmohc increases, i.e., when

the monotonic-based procedures are called more often. For all the NCSPs, the best value of τmohc falls
between 0.61 and 0.99. Thus, the experiments that follow perform two trials with τmohc = 0.7 and
τmohc = 0.99 (for the most favorable NCSPs).

4.6.1.2 Experimental protocol

Our Mohc-based solving strategy uses a round-robin variable selection. Between two branching points,
three procedures are called in sequence. First, a monotonicity test MonoTest just checks whether every
monotonicity-based function evaluation contains zero. Its specificity is that the test does not apply to the
initial functions f in the NCSP, but to the functions fog produced by OccurrenceGrouping. Second, the
contractor 3BCID(Mohc) is called. Third, an interval Newton is run if the current box has a diameter 10
or less. All the parameters in 3BCID, HC4, Box and Mohc (except τmohc) have been fixed to default values.
The precision ratio in 3B and Box is 10% ; the number of additional slices handled by the CID part is 1;
a constraint is pushed into the propagation queue if the interval of one of its variables is reduced more
than τpropag = 10%.

4.6.1.3 Results

Table 4.1 compares the CPU time and number of choice points obtained by 3BCID(Mohc) with those
obtained by competitors: 3BCID(HC4) and 3BCID(Box).

The first column includes the name of the benchmark; the bottom of the cell contains the corresponding
number of equations and the number of solutions. The other columns report the results obtained by
different algorithms. Every cell shows the CPU time in second (above) and the number of choice points
(below). The contraction algorithms are 3BCID(HC4) (column HC4), 3BCID(Box) (column Box), MonoTest
followed by 3BCID(HC4) (column MonoTest). MonoTest is also used before the contractor shown in the

1Observe that, even on NCSPs that do not benefit from our monotonicity-based procedures, setting τmohc to 0.6 only
slightly decreases the performance (only 11% in the worst case).

86

4.6 Experiments

NCSP HC4 Box MonoTest Lazy(0.7) Lazy(0.99) Mohc(0.7) Mohc(0.99) Mohc(1)

Gain Gain

Butcher 282528 25867 281664 5220 1985 5431 52.0 1722 163 1915
8 3 1.8e+8 1.7e+6 1.8e+8 2.2e+6 346063 2.2e6 82 288773 623 273049

Direct kin. 17515 >28800 17507 480 431 429 40.8 356 49.1 401
11 2 1.4e+6 1.4e+6 11931 8811 8859 157 5503 253 5487

Virasoro 7158 >28800 7173 1537 1413 1052 6.82 897 8.00 899
8 224 2.6e+6 2.6e+6 135833 102997 71253 36.0 38389 66.8 38391

Geneig 590 >7200 390 116 95.2 108 3.62 81.1 4.81 97.0
6 10 205263 161211 17059 9083 13909 11.6 6061 26.7 6233

Yamam.1 11.2 15.3 11.7 2.26 2.91 2.20 5.30 2.87 4.06 3.59
8 7 3013 183 3017 357 345 345 8.74 295 10.2 267

Fourbar 13121 11011 1069 429 419 366 2.92 372 2.87 377
4 3 8.5e+6 732429 965343 79697 67397 58571 16.5 45561 21.2 45475

Hayes 39.2 282 41.6 17.2 13.6 17.0 2.44 13.8 3.02 16.0
8 1 17649 7247 17763 4447 1707 4375 4.06 1679 10.6 1725

Trigo1 160 773 151 74.0 92.3 57.7 2.61 73.2 2.06 73.3
10 9 2791 1005 2565 641 603 459 5.59 443 5.79 443

Pramanik 100 278 35.9 21.9 22.1 20.8 1.72 21.3 1.69 26.1
3 2 124661 23017 69259 13817 9649 12691 5.46 8429 8.22 8219

Caprasse 2.56 32.2 2.73 2.51 2.94 2.64 1.03 4.35 0.63 4.60
4 18 1305 719 1309 951 499 867 1.51 383 3.42 383

Redeco8 5.80 69.8 6.28 6.32 11.0 6.10 1.03 10.7 0.59 16.5
8 8 2295 1913 2441 2231 1741 2211 1.10 1489 1.64 1331

Kin1 1.73 68.7 1.96 1.78 3.33 1.79 1.09 3.43 0.57 5.47
6 16 85 65 87 83 83 83 1.05 83 1.05 71

Trigexp2 82.7 >3600 86.9 88.2 228 87.0 1.00 164 0.53 163
11 0 14283 14299 14303 12567 14299 1.00 7291 1.96 6597

I5 54.6 >3600 55.9 58.4 81.7 57.5 0.97 84.1 0.66 115
10 30 10595 10621 9809 8849 9773 1.09 8693 1.22 7561

Eco9 13.9 102 13.9 15.1 26.5 14.0 0.99 26.6 0.52 38.7
9 16 6193 4991 6193 6047 4707 6025 1.03 4309 1.44 4035

Brent 18.1 311 18.9 20.0 42.1 19.9 0.95 41.4 0.46 46.5
10 1008 3953 2137 3923 3807 3341 3805 1.03 3189 1.23 2377

Katsura 73.2 2265 77.8 104 274 103 0.75 251 0.31 260
12 7 4265 3557 4251 3671 3373 3573 1.19 3471 1.22 347

Table 4.1: Results obtained by Mohc as a subcontractor of 3BCID.

87

4. An Algorithm Exploiting Monotonicity

four last columns: 3BCID(LazyMohc) with τmohc = 0.7 (column Lazy(0.7)), the same with τmohc = 0.99
(column Lazy(0.99)), 3BCID(Mohc) with τmohc = 0.7 and ε = 10% (column Mohc(0.7)-left), the same with
τmohc = 0.99 (column Mohc(0.99)-left). All the algorithms are followed by a call to interval Newton before
the next bisection. The columns Mohc(0.7)-right and Mohc(0.99)-right yield the gain obtained by Mohc (with

τmohc = 0.7 and τmohc = 0.99 resp.) w.r.t. MonoTest followed by 3BCID(HC4), i.e., T ime(MonoTest)
T ime(3BCID(Mohc))

(above) and Choice Points(MonoTest)
Choice Points(3BCID(Mohc)) (below). Observe that MonoTest followed by 3BCID(HC4) is the

best competitor strategy, especially in the benchmarks Fourbar, Geneig and Pramanik with gains w.r.t.
3BCID(HC4) of 12, 1.5 and 3.7 respectively. The worst gain is 0.9 and has been observed for Kin1.

The table highlights the very good results obtained by 3BCID(Mohc), both in terms of filtering power
(low number of choice points) and CPU time. As expected, the bad results obtained by Box highlight
that Box is not relevant when several variables in a same constraint have multiple occurrences. For the
NCSPs Yamamura1, Brent and Kin1, Box shows a slightly better contraction power than Mohc, but it
does not pay off in terms of performance. This underlines that it is better to perform a box narrowing
effort less often, when monotonicity has been detected for a given variable.

The comparison with MonoTest followed by 3BCID(HC4) is more interesting. Mohc(0.7) and MonoTest

obtain similar results on 8 of the 17 benchmarks. Note that the loss in performance of Mohc(0.7) is
negligible. The gain is clearly inferior than 1 only for Katsura. On 7 NCSPs, Mohc(0.7) and Mohc(0.99) show
a gain comprised between 1.7 and 8. On Butcher and Direct Kin., a very good gain in CPU time of
resp. 163 and 49 (Mohc(0.99)) or 52 and 42 (Mohc(0.7)) is observed.

Although the difference is not so significant, 3BCID(Mohc) generally provides better results than
3BCID(LazyMohc), in particular when τmohc = 0.99.

The last column (Mohc(1)) shows that setting τmohc to 1 (i.e., ignoring completely the parameter) is slightly
but systematically worse than setting it to 0.99.

4.6.1.4 Profiling

In this section we report the results of different profiling tests. They aim at evaluating the impact on
performance of the different features of Mohc. All the results have been produced using the 3BCID(Mohc)

strategy and τmohc = 0.99. We call MonotonicProcedures the virtual procedure grouping the set of
the monotonicity-based procedures inside Mohc-Revise: GradientCalculation, OccurrenceGrouping,
ExtractMonotonicVars, MinMaxRevise and MonotonicBoxNarrow.

CPU time distribution

Table 4.2 reports the CPU time distribution of the different procedures inside Mohc-Revise.

The first column includes the name of the benchmark. The other columns report the ratio (total time(P)
total time(Mohc))

between the time taken by the sum of calls to a given procedure P (from columns 2 to 7, P is: HC4-Revise,
GradientCalculation, OccurrenceGrouping + ExtractMonotonicVars, MinMaxRevise,
MonotonicBoxNarrow and MonotonicProcedures) and the time taken by the sum of calls to Mohc-Revise

during the resolution of each benchmark. The last row corresponds to the average of each column.

Consider t the time spent by Mohc in the solving of one benchmark1. It is interesting to observe that the

1For every benchmark, Mohc takes between 80% and 97% of the total solving time. The rest of time is shared by interval
Newton and the monotonicity-based existence test.

88

4.6 Experiments

MonotonicProcedures

NCSP HC4-Revise Grad.Calc. OG MinMaxR. Mono.BoxNarrow Mono.Proc.

Brent 0.31 0.21 0.04 0.30 0.14 0.69
Caprasse 0.28 0.19 0.08 0.29 0.14 0.72
Eco9 0.29 0.15 0.06 0.43 0.07 0.71
Geneig 0.25 0.19 0.10 0.33 0.13 0.75
Hayes 0.27 0.24 0.04 0.36 0.08 0.73
I5 0.53 0.11 0.04 0.30 0.02 0.47
Katsura 0.21 0.21 0.04 0.38 0.16 0.79
Kin1 0.36 0.27 0.00 0.32 0.05 0.64
Pramanik 0.28 0.20 0.14 0.36 0.03 0.72
Redeco8 0.29 0.14 0.09 0.35 0.12 0.71
Trigexp2 0.23 0.26 0.05 0.31 0.15 0.77
Trigo1 0.23 0.24 0.00 0.46 0.07 0.77
Yamamamura1 0.31 0.20 0.04 0.38 0.07 0.69
Fourbar 0.26 0.22 0.12 0.32 0.07 0.74
Direct Kin. 0.25 0.29 0.02 0.33 0.11 0.75
Butcher 0.25 0.18 0.06 0.49 0.01 0.75
Virasoro 0.19 0.21 0.10 0.32 0.18 0.81

AVERAGE 0.28 0.21 0.06 0.35 0.09 0.72

Table 4.2: Time distribution of Mohc-Revise procedures.

HC4-Revise procedure takes a significant part of the time (on average 28% of t). If the monotonicity-
based procedures are completely useless for narrowing domains further, then the loss in performance
w.r.t. 3BCID(HC4) is limited to 0.28 (on average). In Table 4.1 we can see the worst results in Katsura

where the gain is 0.32.

The procedure spending most time in the resolution is MinMaxRevise (35% of t). OccurrenceGrouping

takes only 6% of t. Surprisingly, MonotonicBoxNarrow takes 10% of t, a very little time if we consider
that it can reach the hull-consistency (see Section 7.3.5).

Application frequency of the monotonicity-based procedures

The curves of Figure 4.5 show how the application frequency of MonotonicProcedures
(number of calls(MonotonicProcedures)number of calls(Mohc−Revise)) evolves when τmohc increases. Low values for τmohc imply low applica-
tion frequencies of MonotonicProcedures, just like high values of τmohc imply high application frequencies
of MonotonicProcedures. In particular when τmohc = 1, the monotonic-based procedures are applied in
each call to Mohc-Revise.

The figure should also be understood in a different way: the application frequency for a benchmark with
a given τmohc (e.g., 0.5) corresponds, more or less, to the frequency in which ρmohc is less than τmohc, i.e.,
the diameter of the evaluation by monotonicity is 50% or less than the diameter of the natural evaluation
(see Section 4.3.1 for an explanation of the parameter τmohc).

Observe that when τmohc is 0.7 the application frequency of MonotonicProcedures for Katsura, I5,
Brent, Redeco8, Kin1, Eco9 and Trigexp2 is less than 25%. All these benchmarks show a decrease
in performance when the frequency increases (see columns Mohc(0.99) and Mohc(1) of Table 4.1). On the

89

4. An Algorithm Exploiting Monotonicity

Figure 4.5: Application frequency of the monotonicity-based procedures in function of τmohc.

contrary, the benchmarks having higher application frequencies of MonotonicProcedures show good
results when τmohc is 0.7 or more (excepting Caprasse).

Thus, it seems that the array ρmohc offers, in general, a good prediction of the behavior of
MonotonicProcedures. This leads to the opportunity of an adaptive tuning of τmohc (between 0.6 and
0.99).

Remark in Figure 4.5, even when τmohc is close to 1, that there exist application frequencies with values
less than 90%. Setting τmohc to 1 implies an application frequency of 100% resulting in a decrease in
performance due to the big additional effort and probably poor additional contraction (compare columns
Mohc(0.99) and Mohc(1) in Table 4.1). This explains why removing τmohc (or defining τmohc = 1) reports, in
general, worse results than setting τmohc to 0.99.

Time of the monotonic-based procedures w.r.t. HC4-Revise

Table 4.3 reports the ratio (time(P)
time(HC4−Revise)) between the average time taken by one call to a given

procedure P (from columns 2 to 5, P is: GradientCalculation, OccurrenceGrouping +
ExtractMonotonicVars, MinMaxRevise and MonotonicBoxNarrow) and one call to HC4-Revise (observe
that this is not equivalent to the results reported in Table 4.2 because, in general, each procedure is called
a different number of times). The last column reports the ratio between one call to all the procedures
inside Mohc-Revise (including HC4-Revise) and one call to HC4-Revise. The column (#X), beside
Mono.BoxNarrow, reports the average number of variables treated by one call to MonotonicBoxNarrow

(i.e., the average number of variables in X).

As expected, the time taken by GradientCalculation is close to the time taken by HC4-Revise. Recall
that the gradient calculation is performed by the backward AD method (see Section 2.2.4.2). It traverses
the expression tree twice, like HC4-Revise, but performing different operations.

Remark that the MinMaxRevise procedure takes about twice the time of HC4-Revise. It seems log-
ical because MinMaxRevise uses HC4-Revise for contracting 2 inequalities: fmin(X,Y,W) ≤ 0 and
fmax(X,Y,W) ≥ 0. The interesting thing is that fmin and fmax are auxiliary functions that contain
more atomic operations than f (recall that they are obtained by the OccurrenceGrouping procedure).
Thus, the experiments show that these new operations do not decrease, in a significant way, the perfor-

90

4.6 Experiments

NCSP Grad.Calc. OG MinMaxR. Mono.BoxNarrow (#X) Mohc

Brent 0.99 0.21 1.42 0.66 (2.92) 4.27
Caprasse 0.76 0.33 1.15 0.59 (1.73) 3.84
Eco9 1.19 0.52 3.41 0.55 (1.42) 6.68
Geneig 1.07 0.54 1.83 0.73 (4.25) 5.17
Hayes 1.27 0.22 1.92 0.43 (3.34) 4.84
I5 0.49 0.2 1.4 0.09 (0.31) 3.18
katsura 1.1 0.2 1.97 0.84 (4.82) 5.11
Kin1 2.37 0.04 2.74 0.41 (2.92) 6.56
Pramanik 0.98 0.67 1.76 0.2 (0.33) 4.61
Redeco8 1.34 0.85 3.28 1.19 (1.98) 7.67
Trigexp2 1.6 0.3 1.87 0.95 (2.00) 5.72
Trigo1 1.02 0.02 1.99 0.31 (0.78) 4.34
Yamam.1 1.08 0.24 2.11 0.39 (0.60) 4.82
Fourbar 0.87 0.5 1.29 0.37 (1.70) 4.02
Direct kin. 1.5 0.11 1.72 0.59 (3.59) 4.93
Butcher 0.95 0.34 2.64 0.08 (0.37) 5.01
Virasoro 1.07 0.53 1.66 0.97 (4.71) 5.23

AVERAGE 1.16 0.34 2.01 0.55 (2.22) 5.06

Table 4.3: Time ratios of monotonic procedures compared to HC4-Revise.

mance of MinMaxRevise.

Observe the interesting results of MonotonicBoxNarrow. In most of the cases, the procedure takes in
general less time than HC4-Revise for treating several variables (recall MonotonicBoxNarrow applies a
narrowing procedure to each bound of the monotonic variables, each narrowing procedure consisting
in several evaluations and Newton iterations). This nice behavior is mainly due to the improvements
proposed in Section 4.4.4 that avoid a lot of calls to the narrowing procedures while maintaining the
same contraction power.

4.6.2 Mohc as the main contractor

When Mohc is the only contractor (together with Newton), the time of the preprocessing procedure calcu-
lating ρmohc[f] for each constraint f (see Section 4.3.1) is not negligible. Furthermore, the preprocessing
calls the same monotonicity-based procedures as Mohc-Revise except MonotonicBoxNarrow.

This observation allows us to optimize Mohc when it is applied only once between bisections (and not
inside 3BCID). The improvement consists in using Algorithm 10, instead of Mohc-Revise (Algorithm 6),
the first time f is revised after a bisection. Mohc-Reviseρ computes ρmohc[f] while it performs the revise
of the function (line 8). The other times f is revised in the same propagation process, the standard
Mohc-Revise is used.

If W 6= ∅, then Mohc-Reviseρ performs all the monotonicity-based procedures required for computing
ρmohc[f]. ρmohc[f] is then computed before calling MonotonicBoxNarrow. If ρmohc[f] ≤ τmohc[f] then
MonotonicBoxNarrow is executed, otherwise the procedure terminates.

91

4. An Algorithm Exploiting Monotonicity

Algorithm 10 Mohc-Reviseρ (in-out [B], ρmohc; in f , Y , W , τmohc, ε)

1: HC4-Revise(f(Y,W) = 0, Y,W, [B])
2: if W 6= ∅ then
3: ([G], [Go])← GradientCalculation(f,W, [B])
4: (fog,W)← OccurrenceGrouping(f,W, [B], [Go])
5: (fmax, fmin, X,W)← ExtractMonotonicVars(fog,W, [B], [G])
6: MinMaxRevise([B], fmax, fmin, Y,W)
7: LazyMonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)

8: ρmohc[f]←
Diam([[fmin]([B]), [fmax]([B])])

Diam([f]([B]))
9: if ρmohc[f] ≤ τmohc then

10: MonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)
11: end if
12: end if

4.6.2.1 Tuning the user-defined parameters

The curves of Figure 4.6-left show how the ratio T ime(Mohc)
T ime(LazyMohc) evolves when ε decreases (i.e., the reached

precision in MonotonicBoxNarrow increases). Similarly to Figure 4.4-left, finely tuning ε has no significant
impact on performance. For most of the NCSPs, the best value falls near 1

32 . For these experiments, we
have thus fixed ε to 3%.

Figure 4.6: Tuning the user-defined parameters. Left: Tuning ε. Right: Tuning τmohc.

The curves of Figure 4.6-right show how the ratio T ime(Mohc)
T ime(HC4) evolves when τmohc increases. Note that

increasing the value of τmohc slightly improves the performance of Mohc in most of the benchmarks.
However, some few benchmarks show a decreasing in the performance with high values of τmohc (e.g.,
Yamamura1, Caprasse, Katsura). The experiments that follow perform thus two trials with the same
parameter values used by 3BCID(Mohc), i.e., τmohc = 0.7 and τmohc = 0.99.

4.6.2.2 Experimental protocol

Our Mohc-based solving strategy uses a round-robin variable selection. Between two branching points,
two procedures are called in sequence. First, the contractor Mohc (the variant including the preprocessing

92

4.6 Experiments

procedure) is called. Then, an interval Newton is executed.

NCSP HC4 MT+HC4 Box MT+Box Lazy(0.7) Lazy(0.99) Mohc(0.7) Mohc(0.99)

Gain Gain

Virasoro >14400 >14400 >14400 >14400 1879 1845 1180 12 1090 13
8 224 1.7e+6 1.7e+6 805047 715407

Direct kin. >14400 >14400 >14400 >14400 6800 6784 2560 5.6 2481 5.8
11 2 2.2e+6 2.2e+6 777281 730995

Hayes 147 163 311 323 31.1 29.4 30.9 4.7 27.6 5.3
8 1 560923 541817 214247 214253 74613 59429 73317 2.9 49059 4.4

Geneig 3244 1966 7726 3721 1057 1010 463 4.2 436 4.5
6 10 6.4e+6 4.1e+6 2.2e+6 1.3e+6 1.9e+6 1.7e+6 799439 1.6 655611 2.0

Trigo1 86.7 93 324 332 51.1 56.1 30.0 2.9 30.6 2.8
10 9 5725 5725 6241 6241 2481 2411 1759 3.3 1673 3.4

Fourbar >14400 864 >14400 2442 497 498 361 2.4 359 2.4
4 3 1.6e+6 1.2e+6 728533 725045 437959 2.7 430847 2.7

Trigexp2 1592 1610 >14400 >14400 1718 1830 1507 1.1 1027 1.5
11 0 1.7e+6 1.7e+6 1.6e+6 1.6e+6 1.4e+6 1.2 935227 1.8

I5 9240 9310 >14400 >14400 7203 7052 7107 1.3 7129 1.3
10 30 2.5e+7 2.4e+7 1.6e+7 1.5e+7 1.6e+7 1.5 1.5e+7 1.6

Redeco8 3408 3769 9676 9906 3601 3561 3529 1.0 2936 1.2
1.0e+7 1.0e+7 8.0e+6 8.0e+6 7.0e+6 6,2e+6 6.8e+6 1.2 4.7e+6 1.7

Kin1 6.40 6.91 26.6 26.9 5.64 6.15 5.76 1.1 5.65 1.1
6 16 1309 1303 689 689 1021 963 1017 0.7 931 0.7

Pramanik 91.8 26.9 262 91.9 28.9 28.0 25.3 1.1 25.0 1.1
3 2 487271 103827 178887 81865 83921 83763 69809 1.2 69637 1.2

Katsura 119 182 2239 2286 106 150 106 1.1 143 0.8
12 7 271955 271493 251727 251727 102555 95583 98779 2.5 94249 2.7

Caprasse 1.89 2.04 12.0 11.5 1.82 4.54 1.87 1.0 2.69 0.7
4 18 8609 7671 6229 5957 5069 4751 4577 1.3 3741 1.6

Eco9 35.1 39.9 90.2 94.1 47.1 45.3 46.8 0.7 44.2 0.8
9 16 115957 115445 110857 110423 98211 90727 97961 1.1 84457 1.3

Brent 456 497 150 151 224 369 244 0.6 232 0.6
10 1008 1.9e+6 1.9e+6 23855 23855 677309 1.1e+6 752533 0.0 645337 0.0

Yamam.1 16.0 32.4 12.3 12.6 20.9 25.1 19.2 0.6 27.0 0.5
8 7 29645 29513 3925 3925 26739 26165 24767 0.2 29973 0.1

Table 4.4: Results obtained by Mohc.

All the parameters in HC4, Box and Mohc have been fixed to default values. The precision ratio in Box is
10%; a constraint is pushed into the propagation queue if the interval of one of its variables is reduced
more than τpropag = 1%.

The propagation queue of HC4, Box and Mohc and the list of constraints of MonoTest are initialized in an
incremental way, i.e., using only the constraints related to the last bisected variable.

93

4. An Algorithm Exploiting Monotonicity

4.6.2.3 Results

Table 4.4 compares the CPU time and number of choice points obtained by Mohc with those obtained by
competitors: HC4 and Box.

The first column includes the name of the benchmark; the bottom of the cell contains the corresponding
number of equations and the number of solutions. The other columns report the results obtained by
different algorithms. Every cell shows the CPU time in second (above) and the number of choice points
(below). The contraction algorithms are HC4, Box, MonoTest followed by HC4 (column MT+HC4), MonoTest
followed by Box (column MT+Box), LazyMohc with ρmohc = 0.7 (column Lazy(0.7)), LazyMohc with ρmohc =
0.99 (column Lazy(0.99)), Mohc with τmohc = 0.7 and ε = 3% (column Mohc(0.7)-left), the same with
τmohc = 0.99 (column Mohc(0.99)-left). All the algorithms are followed by a call to interval Newton before
the next bisection. The columns Mohc(0.7)-right and Mohc(0.99)-right yields the gain obtained by Mohc (with
τmohc = 0.7 and τmohc = 0.99 resp.) w.r.t. the best time/choice points of the competitors HC4, MT+HC4,

Box and MT+Box, i.e., Min(Time(competitors))
Min(T ime(Mohc)) (above) and Min(Choice Points(competitors))

Min(Choice Points(Mohc)) (below).

The table reports good results obtained by Mohc as the main contractor, both in terms of filtering power
(low number of choice points) and CPU time. In 6 of the 16 benchmarks (Butcher is not included
because it takes more than 4 hours for all the strategies), the gains of Mohc(0.7) and Mohc(0.99) w.r.t. the
competitors is more than 2. In only 3 benchmarks for Mohc(0.7), and 5 for Mohc(0.99), the performance gets
worse (at most 50% in Yamam.1).

4.7 Advanced MinMaxRevise’ procedure

In this section, we describe an improvement of the MinMaxRevise procedure (see Section 4.2.1). The
improvement allows us to contract the intervals in [X] as well (recall that MinMaxRevise only contracts
intervals in [Y] and [W]). This advanced MinMaxRevise’ procedure is a work ongoing, so that it has not
been already implemented nor tested.

In the following we will assume a function f monotonic increasing w.r.t. a variable x. The extension of
the properties and the procedure to monotonic decreasing variables is straightforward.

4.7.1 A motivating example

Consider the constraint 4x − y2x + x2 − 40 = 0 with the related intervals [x] = [1, 5] and [y] = [0, 2].
The interval partial derivative w.r.t. x in the current box is 4 − [y]2 + 2[x] = [2, 14]. x is a monotonic
increasing variable then we can use MinMaxRevise for contracting the interval [y]. MinMaxRevise uses
punctual values instead of the interval [x] (x = 1 in the MinRevise procedure and x = 5 in the MaxRevise
procedure). For this reason, it cannot contract [x].

The new MinMaxRevise’ procedure uses for each occurrence x′ of x a different constraint/function (im-
plicit constraint/function). For instance, the implicit function related to the third occurrence of x is:

fx′(x, x
′) = 4x− y2x+ x′2 − 40 (4.4)

Analogously to the MinMaxRevise procedure, MinMaxRevise’ uses two procedures for contracting the
box: MinRevise’ and MaxRevise’. Thus, for contracting x′, the MaxRevise’ procedure works with the
constraint

4x− y2x+ x′
2 − 40 ≥ 0

94

4.7 Advanced MinMaxRevise’ procedure

Observe that, as f is monotonic increasing w.r.t. x, the variable is replaced by the right bound of its
related interval (like in the MaxRevise procedure).

x′ appears once in the implicit constraint, then the interval [x′] can be contracted using the monotonicity
of x (if fx′ is monotonic increasing w.r.t. x). The following proposition describes a cheap method to
check if an implicit function fx′ is monotonic increasing w.r.t. x.

Proposition 13 Consider a function f . fx′ is an implicit function of f related to an occurrence x′ of
a variable x. Assume that we compute the interval gradient using the automatic differentiation method
(described in Section 2.2.4.2).

If f is monotonic increasing w.r.t. x and

gx − gx′ ≥ 0 (4.5)

where [gx] =
[
∂f
∂x

]
([B]) and [gx′] =

[
∂f
∂x′

]
([B]).

Then fx′ is also monotonic increasing w.r.t. x.

Proof 8 Consider xO the set of occurrences of x in f excepting x′. As the gradient is computed using

AD1, then the interval partial derivative of the implicit function w.r.t. x is [g
fx′
x] =

[
∂fx′
∂x

]
([B]) =∑

xo∈xO

[
∂f
∂xo

]
([B]). Also using AD we obtain [gx] = [g

fx′
x] + [gx′] (i.e., gx − gx′ = g

fx′
x). Finally,

gx − gx′ ≥ 0⇒ g
fx′
x ≥ 0⇒

[
∂fx′

∂x

]
([B]) ≥ 0 �

In the example, [gx] = [2, 14] and [gx′] = 2× [y] = [2, 10], then

gx − gx′ = 2− 2 ≥ 0

As fx′ is monotonic increasing w.r.t. x′, we can project the constraint 4x − y2x + x′2 − 40 ≥ 0 (4x −
[y]2x+ [x′]2 − 40 ≥ 0 = [0,+∞]) over the occurrence x′:

[x′]← [x′] ∩
√

[0,+∞]− 4× x+ [y]2x = [1, 5] ∩ [4.47,+∞] = [4.47, 5] (4.6)

4.7.2 Evaluations and projections in MinMaxRevise’

As mentioned above, MinMaxRevise’ executes the two procedures MinRevise’ and MaxRevise’ for in-
tervals related to variables in X and Y .

MaxRevise’ (resp. MinRevise’) uses the implicit functions (without generating them explicitly) for
contracting each occurrence x′ of an increasing variable x ∈ X (provided that fx′ is monotonic increasing
w.r.t. x).

Consider the same constraint of the previous example. MaxRevise’ performs a slightly modified
HC4-Revise in the constraint

4x− y2x+ x2 − 40 ≥ 0

1Recall that the method computes the interval partial derivative related to a variable as the sum of the interval partial
derivatives related to each occurrence (see Section 2.2.4.2, page 16).

95

4. An Algorithm Exploiting Monotonicity

^2

y

xx4
ev=[5,5]

ev6=[25,45]

-

x

ev=[0,2]

ev=[5,5]ev1=[0,4]

^2

ev=[5,5]

ev5=[25,25]

ev3=[0,20]

ev4=[0,20]

x

+ 40

x
ev2=[20,20]

≥

-
ev7=[-15,5]

0

^2

y

xx4
[proj]=[3.75,+oo]

[proj6]=[proj7]+40
 =[40,+oo]

-

x

[proj]=[-1,1]
[y]=[y] ∩ [proj]
 =[0,1]

[proj1]=[-oo,1]

^2

[proj]=[4.47,+oo]
[x]=[x] ∩ [proj]
 =[4.47,5]

[proj5]=[proj6]-[ev4]
 =[20,+oo]

[proj3]=[-oo,5]

[proj4]=[proj6]-[ev5]
 =[15,+oo]

x

+ 40

x

[proj2]=[proj4]+[ev3]
 =[15,+oo]

≥

- 0
[proj7]=[0,+oo]

[proj]=[-oo,+oo]

n6

n4

n1

n2
n3

n7

n5

n6

n4

n1

n2
n3

n7

n5

Figure 4.7: The evaluation and narrowing phases of the MinMaxRevise’ procedure.

Each node of the expression tree maintains two intervals: evaluation and projection intervals. The
evaluation intervals (ev) are computed by evaluating each node from the leaves to the root with the
interval operators (see Figure 4.7-left). The monotonic increasing variables are replaced by the right
bound of the interval (monotonic decreasing variables are replaced by the left bound). If the evaluation
interval corresponding to the left side of the constraint (node n7) is less than 0 the procedure certifies
that there are no solution in the box.

The projection intervals are computed from the root to the leaves (see Figure 4.7-right). The projection
of each node is computed using the related narrowing operator (narrowing operators are described in
Section 3.2.3.3). These operators use the projection interval of the father and the evaluation interval of
the brother. Consider for example the node n5 in the figure. The contraction is performed:

[proj5]← Nn4+n5
n5

([proj6], [ev4]) = ([40,+∞]− [0, 20]) = [20,+∞]

In a similar way the contraction of the node n4 is performed as follows:

[proj4]← Nn4+n5
n4

([proj6], [ev5]) = ([40,+∞]− [25, 25]) = [15,+∞]

Contrarily to the classical algorithm, it is not correct to intersect the evaluation of a node with the
projection on the same node. Indeed, in the evaluation we used single values for the monotonic variables
whereas we want to project on the entire intervals.

At the end of the narrowing phase, each interval [x′] (related to an occurrence of an increasing variable
x) is intersected with its projection interval if the interval partial derivative of x′ satisfies the condition
(4.5).

In the example, the first occurrence of x (with partial derivative [gx′] = [4, 4]) cannot be contracted
because gx − gx′ = 2 − 4 6≥ 0. The second occurrence is not contracted because the projection interval
contains the entire interval [x]. Finally, the interval related to the third occurrence is contracted to
[4.47, 5] because gx− gx′ = 2− 2 ≥ 0 (the same result obtained by the projection of the implicit function
in (4.6)).

Remark that the MaxRevise’ procedure performs (automatically) the projections related to each occur-
rence of x′ using its implicit function fx′ .

96

4.8 Related Work

Consider an occurrence x′ related to an interval [x′] and to an increasing variable x. MinMaxRevise’

contracts [x′] better than or as well as HC4-Revise if gx−gx′ ≥ 0. However, if gx−gx′ 6≥ 0, MinMaxRevise’
does not contract [x′] whereas HC4-Revise might contract it.

4.8 Related Work

The algorithm Octum, described in Section 3.2.3.6, contains a procedure similar to MonotonicBoxNarrow

for narrowing monotonic variables.

Inspired by Octum we have adapted Proposition 8 to interval functions for improving the latest version
of our MonotonicBoxNarrow procedure. Compared to Octum, Mohc presents additional features:

• Mohc exploits the monotonicity when a function becomes monotonic w.r.t. one or more variables
in the current box. Octum requires a function be monotonic w.r.t. all its variables in the current
box simultaneously.

• Mohc uses the Occurrence grouping procedure (contribution presented in Chapter 5) that quickly
rewrites the constraint expressions in order to detect more cases of monotonicity.

• Contrarily to Octum, Mohc uses a HC4-Revise-based function to contract quickly the intervals of
variables occurring once and of those which are not monotonic. Mohc does not need to call a
more costly BoxNarrow-based procedure to handle monotonic variables that appear once in the
expression.

• Mohc performs a test that avoids several calls to the procedures LeftNarrowFmin, RightNarrowFmax,
LeftNarrowFmax and RightNarrowFmin (see the first improvement in Section 4.4.4).

The ALIAS library implements a contractor performing a similar contraction that the MinMaxRevise

and MinMaxRevise’ procedures do. First, as a preprocessing ALIAS generates explicitily the projection
functions related to each variable occurrence using symbolic computation tools. When the function is
treated, each occurrence of every variable is contracted by using the evaluation by monotonicity of its
related projection function(s). Remark that, in the same way as MinMaxRevise (and MinMaxRevise’,
the contraction is not optimal because each contracted occurrence is considered as a different variable.

4.9 Conclusion and Future Work

This chapter has presented a new interval constraint propagation algorithm exploiting the monotonicity
of functions. Using ingredients present in the existing HC4-Revise and BoxNarrow, Mohc has the potential
to advantageously replace HC4 and Box, as shown by our experiments.

A future work is related with the variables in W . If a function f is monotonic w.r.t. all the variables
with multiple occurrences except one (w), then the classical BoxNarrow procedure (see Section 3.2.3.5)
using the evaluation by monotonicity is able to project optimally on w. Thus, we believe that applying
BoxNarrow over variables in W using the evaluation by monotonicity can lead to good results.

As suggested by our experiment about the application frequency of the monotonicity-based procedures
(see Section 4.6.1.4), we will implement an auto-adaptive version of the τmohc parameter based on the
following intuition. If the extension by monotonicity often computes good evaluations w.r.t. the natural

97

4. An Algorithm Exploiting Monotonicity

extension, then Mohc should apply the monotonicity-based procedures more often (i.e., τmohc should
increase). The expression for qualifying these good evaluations would be ρmohc (see Section 4.3.1) and
the method for changing the value of τmohc could be a reinforcement learning technique.

Finally, three points suggest the more ambitious idea of combining constraints linearly such that the
monotonicity of the combination brings a significant contraction:

• The possibility of computing the hull-consistency in monotonic functions with multiple occurrences
of variables.

• The reduction of the dependency problem thanks to our occurrence grouping extension (presented
in Chapter 5).

• Our sophisticated algorithm MinMaxRevise’ for computing projections over each variable occur-
rence using the monotonicity.

98

Chapter 5

A New Monotonicity-based Interval
Extension

Contents

5.1 Introduction . 99
5.2 Evaluation by monotonicity with occurrence grouping 100
5.3 A 0,1 linear program to perform occurrence grouping 101
5.4 A linear programming problem achieving a better occurrence grouping 104
5.5 An efficient Occurrence Grouping algorithm . 105
5.6 Experiments . 108
5.7 Conclusion . 112

In the previous chapter, the occurrence grouping extension has been briefly introduced as an important
procedure called by the Mohc algorithm. In this chapter we explain in more detail how this new interval
extension works and why it computes sharper images than both the natural extension and the extension
by monotonicity.

(A part of the material presented in this chapter is published in [Araya et al., 2009a].)

5.1 Introduction

(I recommend first to read carefully Section 2.4.2 for better understanding the definitions and consider-
ations presented in this chapter.)

The computation of sharp images of functions is in the heart of interval arithmetic. As explained in
Section 2.4, different interval extensions have been defined with the objective of computing sharper
approximations of the optimal image.

For instance, the natural extension (described in Section 2.4.1) maps a function to intervals (replacing
the variables by domains and arithmetic operators by interval operators) and evaluates it using interval
arithmetic. The natural extension computes the optimal image when each variable occurs once in a
continuous function f . A more effective extension is the extension by monotonicity (described in Section
2.4.2) that computes the optimal image when the function is monotonic w.r.t. all its variables. Otherwise,
i.e., if the function is monotonic w.r.t. only some variables, the extension by monotonicity computes an
interval sharper than the natural extension does, thanks to the monotonic variables.

99

5. A New Monotonicity-based Interval Extension

The occurrence grouping extension presented in this chapter improves the evaluation by monotonicity
related to each non monotonic variable x. The method consists in selecting from the occurrences of x two
subgroups of occurrences, one monotonic increasing group and one monotonic decreasing one. Replacing
the occurrences of each group by auxiliary variables (xa if the occurrences are in the increasing group or
xb if they are in the decreasing one), we create a new function fog. fog is better evaluated by monotonicity
than f .

5.2 Evaluation by monotonicity with occurrence grouping

In this section, we study the case of a function which is not monotonic w.r.t. a variable with multiple
occurrences. We can, without loss of generality, limit the study to a function having a single variable: the
generalization to a function having several variables is straightforward, the evaluations by monotonicity
being independent.

Example 26 Consider f1(x) = −x3+2x2+6x. We want to calculate a sharp evaluation of this function
when x falls in [−1.2, 1]. The derivative of f1 is f ′1(x) = −3x2 + 4x+ 6 and contains a positive term (6),
a negative term (−3x2) and a term containing zero (4x).

[f1]opt([B]) is [−3.05786, 7], but we cannot obtain it directly by a simple interval function evaluation (one
needs to solve f ′1(x) = 0, which is in the general case a problem in itself).

In the interval [−1.2, 1], the function f1 is not monotonic. The natural interval evaluation yields
[−8.2, 10.608], the Horner evaluation [−11.04, 9.2] (see [Horner, 1819]).

When a function f is not monotonic w.r.t. a variable x, it sometimes appears that it is monotonic w.r.t.
some occurrences.

Recall that AD (see Section 2.2.4.2) computes the interval gradient of x as the sum of the interval partial
derivatives of each occurrence of x, i.e.,[

∂f

∂x

]
([x]) =

k∑
i=1

[
∂f

∂xi

]
([x])

where xi is the ith occurrence of x in f . Thus, a subgroup M of occurrences such that 0 6=
∑
xi∈M

[
∂f
∂xi

]
([x])

is monotonic. If the occurrences in M are replaced by a new variable (x′), then the new function can be
evaluated using the monotonicity of x′.

Consider the following naive grouping for Example 26. We replace the function f1 by a function fnog1 ,
grouping together all increasing occurrences into one variable xa and all decreasing occurrences into one
variable xb. We obtain:

fnog1 (xa, xb, x) = −x3b + 2x2 + 6xa

The evaluation by monotonicity of fnog1 is [fnog1]m([−1.2, 1]) = [−8.2, 10.608].

As stated in Proposition 2.4.1, page 23, the natural extension of the function fnog always computes the
same result as the evaluation by monotonicity. Indeed, when a node in the evaluation tree corresponds
to an increasing function w.r.t. a variable occurrence, the natural evaluation automatically selects the
right bound (among both) of the occurrence domain during the evaluation process.

100

5.3 A 0,1 linear program to perform occurrence grouping

The main idea is then to change this grouping in order to reduce the dependency problem and obtain
sharper evaluations. We can in fact group some occurrences (increasing, decreasing, or non monotonic)
into an increasing variable xa as long as the function remains increasing w.r.t. this variable xa. The
evaluation will be the same or sharper.

Also, if it is possible to transfer all decreasing occurrences into the increasing part, the dependency
problem will now occur only on the occurrences in the increasing and non monotonic parts.

For f1, if we group together the positive derivative term (i.e., the third occurrence of x with derivative
[6, 6]) with the derivative term containing zero (i.e., the second occurrence of x with derivative [−2.4, 2])
we obtain the new function (with sum of derivatives [6, 6]+ [−2.4, 2] = [4, 10.2] that still does not contain
zero) :

fog11 (xa, xb) = −x3b + 2x2a + 6xa

where fog11 is increasing w.r.t. xa (the interval partial derivative of xa is in fact [4, 10.2], the sum of the
interval partial derivatives of its occurrences) and decreasing w.r.t. xb. We can then use the evaluation
by monotonicity for obtaining the interval [−5.32, 9.728]. We can in the same manner obtain

fog21 (xa, xc) = −x3a + 2x2c + 6xa

The evaluation by monotonicity of fog21 yields [−5.472, 7.88]. We remark that we find sharper images
than the natural evaluation of f1 does.

In Section 5.3, we present a linear program to perform occurrence grouping automatically.

Interval extension by occurrence grouping

Consider the function f(x) with multiple occurrences of x. We obtain a function fog(xa, xb, xc) by
replacing in f every occurrence of x by one of the three variables xa, xb, xc, such that fog is increasing
w.r.t. xa in [x], and fog is decreasing w.r.t. xb in [x]. Then, we define the interval extension by occurrence
grouping of f by: [f]og([x]) := [fog]m([x], [x], [x])

Unlike the natural interval extension and the interval extension by monotonicity, the interval extension
by occurrence grouping is not unique for a function f since it depends on the occurrence grouping (og)
that transforms f into fog.

5.3 A 0,1 linear program to perform occurrence grouping

In this section, we propose a method for automatizing occurrence grouping. Using the Taylor extension,
we first compute an over-estimate of the diameter of the image computed by [f]og. Then, we propose a
linear program performing a grouping that minimizes this over-estimate.

5.3.1 Taylor-based over-estimate

On one hand, xc has not been detected monotonic, and the evaluation by monotonicity considers the
occurrences of xc as different variables such as the natural evaluation would. On the other hand, as fog is
monotonic w.r.t. xa and xb, the evaluation by monotonicity of these variables is optimal. Proposition 4
has been introduced in Section 2.4.2, page 25. It says that the evaluation by monotonicity computes the
optimal image of a monotonic, continuous and differentiable function. Proposition 14 is a straightforward
corollary of Proposition 2 introduced in Section 2.4.1.

101

5. A New Monotonicity-based Interval Extension

Proposition 14 Let f(x) be a continuous function in the interval [x] with k occurrences of x. f◦(x1, .., xk)
is a function obtained from f by considering all the occurrences of x as different variables.

Then, [f]n([x]) computes [f◦]opt([x], ..., [x]).

Using Proposition 4 and Proposition 14, we observe that the evaluation by monotonicity of fog(xa, xb, xc)
is equivalent to the optimal evaluation of f◦(xa, xb, xc1 , ..., xcck), considering each occurrence of xc in fog

as an independent variable xcj in f◦.

Proposition 15 computes an upper bound of Diam([f]opt([B])) deduced from the Taylor extension (see
Definition 5 of Section 2.4.3) and basic interval diameter properties (see Section 2.2.1).

Proposition 15 Let f(x1, ..., xn) be a function with domains [B] = [x1]× ...× [xn]. Then,

Diam([f]opt([B])) ≤
n∑
i=1

(
Diam([xi])×

∣∣∣∣[∂f∂xi
]

([B])

∣∣∣∣) (5.1)

Using Proposition 15, we can calculate an upper bound of the diameter of [f]og([B]) = [fog]m([B]) =
[f◦]opt([B])1:

Diam([f]og([B])) ≤ Diam([x])

(∣∣∣∣[∂fog∂xa

]
([B])

∣∣∣∣+

∣∣∣∣[∂fog∂xb

]
([B])

∣∣∣∣+

ck∑
i=1

∣∣∣∣[∂fog∂xci

]
([B])

∣∣∣∣
)

In order to respect the monotonicity conditions required by fog:
[
∂fog

∂xa

]
opt

([B]) ≥ 0,
[
∂fog

∂xb

]
opt

([B]) ≤

0, we have the sufficient conditions
[
∂fog

∂xa

]
([B]) ≥ 0 and

[
∂fog

∂xb

]
([B]) ≤ 0, implying

∣∣∣[∂fog∂xa

]
([B])

∣∣∣ =[
∂fog

∂xa

]
([B]) and

∣∣∣[∂fog∂xb

]
([B])

∣∣∣ = −
[
∂fog

∂xb

]
([B]). Finally:

Diam([f]og([B])) ≤ Diam([x])

([
∂fog

∂xa

]
([B])−

[
∂fog

∂xb

]
([B]) +

ck∑
i=1

∣∣∣∣[∂fog∂xci

]
([B])

∣∣∣∣
)

(5.2)

5.3.2 A linear program

We want to transform f into a new function fog that minimizes the right side of the relation (5.2). The
problem can be easily transformed into the following integer linear program:

Find the values rai , rbi and rci for each occurrence xi that minimize

G = ga − gb +

k∑
i=1

(|[gi]| rci) (5.3)

subject to:
ga ≥ 0 (5.4)

1For simplicity we denote [B] the box [x]× ...× [x] containing as many intervals [x] as required by the interval function.
For instance in [f]og([B]), [B] = [x]; in [fog]m([B]), [B] = [x]× [x]× [x].

102

5.3 A 0,1 linear program to perform occurrence grouping

gb ≤ 0 (5.5)

rai + rbi + rci = 1 for i = 1, ..., k (5.6)

rai , rbi , rci ∈ {0, 1} for i = 1, ..., k,

where:

[ga] =

[
∂fog

∂xa

]
([B]) =

k∑
i=1

[gi] rai

[gb] =

[
∂fog

∂xb

]
([B]) =

k∑
i=1

[gi] rbi

[gi] =

[
∂fog

∂xi

]
([B])

k is the number of occurrences of x. A value rai , rbi or rci equal to 1 indicates that the occurrence xi in
f will be replaced, respectively, by xa, xb or xc in fog.

We can remark that the interval partial derivatives related to the auxiliary variables (i.e., [ga], [gb]) are
calculated by using only the interval partial derivatives related to each occurrence of x1.

Linear program corresponding to Example 26

We have f1(x) = −x3 + 2x2 + 6x, f ′1(x) = −3x2 + 4x+ 6 for x ∈ [−1.2, 1]. The interval derivative values
for each occurrence are: [g1] = [−4.32, 0], [g2] = [−4.8, 4] and [g3] = [6, 6]. Then, the linear program is:

Find the values rai , rbi and rci that minimize

G =
3∑
i=1

gi rai −
3∑
i=1

gi rbi +
3∑
i=1

(
|[gi]| rci

)
= (4ra2 + 6ra3) + (4.32rb1 + 4.8rb2 − 6rb3) + (4.32rc1 + 4.8rc2 + 6rc3)

subject to:

3∑
i=1

gi rai = −4.32ra1 − 4.8ra2 + 6ra3 ≥ 0

3∑
i=1

gi rbi = 4rb2 + 6rb3 ≤ 0

rai + rbi + rci = 1 for i = 1, ..., 3

rai , rbi , rci ∈ {0, 1} for i = 1, ..., 3

1This implies that, even if the interval partial derivatives related to the occurrences are optimally calculated, the
interval derivatives of xa and xb can suffer from the dependency problem because each occurrence derivative is computed
independently.

103

5. A New Monotonicity-based Interval Extension

We obtain the minimum 10.8, and the solution ra1 = 1, rb1 = 0, rc1 = 0, ra2 = 0, rb2 = 0, rc2 = 1, ra3 =
1, rb3 = 0, rc3 = 0. We can remark that the value of the over-estimate of Diam([f]og([B])) is equal to 23.76
(10.8×Diam([−1.2, 1])) whereas Diam([f]og([B])) = 13.352. Although the over-estimate is quite rough, the
heuristic works well on this example. Indeed, Diam([f]n([B])) = 18.808, and Diam([f]opt([B])) = 10.06.

5.4 A linear programming problem achieving a better occurrence grou-
ping

The linear program above is a 0,1 linear program and is known to be NP-hard in general. We can render
it tractable while, more important in practice, improving the minimum G by allowing rai , rbi and rci to
get real values. In other words, we allow each occurrence of x in f to be replaced by a convex linear
combination of auxiliary variables, xa, xb and xc such that fog is increasing w.r.t. xa and decreasing
w.r.t. xb in [x].

Definition 18 (Interval extension by occurrence grouping)
Let f(x) be a function with multiple occurrences of the variable x. fog(xa, xb, xc) is the function obtained
by replacing in f every occurrence of x by raixa + rbixb + rcixc, such that:

• rai , rbi , rci ∈ [0, 1]3 and rai + rbi + rci = 1,

• ∂fog

∂xa
([x], [x], [x]) ≥ 0 and ∂fog

∂xb
([x], [x], [x]) ≤ 0.

The interval extension by occurrence grouping of f is defined by [f]og([x]) := [fog]m([x], [x], [x])

In Example 26, we can replace f1 by fog1 or fog2 in a way respecting the monotonicity constraints of xa
and xb:

1. fog11 (xa, xb) = −(5
18xa + 13

18xb)
3 + 2x2a + 6xa: [fog11]m([x]) = [−4.38, 8.205]

2. fog21 (xa, xb, xc) = −x3a + 2(0.35xa + 0.65xc)
2 + 6xa: [fog21]m([x]) = [−5.472, 7]

Example 27 Consider the function f2(x) = x3 − x and the interval [x] = [0.5, 2]. f2 is not monotonic
and the optimal image [f2]opt([x]) is [−0.385, 6].
The natural evaluation yields [−1.975, 7.5], the Horner evaluation [−1.5, 6]. We can replace f2 by one of
the following functions:

1. fog12 (xa, xb) = x3a − (14xa + 3
4xb): [fog12]m([x]) = [−0.75, 6.375]

2. fog22 (xa, xb) = (1112xa + 1
12xb)

3 − xb: [fog22]m([x]) = [−1.756, 6.09]

Thus, the new linear program that computes convex linear combinations for achieving occurrence grouping
becomes:

Find the values rai , rbi and rci for each occurrence xi that minimize (5.3) subject to (5.4), (5.5), (5.6)
and

rai , rbi , rci ∈ [0, 1] for i = 1, ..., k. (5.7)

Note that this continuous linear program improves the minimum of the objective function because the
integrity conditions are relaxed.

104

5.5 An efficient Occurrence Grouping algorithm

Linear program corresponding to Example 26

In this example we obtain the minimum 10.58 and the new function

fog1 (xa, xb, xc) = −x3a + 2(0.35xa + 0.65xc)
2 + 6xa : [fog1]m([x]) = [−5.472, 7]

The minimum 10.58 is less than 10.8 (minimum obtained by the 0,1 linear program). The evaluation by
occurrence grouping of f1 yields [−5.472, 7], which is sharper than the image [−5.472, 7.88] obtained by
the 0.1 linear program presented in Section 5.3.

Linear program corresponding to Example 27

In this example, we obtain the minimum 11.25 and the new function

fog2 (xa, xb) =

(
44

45
xa +

1

45
xb

)3

−
(

11

15
xa +

4

15
xb

)
The image [−0.75, 6.01] obtained by occurrence grouping is sharper than the interval computed by natural
and Horner evaluations. Note that in this case the 0,1 linear program of Section 5.3 yields the same
grouping as the naive strategy presented in Section 5.2.

Thus, the continuous linear program not only makes the problem tractable but also improves the minimum
of the objective function.

5.5 An efficient Occurrence Grouping algorithm

Algorithm 11 Occurrence Grouping(in: f , [g∗] out: fog)

1: [G0]←
k∑
i=1

[gi]

2: [Gm]←
∑

0 6∈[gi]
[gi]

3: if 0 6∈ [G0] then
4: OG case1([g∗], [ra∗], [rb∗], [rc∗])
5: else if 0 ∈ [Gm] then
6: OG case2([g∗], [ra∗], [rb∗], [rc∗])
7: else
8: /* 0 6∈ [Gm] and 0 ∈ [G0] */
9: if Gm ≥ 0 then

10: OG case3+([g∗], [ra∗], [rb∗], [rc∗])
11: else
12: OG case3−([g∗], [ra∗], [rb∗], [rc∗])
13: end if
14: end if
15: fog ← Generate New Function(f, [ra∗], [rb∗], [rc∗])

Algorithm 11 finds rai , rbi , rci (r-values) that minimize G subject to the constraints. At line 15, the
algorithm generates symbolically the new function fog that replaces each occurrence xi in f by [rai]xa +

105

5. A New Monotonicity-based Interval Extension

[rbi]xb + [rci]xc. Note that the values are represented by thin intervals, of a few u.l.p. large, for taking
into account the floating point rounding errors appearing in the computations.

Algorithm 11 uses a vector [g∗] of size k containing interval derivatives of f w.r.t. each occurrence xi

of x. Each component of [g∗] is denoted by [gi] and corresponds to the interval
[
∂f
∂xi

]
([B]). A symbol

indexed by an asterisk refers to a vector (e.g., [g∗], [ra∗]).

We illustrate the algorithm using the two univariate functions of our examples: f1(x) = −x3 + 2x2 + 6x
and f2(x) = x3 − x for domains of x: [−1.2, 1] and [0.5, 2] respectively. The interval derivatives of f
w.r.t. each occurrence of x have been previously calculated. For the examples, the interval derivatives
of f2 w.r.t. x occurrences are [g1] = [0.75, 12] and [g2] = [−1,−1]; the interval derivatives of f1 w.r.t. x
occurrences are [g1] = [−4.32, 0], [g2] = [−4.8, 4] and [g3] = [6, 6].

At line 1, the partial derivative [G0] of f w.r.t. x is calculated using the sum of the partial derivatives
of f w.r.t. each occurrence of x. In line 2, [Gm] gets the value of the partial derivative of f w.r.t.
the monotonic occurrences of x. In the examples, for f1: [G0] = [g1] + [g2] + [g3] = [−3.12, 10] and
[Gm] = [g1] + [g3] = [1.68, 6], and for f2: [G0] = [Gm] = [g1] + [g2] = [−0.25, 11].

According to the values of [G0] and [Gm], we can distinguish 3 cases. The first case is well-known
(0 6∈ [G0] in line 3) and occurs when x is a monotonic variable. The procedure OG case1 does not achieve
any occurrence grouping: all the occurrences of x are replaced by xa (if [G0] ≥ 0) or by xb (if [G0] ≤ 0).
The evaluation by monotonicity of fog is equivalent to the evaluation by monotonicity of f .

In the second case, when 0 ∈ [Gm] (line 5), the procedure OG case2 (Algorithm 12) achieves a grouping
of the occurrences of x. Increasing occurrences are replaced by (1−α1)xa +α1xb, decreasing occurrences
by α2xa+(1−α2)xb and non monotonic occurrences by xc (lines 7 to 13 of Algorithm 12). f2 falls in this
case: α1 = 1

45 and α2 = 11
15 are calculated in lines 3 and 4 of Algorithm 12 using [G+] = [g1] = [0.75, 12]

and [G−] = [g2] = [−1,−1]. The new function becomes: fog2 (xa, xb) = (4445xa + 1
45xb)

3 − (1115xa + 4
15xb).

Algorithm 12 OG case2(in: [g∗] out: [ra∗], [rb∗], [rc∗])

1: [G+]←
∑

[gi]≥0
[gi]

2: [G−]←
∑

[gi]≤0
[gi]

3: [α1]←
G+G− +G−G−

G+G− −G−G+

4: [α2]←
G+G+ +G−G+

G+G− −G−G+

5:

6: for all [gi] ∈ [g∗] do
7: if gi ≥ 0 then
8: ([rai], [rbi], [rci])← (1− [α1], [α1], 0)
9: else if gi ≤ 0 then

10: ([rai], [rbi], [rci])← ([α2], 1− [α2], 0)
11: else
12: ([rai], [rbi], [rci])← (0, 0, 1)
13: end if
14: end for

The third case occurs when 0 6∈ [Gm] and 0 ∈ [G0]. W.l.o.g., assume that Gm ≥ 0. The procedure
OG case3+ (Algorithm 13) first groups all the positive and negative occurrences in the increasing group

106

5.5 An efficient Occurrence Grouping algorithm

Algorithm 13 OG case3+(in:[g∗] out:[ra∗], [rb∗], [rc∗])

1: [ga]← [0, 0]
2: for all [gi] ∈ [g∗], gi ≥ 0 or gi ≤ 0 do
3: [ga]← [ga] + [gi] /* All positive and negative derivatives are absorbed by [ga] */
4: ([rai], [rbi], [rci])← (1, 0, 0)
5: end for
6:

7: index← descending sort ({[gi] ∈ [g∗], gi < 0}, criterion→ gi−|[gi]|
gi

)

8: j ← 1 ; i← index[1]
9: while ga + gi ≥ 0 do

10: ([rai]], [rbi], [rci])← (1, 0, 0)
11: [ga]← [ga] + [gi]
12: j ← j + 1 ; i← index[j]
13: end while
14:

15: [α]← −ga
gi

16: ([rai], [rbi], [rci])← ([α], 0, 1− [α]) /* [ga]← [ga] + [α][gi] */
17:

18: j ← j + 1 ; i← index[j]
19: while j ≤ length(index) do
20: ([rai], [rbi], [rci])← (0, 0, 1)
21: j ← j + 1 ; i← index[j]
22: end while

xa (lines 2–5). The non monotonic occurrences are then replaced by xa in an order determined by

an array index1 (line 7) as long as the constraint
k∑
i=1

raigi ≥ 0 is satisfied (lines 9–13). The criterion

varies from 0 (for non monotonic occurrences having |[gi]| = gi) to 1− (for occurrences having gi = 0+).
The first occurrence xi′ that cannot be (entirely) replaced by xa because it would make the constraint
(5.4) unsatisfiable is replaced by αxa + (1− α)xc, with α such that the constraint is satisfied and equal

to 0, i.e., (
k∑

i=1,i 6=i′
raigi) + αgi′ = 0 (lines 15–16). The rest of the occurrences are replaced by xc

(lines 18–22). f1 falls in this case. The increasing and decreasing occurrences of x are first replaced
by xa.The second occurrence of x, that is non monotonic, is then replaced by αxa + (1 − α)xc, where
α = 0.35 is obtained by forcing the constraint (5.4) to be 0: g1 + g3 + αg2 = 0. The new function is:
fog1 (xa, xb, xc) = −x3a + 2(0.35xa + 0.65xc)

2 + 6xa.

5.5.1 Properties

Proposition 16 Algorithm 11 (Occurrence grouping) is correct, i.e., it is an interval extension of f .

Proposition 16 implies that Algorithm 11 respects the four constraints (5.4)–(5.7). A full proof of Propo-
sition 16 can be found in Section B.1.

1An occurrence xi1 is handled before xi2 if gi1−|[gi1]|
gi1

≥ gi2−|[gi2]|
gi2

. index[j] yields the index of the jth occurrence in this

order.

107

5. A New Monotonicity-based Interval Extension

Proposition 17 Let [gi] be the intervals
[
∂fog

∂xi

]
([B]) (i = 1...k). If 0 ∈ [Gm] =

∑
i=1..k,06∈[gi]

[gi], then

Algorithm 12 finds the values rai, rbi and rci for all i that minimize (5.3) subject to (5.4), (5.5), (5.6)
and (5.7).

Proposition 18 Let [gi] be the intervals
[
∂fog

∂xi

]
([B]) (i = 1...k). If Gm ≥ 0 (resp. Gm ≤ 0) and

0 ∈ [G0] =
k∑
i=1

[gi] (with [Gm] =
∑

i=1..k,06∈[gi]
[gi]). Then, the algorithm OG case3+ (resp. OG case3−) finds

the values rai, rbi and rci for all i that minimize (5.3) subject to (5.4), (5.5), (5.6) and (5.7).

Propositions 17 and 18 show that Algorithm 11 reachs the minimum of the objective function (5.3). The
proof concerning Algorithm 13 (OG case3) is sophisticated, due to the sort of indices, and uses known
results about the continuous knapsack problem. Special care has been brought to ensure the correctness
modulo floating-point roundings. Full proofs of both propositions can be found in sections B.2 and B.3
respectively.

Proposition 19 The time complexity of Occurrence Grouping for one variable with k occurrences
is O(k log2(k)). It is time O(nk log2(k)) when a multi-variate function is iteratively transformed by
Occurrence Grouping for each of its n variables having at most k occurrences each.

(A preliminary gradient calculation by automatic differentiation is time O(e), where e is the number of
unary and binary operators in the expression.)

The time complexity of Algorithm 11 is dominated by that of descending sort in the OG case3 proce-
dure.

Instead of Algorithm 11, we may use a standard Simplex algorithm providing that the used Simplex im-
plementation takes into account floating-point rounding errors. A comparison of respective performances
of Algorithm 11 and Simplex is shown in Section 5.6.3. Also, as shown in Section 5.6.1, the time required
in practice by Occurrence Grouping is negligible when it is used for solving systems of equations.

Although Occurrence Grouping can be viewed as a heuristic since it minimizes a Taylor-based over-
estimate of the function image diameter, it is important to stress that our new interval extension improves
the well-known monotonicity-based interval extension.

Proposition 20 Consider a function f : Rn → R, and the previously defined interval natural ([f]n),
monotonicity-based ([f]m) and occurrence grouping ([f]og) extensions of f . Let X be the n variables
involved in f with domains [B]. Then, [f]og([B]) ⊆ [f]m([B]) ⊆ [f]n([B])

5.6 Experiments

Occurrence Grouping has been implemented in the Ibex [Chabert, 2009; Chabert and Jaulin, 2009a]
open source interval-based solver in C++. The goal of these experiments is to show the improvements in
CPU time brought by Occurrence Grouping when solving systems of equations. Sixteen benchmarks are
issued from the COPRIN website [Merlet, 2009]. They correspond to square systems with a finite number
of zero-dimensional solutions of at least two constraints involving multiple occurrences of variables and
requiring more than 1 second to be solved (considering the times appearing in the website).

108

5.6 Experiments

5.6.1 Occurrence grouping for improving a monotonicity-based existence test

First, Occurrence Grouping has been implemented to be used in a monotonicity-based existence test
(OG in Table 5.1), i.e., an occurrence grouping transforming f into fog is applied to all the functions
after a bisection and before a contraction. Then, a monotonicity-based existence test is applied to every
produced fog: if the evaluation by monotonicity of any fog does not contain 0, then the current box is
eliminated.

The competitor (¬OG) directly applies the monotonicity-based existence test to f without occurrence
grouping. The contractors used in both cases are the same: 3BCID [Trombettoni and Chabert, 2007] and
Interval Newton.

The first and fifth columns of Table 5.1 indicate the name of each instance, the second and sixth columns
yield the CPU time (above) and the number of nodes (below) required by a strategy based on 3BCID

(i.e., with no existence test) on an Intel 6600 2.4 GHz. The third and seventh columns report the
results obtained by the strategy using a (standard) monotonicity-based existence test followed by 3BCID.
Finally, the fourth and eighth columns report the results of our strategy using an existence test based on
occurrence grouping and 3BCID.

System 3BCID ¬OG OG

Brent 18.9 19.5 19.1
10 1008 3941 3941 3941
Caprasse 2.51 2.56 2.56
4 18 1305 1301 1301
Hayes 39.5 41.1 40.7
8 1 17701 17701 17701
I5 55.0 56.3 56.7
10 30 10645 10645 10645
Katsura 74.1 74.5 75.0
12 7 4317 4317 4317
Kin1 1.72 1.77 1.77
6 16 85 85 85
Eco9 12.7 13.5 13.2
9 16 6203 6203 6203
Redeco8 5.61 5.71 5.66
8 8 2295 2295 2295

System 3BCID ¬OG OG

ButcherA >1 day >1 day >1 day
8 3
Fourbar 13576 6742 1091
4 3 8685907 4278767 963113
Geneig 593 511 374
6 10 205087 191715 158927
Pramanik 100 66.6 37.2
3 2 124661 98971 69271
Trigexp2 82.5 87.0 86.7
11 0 14287 14287 14287
Trigo1 152 155 156
10 9 2691 2691 2691
Virasoro 7173 7212 7150
8 224 2.5e+6 2.5e+6 2.4e+6
Yamamura1 9.67 10.04 9.86
8 7 2883 2883 2883

Table 5.1: Experimental results using the monotonicity-based existence test.

From these first results we can observe that only in three benchmarks OG is clearly better than ¬OG
(Fourbar, Geneig and Pramanik). In the other ones, the evaluation by occurrence grouping seems to be
useless. Indeed, in most of the benchmarks, the existence test based on occurrence grouping does not
cut branches in the search tree. However, note that it does not require additional time w.r.t. ¬OG. This
clearly shows that the time required by Occurrence Grouping is negligible.

5.6.2 Occurrence grouping inside Mohc

(The constraint propagation algorithm Mohc is described in Chapter 4.)

Table 5.2 shows the results obtained by Mohc (see Chapter 4) without the OG algorithm (¬OG), and with
Occurrence Grouping (OG). The first and fifth columns indicate the name of each instance, the second

109

5. A New Monotonicity-based Interval Extension

and sixth columns report the results obtained by the strategy using 3BCID(Mohc) without OG. The third
and seventh columns report the results of our strategy using 3BCID(OG+Mohc). The fourth and eighth
columns indicate the number of calls to Occurrence Grouping.

System Mohc

¬OG OG #OG calls
Brent 20 20.3
10 1008 3811 3805 30867
Caprasse 2.57 2.71
4 18 1251 867 60073
Hayes 17.62 17.45
8 1 4599 4415 5316
I5 57.25 58.12
10 30 10399 9757 835130
Katsura 100 103
12 7 3711 3625 39659
Kin1 1.82 1.79
6 16 85 83 316
Eco9 13.31 13.96
9 16 6161 6025 70499
Redeco8 5.98 6.12
8 8 2285 2209 56312

System Mohc

¬OG OG #OG calls
ButcherA >1 day 1722
8 3 288773 16772045
Fourbar 4277 385
4 3 1069963 57377 8265730
Geneig 328 111
6 10 76465 13705 2982275
Pramanik 67.98 21.23
3 2 51877 12651 395083
Trigexp2 90.5 88.2
11 0 14299 14301 338489
Trigo1 137 57.1
10 9 1513 443 75237
Virasoro 6790 901
8 24 619471 38389 5633140
Yamamura1 11.59 2.15
8 7 2663 343 43589

Table 5.2: Experimental results using Mohc.

We observe that, for 7 of the 16 benchmarks, Occurrence Grouping is able to improve the results of
Mohc; in ButcherA, Fourbar, Virasoro and Yamamura1 the gains in CPU time (¬OG

OG
) obtained are 30, 11,

5.6 and 5.4 respectively.

The percentage of time required for Occurrence Grouping w.r.t. the total solving time is 11% in
Virasoro, 9% in Fourbar, 7% in Pramanik, 5% in Geneig and 3% or less in the other benchmarks.
Details appear in Table 4.2, page 89.

Table 4.3, page 91, indicates that OG takes between 2% and 85% (34% on average) the time of one call
to HC4-Revise. This overhead is negligible over the gradient calculation (116% on average) plus the two
natural evaluations (∼ 100%) used in a standard evaluation by monotonicity.

5.6.3 Performance comparison with Simplex

We have compared the performance of two Occurrence Grouping implementations: using our ad-hoc
algorithm (Occurrence Grouping) and using a Simplex method (Simplex Occurrence Grouping).1

Two important results have been obtained: first, we have checked experimentally that our algorithm is
correct, i.e., it obtains the minimum value for the objective function G. Second, just as we expected, the
performance of Simplex Occurrence Grouping is worse than the performance of our algorithm taking,
in average, between 2.32 (Brent) and 10 (Virasoro) times more time.

1The Simplex algorithm has been adapted from pagesperso-orange.fr/jean-pierre.moreau/Cplus/tsimplex cpp.txt.
It is not rigorous, i.e., it does not take into account rounding errors due to floating point arithmetic. Adding this feature
should make the algorithm work even more slowly.

110

5.6 Experiments

5.6.4 Evaluation diameter comparison

Table 5.3 reports a comparison between the evaluation by occurrence grouping ([f]og) and a set of
interval evaluations including Taylor (see Section 2.4.3), Hansen (see Section 2.4.4) and monotonicity-
based extensions (see Section 2.4.2). The first column indicates the name of each instance. The other

columns are related to different extensions [f]ext and report the average1 of the ratios ρext =
Diam([f]og)
Diam([f]ext)

calculated, using the Mohc algorithm, in each revise procedure of a function f .

NCSP [f] [f]t [f]h [f]m [f]mr [f]mr+h [f]mr+og
Brent 0.857 0.985 0.987 0.997 0.998 0.999 1.000
ButcherA 0.480 0.742 0.863 0.666 0.786 0.963 1.028
Caprasse 0.602 0.883 0.960 0.856 0.953 1.043 1.051
Direct kin. 0.437 0.806 0.885 0.875 0.921 0.979 1.017
Eco9 0.724 0.785 0.888 0.961 0.980 0.976 1.006
Fourbar 0.268 0.718 0.919 0.380 0.427 1.040 1.038
Geneig 0.450 0.750 0.847 0.823 0.914 0.971 1.032
Hayes 0.432 0.966 0.974 0.993 0.994 0.998 1.001
I5 0.775 0.859 0.869 0.925 0.932 0.897 1.005
Katsura 0.620 0.853 0.900 0.993 0.999 0.999 1.000
Kin1 0.765 0.872 0.880 0.983 0.983 0.995 1.001
Pramanik 0.375 0.728 0.837 0.666 0.689 0.929 1.017
Redeco8 0.665 0.742 0.881 0.952 0.972 0.997 1.011
Trigexp2 0.904 0.904 0.904 0.942 0.945 0.921 1.002
Trigo1 0.483 0.766 0.766 0.814 0.814 0.895 1.000
Virasoro 0.479 0.738 0.859 0.781 0.795 1.025 1.062
Yamam.1 0.272 0.870 0.870 0.758 0.758 0.910 1.000

AVERAGE 0.564 0.822 0.888 0.845 0.874 0.973 1.016

Table 5.3: Different evaluations compared to [f]og

The list of interval extensions and their related columns in the table are: the natural extension [f],
the Taylor extension [f]t, the Hansen extension [f]h, the evaluation by monotonicity [f]m, the recursive
evaluation by monotonicity [f]mr, the recursive evaluation by monotonicity combined with the Hansen
extension [f]mr+h and the recursive evaluation by monotonicity combined with the occurrence grouping
extension [f]mr+og (in Section 4 we describe how to combine the recursive extension by monotonicity
with other extensions).

It is well-known that the Taylor and Hansen extensions are not comparable with the natural extension.
Therefore, to obtain more reasonable comparisons we have re-defines [f]t([B]) = [f]′t([B]) ∩ [f]([B]) and
[f]h([B]) = [f]′h([B])∩[f]n([B]) where [f]′t and [f]′h are the real Taylor and Hansen extensions respectively.

The table shows that [f]og computes, in general, sharper evaluations than all the competitors (only
[f]mr+og obtains sharper evaluations but also uses occurrence grouping). The improvements w.r.t. the
two evaluations by monotonicity methods ([f]m and [f]mr) corroborate the benefits of our approach.
For example in Fourbar, [f]og obtains an evaluation diameter which is 42.7% of the evaluation diameter
provided by [f]mr.

[f]mr+h obtains the sharpest evaluations in three benchmarks (Caprasse, Fourbar and Virasoro). How-

1See section B.4 for details about the used average method.

111

5. A New Monotonicity-based Interval Extension

ever, [f]mr+h is more expensive than [f]og. [f]mr+h requires to compute 2n interval partial derivatives
traversing 4n times the expression tree if the AD method is used (the reason is described in Section
2.4.4). [f]og computes n partial derivatives but traverses the tree only twice.

Cheaper and better than [f]mr+h, the extension using occurrence grouping [f]mr+og is strictly better in
evaluation than [f]og. However, the gain in evaluation diameter is only 1.6% on average (between 0%
and 6.2%), so that we do not believe it constitutes a promising extension.

5.6.5 Frequency of interesting evaluations

We consider that an evaluation is interesting when its diameter is less than 70% (based on the experiments
reported in Figure 4.4-right) the diameter of the natural evaluation. Following Table 5.3, Table 5.4 shows
the frequency of interesting evaluations (#interesting evaluations

#total calls
) performed by different interval extensions

during the solving of each benchmark (using Mohc).

NCSP [f]t [f]h [f]m [f]mr [f]mr+h [f]og [f]mr+og
Brent 0.09 0.10 0.10 0.10 0.10 0.10 0.10
ButcherA 0.5 0.68 0.34 0.56 0.88 0.87 0.91
Caprasse 0.22 0.29 0.20 0.32 0.39 0.36 0.41
Direct kin. 0.45 0.54 0.46 0.55 0.64 0.66 0.68
Eco9 0 0.01 0.01 0.02 0.03 0.03 0.04
Fourbar 0.78 0.87 0.24 0.31 0.90 0.92 0.93
Geneig 0.49 0.56 0.47 0.55 0.61 0.66 0.66
Hayes 0.39 0.39 0.39 0.39 0.39 0.4 0.40
I5 0.02 0.02 0.02 0.02 0.03 0.06 0.06
Katsura 0.07 0.10 0.17 0.17 0.17 0.17 0.17
Kin1 0.11 0.11 0.12 0.12 0.13 0.14 0.14
Pramanik 0.38 0.46 0.11 0.12 0.47 0.51 0.51
Redeco8 0 0.03 0.02 0.04 0.07 0.07 0.07
Trigexp2 0 0 0 0 0 0 0
Trigo1 0.35 0.35 0.34 0.34 0.49 0.53 0.53
Virasoro 0.19 0.24 0.13 0.14 0.28 0.33 0.34
Yamamura1 0.28 0.28 0.09 0.09 0.29 0.3 0.30

AVERAGE 0.255 0.296 0.189 0.227 0.345 0.358 0.368

Table 5.4: Frequencies of interesting evaluations performed by different interval extensions.

The two extensions based on occurrence grouping report the highest frequencies of interesting evaluations.
As in Table 5.3, the results of [f]mr+h are similar to [f]og while obtained at a highest cost.

5.7 Conclusion

We have proposed a new method to improve the monotonicity-based evaluation of a function f . The
Occurrence Grouping method creates for each variable three auxiliary, respectively increasing, decreasing
and non monotonic variables in f . It then transforms f into a function fog that groups the occurrences
of a variable into these auxiliary variables. As a result, the evaluation by occurrence grouping of f , i.e.,
the evaluation by monotonicity of fog, is better than the evaluation by monotonicity of f .

112

5.7 Conclusion

Occurrence grouping shows good performances when it is used to improve the monotonicity-based ex-
istence test, and when it is embedded in the Mohc contractor algorithm that exploits monotonicity of
functions.

We still have to compare the occurrence grouping with symbolic-based extensions (see Section 2.4.5).
However, monotonic-based and symbolic-based extensions are compatible. For instance, after having
reduced the number of occurrences using a Horner-based scheme it is still possible to evaluate the new
form using a monotonic-based extension for obtaining a sharper interval.

113

5. A New Monotonicity-based Interval Extension

114

Chapter 6

Exploiting Common Subexpressions

Contents

6.1 Properties of HC4 and CSE . 115
6.2 The I-CSE algorithm . 120
6.3 Implementation of I-CSE . 129
6.4 Experiments . 129
6.5 Perspectives . 131
6.6 Conclusion . 133

Common subexpression elimination (CSE) is a significant feature in compiler optimization [Muchnick,
1997]. CSE searches in the code for common subexpressions with identical evaluation and replaces them
by auxiliary variables.

This technique has also been applied to interval analysis for reducing the number of operations in the
function evaluations [Granvilliers et al., 2001; Schichl and Neumaier, 2005; Vu et al., 2004, 2009b]. For
more details please refer to Section 3.4.1.

In this chapter we show that the benefits of CSE in interval analysis are even greater. We clearly
state which CSs are useful for bringing a better contraction/filtering. This is the topic of Section 6.1.
Section 6.2 presents a new algorithm I-CSE (Interval CSE) to detect CSs and to generate a new system
of constraints. As opposed to existing algorithms, and for a given form of equations, I-CSE is able to
find all the “useful” CSs shared by every pair of expressions. This is mainly due to the fact that we
find all the n-ary maximal CSs corresponding to sums and products, modulo the commutativity and the
associativity of these operators, including so-called conflictive CSs that overlap. Finally, experiments
shown in Section 6.4 highlight that, in all the tested systems, the CSs are extracted in less than one
second. The transformed system of equations then leads standard interval-based solving strategies using
HC4 to significant gains in performance (of sometimes several orders of magnitude).

(A part of the material presented in this chapter is published in [Araya et al., 2008a,b].)

6.1 Properties of HC4 and CSE

We call Common Subexpression (in short CS) a numerical expression that occurs several times in one or
several constraints. This section investigates when it is useful to extract a CS f from a system, create a
new auxiliary variable v and add the equation v = f into the system.

115

6. Exploiting Common Subexpressions

If we observe carefully the HC4-revise algorithm, we can note that the contraction obtained by a nar-
rowing operator on a given expression f is in general partially lost in the next evaluation of f . Consider
for instance a sum x+z that is shared by two expressions n1 and n2. Following Figure 6.1, the narrowing
phase of HC4-revise applied to n1 contracts its interval to [−2, 5]. Then, when the evaluation phase
of HC4-revise applies to n2, its interval is set to [−2, 6] (Figure 6.1–left). Clearly, the interval of n2 is
larger than that of n1. To avoid this loss of information, the idea is to replace n1 and n2 by a common
variable v, and to add a new constraint v = x + z. The new system is equivalent to the original one
(both have the same solutions) while it improves the contraction power of HC4. The introduction of v
(Figure 6.1–right) amounts to adding a redundant equation n1 = n2 (Figure 6.1–center).

[-2,5]

[-2,6]

[0,1]

[-2,5]

[-2,5]

[-2,5]

[0,1]

[-2,5]
1

2 [-2,5][0,1]

[-2,5] [-2,5]
1 2

Figure 6.1: Narrowing/Evaluation without and with CSE.

6.1.1 Additional propagation

Proposition 21 underlines that HC4 obtains a better contraction/filtering when we add into a system new
auxiliary variables and equations corresponding to CSs.

Proposition 21 Let S be a system of equations and S′ be the system obtained by replacing in S one CS
f in common between two expressions (belonging to constraints in S) by an auxiliary variable v, and by
adding the new equation v = f .

Then, HC4 (with a floating-point precision) applied to S′ produces a contracted box [B′] that is smaller
than or equal to the box [B] produced by HC4 applied to S.

Proof 9 One first produces a system S1 by replacing in S the first occurrence of f by an auxiliary
variable v1 and the second occurrence of f by an auxiliary variable v2 and by adding equations v1 = f
and v2 = f . HC4 works with a decomposed system (i.e., ternary system equivalent to S where all the
operators are replaced by auxiliary variables, see Section 3.2.3.4). It appears that S and S1 lead to the
same ternary system S2 (v1 and v2 provide a subset of the auxiliary variables). In other words, HC4 (with
a floating-point precision) applied to S, S1 or S2 produce the same contracted box [B] [Collavizza et al.,
1999]. Finally, creating S′ amounts in adding the constraint v1 = v2 to S1. Thus, the box [B′] is smaller
than or equal to the box [B]. �

Of course, this result would be useless if the box [B′] was equal to [B], and we want to determine
conditions for obtaining a box [B′] that might be strictly smaller than [B]. Among the set of basic
operators that are defined in a standard implementation of HC4 (the basic operators are described in

116

6.1 Properties of HC4 and CSE

Section 2.2), the analysis presented below highlights that the following subset of non-monotonic or non-
continuous operators might bring additional contraction when they occur several times (as CS) in the
same system: sin(x), cos(x), tan(x) with non-monotonic domains, x2c (c positive integer and 0 ∈ [x]),
cosh(x) with 0 ∈ [x], 1/x with 0 ∈ X and binary operators (+,−,×,/).

6.1.2 Unary operators

Recall that the interval extension of a function f computes a conservative interval containing the image
of a given domain [B] under f (see Section 2.4). In other words, the application of f to any element of
[B] falls inside the computed interval.

A unary interval operator [f]([x]) computes the smallest interval containing the image of [x] under f .
Unary operators are defined in Section 2.2.2:

[f]([x]) := Hull(If([x])) = [min
x∈[x]

f(x),max
x∈[x]

f(x)] (6.1)

A narrowing operator N
f(x)
x allows us to filter/contract the domain of a variable x using the constraint

c : w = f(x) with domains [w] and [x]. Narrowing operators are defined in Section 3.2.3.4:

Nf(x)
x ([w], [x]) = Hull(Πc

x([w], [x]))

where Πc
x is the projection of c over x (the projection of a constraint is defined in Section 3.2.3.2). The

narrowing removes all the values from the bounds of [x] not satisfying the constraint w = f(x). i.e., a

narrowing operator [x′] = N
f(x)
x ([w], [x]) verifies:

f(x′), f(x′) ∈ [w] and (∀w ∈ [w]) : x ∈ [x] ∧ x 6∈ [x′]⇒ f(x) 6= w (6.2)

A necessary condition to replace a CS f while bringing additional propagation is when the contraction
obtained by the narrowing operator on f is partially lost in the next evaluation of f (recall the example
of Figure 6.1). More formally:

Condition 1

∃[w] ⊆ [f]([x]), [x′] = Nf(x)
x ([w], [x]) such that [f]([x′]) 6⊆ [w]

where [f] is the interval operator related to f .

The following proposition indicates a simple condition to identify a useless CS for which no filtering is
expected.

Proposition 22 Let [f] be the unary interval operator associated with the unary operator f . Let N
f(x)
x

be the narrowing operator of f over the variable x. [x] is the interval related to x. If f is continuous and
monotonic w.r.t. x1, then:

∀[w] ⊆ [f]([x]), [x′] = Nf(x)
x ([w], [x]) : [f]([x′]) ⊆ [w]

1A continuous and differentiable function is monotonic w.r.t. a variable x if the derivative is positive (or negative) in all
the domain of x. See Section 2.4.2.

117

6. Exploiting Common Subexpressions

Proof 10 W.l.o.g. we suppose that f is monotonically increasing. [x′] = N
f(x)
x ([w], [x]), then using

(6.2): f(x′), f(x′) ∈ [w]. Then, using (6.1) and the fact that f is monotonic:

[f]([x′]) = [min
x∈[x]

f(x),max
x∈[x]

f(x)] = [f(x′), f(x′)] ⊆ [w] �

Proposition 23 With the same notations as Proposition 22, if f is a non-monotonic function, then:

∃[w] ⊆ [f]([x]), [x′] = Nf(x)
x ([w], [y]) : f([x′]) 6⊆ [w]

Proof 11 The non monotonicity of f means:

∃x1, x2, x3 ⊆ [x]3, x1 ≤ x2 ≤ x3 s.t. f(x2) > f(x1) ∧ f(x2) > f(x3)

Using values x1, x2 and x3 that satisfy the existence condition, we can suppose that [w] = [f(x1), f(x3)].

As (f(x2) > f(x1))∧ (f(x2) > f(x3)), f(x2) 6∈ [w]. [x′] = N
f(x)
x ([w], [x]), then, with (6.2), [x1, x3] ⊆ [x′].

Since x1 ≤ x2 ≤ x3, x2 ∈ [x′]. With (6.1), f(x2) ∈ [f]([x′]) implying [f]([x′]) 6⊆ [w]. �

Example 28 Let [x] = [−1, 3] be the domain of a variable x, and x2 be an expression shared by two or
more constraints. Suppose that in the narrowing phase of HC4-revise, the node corresponding to one
of the expressions, i.e., w = x2, is contracted to: [w] = [3, 4]. Applying the narrowing operator on x
contracts the interval to [x] ← Nx2

x ([3, 4], [−1, 3]) = [−1, 2]. In the next evaluation of the expression,
[f]([x]) = [0, 4] 6⊆ [w].

Considering the standard operators managed in HC4 (except operators like floor), the useful CSs do not
satisfy Proposition 22 and satisfy Proposition 23 (e.g., x2, sin, cos).

6.1.3 N-ary operators (sums, products)

For binary (n-ary) primitive functions, Condition 1 can be extended to the following condition:

Condition 2

∃[w] ⊆ [f]([x], [y]), [x′] = Nf(x,y)
x ([w], [x], [y]), [y′] = Nf(x,y)

x ([w], [x], [y]) s.t. [f]([x′], [y′]) 6⊆ [w]

where [f] is the binary operator associated to f , N
f(x,y)
x and N

f(x,y)
y are the narrowing operators of

the constraint c : w = f(x, y) over x and y resp. (binary narrowing operators are described in Section
3.2.3.4).

Condition 2 is generally satisfied by the n-ary operators + and × (resp. − and /). Many examples prove
this result (see Example 29). The result is due to intrinsic “bad” properties of interval arithmetic. First,
the set of intervals IR is not a group for addition. That is, let [x] be an interval: [x]− [x] 6= [0, 0] (in fact,
[0, 0] ⊂ [x]− [x]). Second, IR \ {0} is not a group for multiplication, i.e., [x]/[x] 6= [1, 1].

Proposition 24 provides a quantitative idea of how much we can win when replacing additive CSs. It
estimates the width ∆ that is lost in binary sums when an additive CS is not replaced by an auxiliary
variable. Note that an upper bound of ∆ is 2×min(Diam([x]), Diam([y])) and depends only on the initial
domains of the variables. The lower bound is always positive (or 0) and depends on the reduction of [w]
and on the diameters of the initial variables.

118

6.1 Properties of HC4 and CSE

Proposition 24 Let x + y be a sum related to a node w = x + y inside the tree representation of a
constraint. The domains of x and y are the intervals [x] and [y] resp. Suppose that HC4-revise is
carried out on the constraint: in the evaluation phase, the interval of the node is set to [w] = [x] + [y];
in the narrowing phase, the interval [w] is contracted to [w′] = [w + α,w − β] (with α, β ≥ 0 being the
reduction in left and right bounds of [w]); [x] and [y] are contracted to [x′] and [y′] resp. The difference
∆ between the diameter of the sum [x′] + [y′] (computed in the next evaluation) and the diameter of [w′]
(current projection) is:

∆ = min(α,Diam([x]), Diam([y]), Diam([w])− α) + min(β,Diam([x]), Diam([y]), Diam([w])− β) (6.3)

Proof 12 The proof of Proposition 24 can be obtained knowing that [x′] = Nx+y
x ([w′], [x], [y]) = [x]∩([w]−

[y]) (see how the narrowing operators are obtained in Section 3.2.3.4) and [y′] = Nx+y
y ([w′], [x], [y]) =

[y] ∩ ([w]− [x]). If [w′] is replaced by [x+ y + α, x+ y − β] then we obtain (with few calculations):[
x′
]

= [x+ max(0, α− Diam([y])), x−max(0, β − Diam([y]))][
y′
]

=
[
y + max(0, α− Diam([x])), y −max(0, β − Diam([x]))

]
Finally ∆ = Diam([x′] + [y′])− Diam([w′]) is given by (6.3). �

Example 29 Consider [x] = [0, 1] and [y] = [2, 4]. Thus, [w] = [x] + [y] = [2, 5]. Suppose that after
applying HC4-Revise we obtain [w′] = [2 + α, 5 − β] = [4, 4] (α = 2, β = 1). With Proposition 24 we
obtain ∆ = 2. The narrowing operator yields [x′] = [0, 1] and [y′] = [3, 4]. Indeed, [x′] + [y′] = [3, 5] is
∆ = 2 units larger than [w′] = [4, 4].

The properties related to multiplication are more difficult to establish and understand. Concise results
have been obtained only in the cases when 0 does not belong to the domains or when 0 is a bound of the
domains. First, let us define the ratio of an interval:

Ratio([x]) =
maxx∈[x](|x|)
minx∈[x](|x|)

=
|[x]|
〈[x]〉

Proposition 25 Let x y be a product related to a node w = xy inside the tree representation of a
constraint. The domains of x and y are the intervals [x] ≥ 0 and [y] ≥ 0 resp. Suppose that HC4-revise
is carried out on the constraint: in the evaluation phase, the interval of the node is set to [w] = [x]× [y];
in the narrowing phase, the interval [w] is contracted to [w′] = [w × α,w/β] ≥ 0 (with α, β ≥ 1); [x] and

[y] are contracted to [x′] and [y′] resp. The quotient Θ = Ratio([x′]×[y′])
Ratio([w′]) between the ratio of the product

[x′]× [y′] (computed in the next evaluation) and the ratio of [w′] (current projection) is:

Θ = min

(
α, Ratio([x]), Ratio([y]),

|[w]|
〈[w′]〉

)
× min

(
β, Ratio([x]), Ratio([y]),

|[w′]|
〈[w]〉

)
(6.4)

Proof 13 The proof is analogously obtained from Proposition 24 by replacing the occurrences of Diam by
Ratio, sums by products, subtractions by divisions and 0s by 1s.

From Proposition 25 we deduce 1 ≤ Θ ≤ (min (Ratio([x]), Ratio([y])))2. Observe the similarities with
Proposition 24 (using Ratio instead of Diam).

119

6. Exploiting Common Subexpressions

Example 30 Consider [x] = [1, 3] and [y] = [4, 8]. Thus, [w] = [x] × [y] = [4, 24]. Suppose that
after applying HC4-Revise we obtain [w′] = [4α, 24β] = [4, 6] (α = 1, β = 4). Using (6.4) we compute

Θ = α × |[w
′]|

〈[w]〉 = 3
2 . The narrowing operator yields [x′] = [1, 32] and [y′] = [4, 6]. We can check that the

quotient between Ratio([w′]) = 3
2 and Ratio([x′]× [y′]) = Ratio([4, 9]) = 9

4 is
9
4
3
2

= 3
2 .

6.2 The I-CSE algorithm

Like classical CSE techniques, our algorithm I-CSE detects CSs in a system of constraints and replaces
them by auxiliary variables, which generates a new system.

The novelty of our I-CSE lies in the way additive and multiplicative CSs are taken into account.

First, I-CSE manages the commutativity and associativity of + and × in a simple way thanks to inter-
sections between expressions.

Definition 19 (Intersection between two sums1) Consider the sum expressions f = a1 + ... + an
and f2 = b1 + ...+ bm. W.l.o.g. the terms of f1 and f2 (i.e., a1, ..., ak and bi, ..., bm resp.) are arithmetic
expressions different from a sum (e.g., x, xy, sin(x+ z), (x+ 3)(z ∗ y)).

If {c1, ..., ck} = {c, c ∈ {a1, ..., an}, c ∈ {b1, ..., bm}} then the intersection (∩) between f1 and f2 is defined:

f1 ∩ f2 = c1 + ...+ ck

Example 31 The intersection between the expressions f1 = x+ y × (z + x2) + 5z and f2 = x2 + x+ 5z
is:

f1 ∩ f2 = x+ 5z

Consider two expressions w1×x×y×z1 and w2×y×x×z2 that share the CS x×y. We are able to view
these two expressions as w1×(x×y)×z1 and w2×(x×y)×z2 since (w1×x×y×z1)∩(w2×y×x×z2) = x×y.

Second, contrarily to existing CSE algorithms, I-CSE handles conflictive subexpressions.

Definition 20 (Conflictive subexpression) Two CSs fa and fb included in f are in conflict (or
conflictive) if fa ∩ fb 6= ∅, fa 6⊆ fb and fb 6⊆ fa.

An example of conflictive CSs occurs in the expression f : x × y × z that contains the conflictive CSs
fa : x × y and fb : y × z. Since x × y and y × z have a non empty intersection y, it is not possible to
directly replace both fa and fb in f .

I-CSE works with n-ary trees encoding the original equations2 and produces a DAG. The roots of this
DAG correspond to the initial equations; the leaves correspond to the variables and constants; every
internal node f corresponds to an operator (+,×, sin, exp, etc.) applied to its children t1, t2..., tn. f
represents the expression f(t1, t2, ..., tn). The CSs are represented by nodes with several parents.

1The definition is straightforwardly extended to products.
2The + and × operators are viewed as n-ary operators. They include − and /. For example, the 3-ary expression

x2y/(2 + x) is viewed as ×(x2, y, 1
(2+x)

).

120

6.2 The I-CSE algorithm

Example 32 We illustrate I-CSE with the following system made of two equations.

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2

(x2 + y3)(x2 + cos(y)) + 14

x2 + cos(y)
= 8

Algorithm 14 I-CSE(in: eqSys; out: newSys)

1: /* Step 1: */
2: nodeList← DagGeneration(eqSys) /* The list must be in increasing order */
3: /* Step 2: */
4: PairwiseIntersection(GetNodes(Plus), nodeList)
5: PairwiseIntersection(GetNodes(Times), nodeList)
6: /* Step 3: */
7: for all node ∈ nodeList such that node.CSlist 6= ∅ do
8: ProcessNode(node)
9: end for

10: /* Step 4: */
11: newSys← SystemGeneration(nodeList)

6.2.1 Step 1: DAG generation

This step corresponds to the DagGeneration procedure of the I-CSE algorithm.

This step follows a standard CSE algorithm that traverses simultaneously the n-ary trees corresponding
to the equations in a bottom-up way (see e.g., [Flajolet et al., 1990]). By labeling nodes with identifiers,
two nodes with common children and with the same operator are identified equivalent, i.e., they are CSs.
Figure 6.2 shows the DAG obtained by this algorithms applied to Example 32. The nodes 11, 12 and 13
correspond to CSs. (For the sake of clarity, we have not merged in a same node the multiple occurrences
of a same variable.)

1

2 3

4

5

6

7 8

9

10
11

12 13 14

Figure 6.2: DAG obtained after the first step of I-CSE in Example 32.

121

6. Exploiting Common Subexpressions

At the end, the procedure returns the list nodeList of nodes in this DAG. The vertices of the DAG are
included in a node structure (e.g., n.children corresponds to the list of children of the node n).

6.2.2 Step 2: Pairwise intersection between sums and products

This step corresponds to the PairwiseIntersection procedure called twice by the I-CSE algorithm.

Step 2 pairwise intersects, in any order, the nodes corresponding to n-ary sums on one hand, and to
n-ary products on the other hand (see Algorithm 15). Each intersection extracts the maximal CS (if any)
shared by a pair of nodes (line 3). If the CS is useful then it is added in a CS list maintained in each
node (CSlist, lines 5-6). The CS list of each node is initialized as an empty set when the node is created.
Note that the number of terms (#Children) in the CS must be at least 2 to be considered useful (line 4).

Algorithm 15 PairwiseIntersection(in-out: nodes, nodeList)

1: for i = 1 to length(nodes) do
2: for j ← i+ 1 to length(nodes) do
3: csnode← Intersection(nodes[i], nodes[j], nodeList)
4: if #Children(csnode) ≥ 2 /* useful CS */ then
5: if csnode 6= nodes[i] then nodes[i].CSlist.add(csnode) end if
6: if csnode 6= nodes[j] then nodes[j].CSlist.add(csnode) end if
7: end if
8: end for
9: /* The list nodes[i].CSlist must be sorted by decreasing expression sizes. */

10: for all csnode1 ∈ nodes[i].CSlist do
11: UpdateCSLists(csnode1, nodes[i].CSlist)
12: end for
13: end for

Algorithm 16 UpdateCSLists(in-out: cs1, CSlist)

1: for all cs2 ∈ CSlist such that cs2.expr ⊂ cs1.expr do
2: CSlist.remove(cs2)
3: cs1.CSlist.add(cs2) /* only if cs2 6∈ cs1.CSlist */
4: UpdateCSLists(csnode2, CSlist)
5: end for

The Intersection procedure intersects the expressions corresponding to two nodes i and j. If the
intersection expression corresponds to a node included in nodeList, then the procedure returns this
node. Otherwise a new node corresponding to the intersection expression is added to nodeList and
returned.

On Example 32 (see Figure 6.3), the intersection between the node 1 and the node 4 generates a new
node:

node1.4 : y + x2 = Intersection(node1, node4).

The intersection between the node 4 and node 10 corresponds to the expression: x2 + y3. In this case
the expression is related to an existing node (node10) so that no new node is created.

Also, the list of CSs is updated for each node in the DAG:

122

6.2 The I-CSE algorithm

1

2 3

4

5

6

7 8

9

10
11

12 13 14

1.4
∩

Figure 6.3: DAG obtained after the second step of I-CSE in Example 32: The intersection between nodes
1 and 4 creates the node 1.4.

node1.CSlist = {node1.4}
node4.CSlist = {node1.4, node10}

The for loop (lines 10-12) and the UpdateCSLists procedure update the CS lists of each node and of its
CSs (recall that a CS is also a node). UpdateCSLists applies the following treatment to each group of
three nodes. Consider the nodes g, cs1 and cs2, with CS lists: g.CSlist = {cs1, cs2, ...}, cs1.CSlist = {...}
and cs2.CSlist = {...}. If the expression related to cs2 is contained by the expression related to cs1 (i.e.,
cs2.expr ⊂ cs1.expr), then the procedure removes cs2 from g.CSlist and adds it to cs1.CSlist:

g.CSlist = {cs1, cs2, ...}
cs1.CSlist = {...}
cs2.CSlist = {...}

→
g.CSlist = {cs1, ...}

cs1.CSlist = {cs2, ...}
cs2.CSlist = {...}

As a result, only the maximal CSs are kept in the CS lists of each node.

The following example describes line by line Algorithm 16.

Example 33 Consider a node node[i] = f corresponding to the expression x1 + x2 + x3 + x4 + x5, that
contains, initially, four CSs: fa : x1 + x2 + x3 + x4, fb : x1 + x2, fc : x3 + x4 and fd : x4 + x5 (i.e.,
f.CSlist = {fa, fb, fc, fd}). Figure 6.4-top shows the different nodes/expressions.

The first time the UpdateCSLists is called, it is called with cs1 = fa and CSlist = {fa, fb, fc, fd}. The
procedure detects that cs2 = fb ⊂ fa (i.e. (x1 + x2) ⊂ (x1 + x2 + x3 + x4)), then the corresponding CS
lists are updated as follows: fb is removed from the CS list of f (second line of Algorithm 16) and added
into the CS list of fa (third line of the algorithm), i.e.:

f.CSlist = {fa, fc, fd}
fa.CSlist = {fb}

Then a recursive call to UpdateCSLists is performed with cs1 = fb and CSlist = {fa, fc, fd}. As there does
not exist any CS in f.CSlist included in fb, the recursion terminates. Observe that fb has been removed
from f.CSlist and is not handled again by the for loop of Algorithm 15 (CSlist is an in-out parameter

123

6. Exploiting Common Subexpressions

of the procedure UpdateCSLists). This explains why the CS list of f must be sorted by decreasing sizes
of expressions.

The algorithm continues handling the node cs1 = fa and detects that cs2 = fc ⊂ fa. Thus, the final CS
lists are (nothing happens when the nodes fc and fd are handled by UpdateCSLists):

f.CSlist = {fa, fd}
fa.CSlist = {fb, fc}

Step 2 is a key step because it makes appear CSs modulo the commutativity and associativity of + and
× operators, and creates at most a quadratic number of CSs.

6.2.3 Step 3: Integrating CSs into the DAG

This step corresponds to the for loop of the I-CSE algorithm.

In step 3, all the CSs are integrated into the DAG, thus creating the final DAG. The routine can treat the
nodes of nodeList in any order. Each node (containing CSs) is processed by Algorithm 17 to incorporate
the CSs as children.

f

fa.CSlist={fb,fc}

++
fa

+
fb

+
fc

+
fd

nodeList:

f.CSlist={fa,fd}

+

fb

+
f

Process(fa):

Process(f):

x1 x2 x3

+

fb fcx3 x4

+
f

x1 x2 x3

+
f

x5

fa fa

fb fc

x1 x2 x3

+
fa

x4

x1 x2 x3 x4

f
+

x5

fd

fd fd fa

x1 x2 x3 x4x1 x2 x3 x5x1 x2 x3 x4 x4 x5 x4

fa

(1)

fa.CSlist={fb,fc}

f.CSlist={fd,fa}

Figure 6.4: Illustration of the Process procedure in Example 33.

Let us explain Algorithm 17 on using Example 33 and Figure 6.4. The nodeList is composed of 5 nodes,
two of them containing CSs (f and fa). When node = fa is processed, a temporary copy tmpnode is first
created in line 3. Then, remaining[tmpnode] saves the remaining expression of the node (x1+x2+x3+x4)
i.e., the subpart of the expression f that has not been replaced yet by a CS. The remaining array is in fact
a hash table able to recover the remaining expression of a node n with its identifier n (i.e., remaining[n]).

The for loop (lines 5-11) adds the nodes in fa.CSlist as children of tmpnode if they are not con-
flictive (see Figure 6.4-middle). For instance, when fb is handled by the loop, line 6 checks if the
node csnode = fb can replace the expression csnode.expr = x1 + x2 in the node tmpnode, i.e., if
csnode.expr ⊆ remaining[tmpnode]. As the condition is satisfied, fb is added as a child of tmpnode (line
7), the remaining expression is updated to x3 + x4 (line 8) and fb is removed from the CS list (line 9).
In the same way, fc is added as a child of tmpnode, replacing leaves x3 and x4 (see the figure). Then,

124

6.2 The I-CSE algorithm

the for and repeat-until loops terminate because CSlist is empty. Finally, node = fa obtains its children
from the temporary node (line 14).

Algorithm 17 Process(in: node)

1: CSlist ← node.CSlist; redundNodes← {}; node0 ← null
2: repeat
3: tmpnode← newNode(node.expr)
4: remaining[tmpnode]← node.expr
5: for all csnode ∈ CSlist do
6: if csnode.expr ⊆ remaining[tmpnode] then
7: tmpnode.addChild(csnode)
8: remaining[tmpnode]← Complement(remaining[tmpnode], csnode.expr)
9: CSlist.remove(csnode)

10: end if
11: end for
12: if node0 = null then node0 ← tmpnode else redundNodes.add(tmpnode) end if
13: until CSlist = {}
14: node.children← node0.children
15: node.redundNodes← redundNodes
16: [Simplify(node, redundNodes, remaining) /* (see Section 6.2.5) */]

When node = f is processed (Figure 6.4-bottom), after adding fd in the for loop, the remaining expression
is updated to remaining[tmpnode] = x1 + x2 + x3. Then, csnode = fa cannot be added to f because
it is in conflict with fd (fa ∩ fd = x4 6= ∅). The algorithm detects the conflict in line 6: csnode.expr 6⊆
remaining[tmpnode] (i.e., x1 + x2 + x3 + x4 6⊆ x1 + x2 + x3).

In case of conflict, the repeat-until loop iterates. In each iteration a new redundant node tmpnode is
created (line 3). Redundant nodes are maintained in the list redundNodes. The loop terminates when
each CS in the CS list has been added as child of a redundant node (line 7). At the end of the process
(line 15) the list of redundant nodes (redundNodes) is associated to the current node node.

Following with the example, as the node fa is not added as child of tmpnode in the first iteration, a
redundant node is created. The process is repeated and fa is finally added as child of the redundant node
(f (1) in the figure).

As a result, the procedure has symbolically transformed the expression f = x1 + x2 + x3 + x4 + x5, by
adding the CSs fa and fd, into two redundant expressions:

f = x1 + x2 + x3 + fd
f (1) = fa + x5

In the same way, for the Example 32 (see Figure 6.5), when the node 1 is handled by the algorithm, the
node 1.4 is added as a child of it. Also, when the node 4 is handled, a redundant node is created (4[1]).
The node 1.4 is then added as a child of node 4 and the node 10 is added as a child of node 4[1]. In the
figure we use a dashed line to indicate that the redundant node is associated to the node 4.

Remark: In case of conflicts, Algorithm 17 can generate different DAGs depending on the order of the
nodes in the CS lists. Otherwise, if there are not conflicts, the generated DAG is unique.

125

6. Exploiting Common Subexpressions

1

2 3

4

5

6

7 8

9

10
11

12 13 14

1.4

4[1]=

v1

v2

v3
v3

v4
v5

Figure 6.5: DAG obtained after the third and fourth steps of I-CSE in Example 32. Step 3: All the CSs
have been added as children of the nodes. For the conflictive subexpressions (nodes 1.4 and 10), a redundant
node 4[1] has been created. The node 1.4 is attached to 4 whereas the node 10 is attached to 4[1]. Step 4
generates the auxiliary variables corresponding to the useful CSs (v1, v2, v4 and v5) and the conflictive nodes
(v3).

6.2.4 Step 4: Generation of the new system

This step corresponds to the SystemGeneration procedure of the I-CSE algorithm.

A first way to exploit CSs for solving an NCSP is to use the DAG obtained after Step 3. As shown by
Vu et al. in [Vu et al., 2004, 2009b], the propagation phase cannot still be carried out by a pure HC4

algorithm, and a more sophisticated propagation algorithm must consider the unique DAG corresponding
to the whole system.

Alternatively, in order to still be able to use HC4 for propagation, and thus to be compatible with existing
interval-based solvers, Step 4 generates a new system of equations in which an auxiliary variable v and
an equation v = f are added for every useful CS. Avoiding the creation of new equations for useless
CSs, which cannot provide additional contraction, decreases the size of the new system. In addition, an
auxiliary variable v′ and the equations v′ = f , v′ = f (1),...,v′ = f (r) are added for every node having
redundancies (i.e., conflictive CS). To achieve these tasks, Step 4 traverses the DAG bottom-up and
generates variables and equations in every node. In Figure 6.5, the nodes 12, 1.4, 10 and 11 correspond
to useful CSs. They generate the auxiliary variables v1, v2, v4 and v5, and the equations v1 = x2,
v2 = y+ v1, v4 = v1 + y3 and v5 = v1 + cos(y) respectively. The redundant nodes 4 and 4[1] generate the
auxiliary variable v3 and the redundant equations v3 = v2 + y3− 1 and v3 = −1 + y+ v4. The root nodes
(nodes 1 and 5) generate the two modified equations from the original system: v2 + (v3)

3 + x3 − 2 = 0
and v4×v5+14

v5
− 8 = 0.

Finally, the new system is given by:

v2 + (v3)
3 + x3 − 2 = 0

v4 × v5 + 14

v5
− 8 = 0

v1 = x2

v2 = y + v1

v3 = v2 + y3 − 1

v3 = −1 + y + v4

v4 = v1 + y3

v5 = v1 + cos(y)

126

6.2 The I-CSE algorithm

For a given system of equations, our interval-based solver manages two systems: the new system generated
by I-CSE is used only for HC4 and the original system is used for the other operations (bisections,
interval Newton). The intervals in both systems must be synchronized during the search of solutions.
First, this allows us to clearly validate the benefits of I-CSE for HC4. Second, carrying out Newton or
bisection steps on auxiliary variables would need to be validated both in theory and in practice. Finally,
this implementation is similar to the DAG-based solving algorithm proposed by Vu et al. which also
considers only the initial variables for bisections and interval Newton computations, the internal nodes
corresponding to CSs being only used for propagation [Vu et al., 2004, 2009b].

6.2.5 Advanced Feature: Simplification of redundant expressions

For a node f , when the Process procedure creates one or more redundant nodes, Algorithm 18 is
performed for reducing the number of children in the redundant nodes and improving filtering. Consider
the expression/node f : s + t + x + y + z containing 3 CSs: cs1 : s + t, cs2 : t + x, cs3 : y + z (i.e.,
f.CSlist = {cs1, cs2, cs3}). When Process handles the node f , the following expressions are obtained:

f : cs1 + x+ cs3

f (1) : s+ cs2 + y + z

where f (1) is a redundant node.

Algorithm 18 Simplify(in: node, redundNodes, remaining)

1: for all rnode ∈ redundNodes do
2: for all csnode ∈ node.CSlist do
3: if csnode.expr ⊆ remaining[rnode] then
4: rnode.addChild(csnode)
5: remaining[rnode]← Complement(remaining[rnode], csnode.expr)
6: end if
7: end for
8: end for

The Simplify procedure handles each redundant node rnode created by Process. Following the example,
consider the node rnode = f (1). If the condition of line 3 is satisfied, then the for loop of lines 2-7 adds,
in a geedy way, CSs in f.CSlist as children of f (1). As a result, only cs3 is added in our example:

f (1) : s+ cs2 + cs3

6.2.6 Time complexity

The time complexity of I-CSE mainly depends on the number n of variables, on the number ea of a-ary
operators (nodes) and on the maximum arity a of an a-ary sum or product expression in the system.
ea + n is the size of the DAG created in Step 1, so that the time complexity of Step 1 is O(ea + n)
on average if the node identifiers are maintained using hashing. In Step 2, the number i of performed
intersections is quadratic in the number of sums (or products) in the DAG, i.e., i = O(e2a). The number
of calls to the UpdateCSlists procedure is, in the worst case, quadratic in the number of nodes, i.e.,
O(e2a) (because the maximum size of CSlist is ea− 1). The maximum number of ⊂ operations performed
by the UpdateCSlists procedure is O(ea). Every intersection, Complement or ⊂ operation requires O(a)

127

6. Exploiting Common Subexpressions

on average using hashing (a worst-case complexity O(a log(a)) can be reached with sets encoded by
trees/heaps). Thus, the time complexity of Step 2 is O(a log(a)(e2a + e2a × ea)) = O(a log(a) e3a).

The worst-case complexity for Step 3 occurs when the number of CSs for each node is maximal (ea − 1)
and the number of generated redundant expressions for each node is also maximal (ea − 2). In this case,
the number of calls to the Complement and to the ⊂ procedures in Process is O(e3a). Step 4 is linear in
the size of the final DAG and is O(ea + n+ i). Overall, I-CSE is thus O(n+ a log(a) e3a).

Table 6.1 illustrates how the time complexity evolves in practice with the size of three representative
scalable systems. The CPU times have been obtained with a processor Intel 2.40 GHz. The CPU time
increases linearly in the size ea + n of the DAG for Trigexp1 and Katsura. For Brown, we have a = n
and the time complexity seems to be less than O(n log n e3a).

Table 6.1: Time complexity of I-CSE on three representative scalable systems of equations (see Section 6.4).

Benchmark Trigexp1 Katsura Brown

Number n of variables 10 20 40 5 10 20 10 20 40 80
Number ea of operators 46 96 196 15 55 208 10 20 40 80
I-CSE time in second 0.19 0.28 0.63 0.08 0.19 0.91 0.05 0.20 1.26 9.21

6.2.7 Maximal CSs shared by more than two expressions

As we have already mentioned, the I-CSE algorithm finds all the maximal CSs shared by any pair of
expressions of the original system. However, I-CSE does not find a CS shared by three or more expressions
that is not maximal in any intersection of two expressions.

Consider for instance the expressions f1 : x1+x2+x3+x4, f2 : x1+x2+x3+x5 and f3 : x1+x2+x4+x5.
The pairwise intersection (step 2) of the algorithm finds the maximal CSs shared by two expressions, i.e.,
cs12 : x1 +x2 +x3 (shared by f1 and f2), cs13 : x1 +x2 +x4 (shared by f1 and f3) and cs23 : x1 +x2 +x5
(shared by f2 and f3). However, the maximal CS cs123 : x1 + x2 shared by the three expressions is not
found nor replaced by the algorithm.

Maximal CSs common to three or more expressions that are not replaced by I-CSE appear only when
conflictive CSs have been found. Recall that two CSs are in conflict when their intersection is not empty
and one is not included in the other. If the intersection between two CSs (e.g., cs123) corresponds to
an expression of size larger than one (e.g., cs12 ∩ cs13 = x1 + x2), then this intersection is the maximal
CS shared by the expressions involving these two intersected CSs (e.g., f1, f2 and f3). The number of
involved expressions is greater than two.

The number of CSs in the worst case is exponential in the number of a-ary operators. An algorithm for
finding them might simply consist in applying recursively the step 2 of I-CSE in the list of newly found
CSs until a fixpoint is reached (i.e., until no new CS is found). In the example above:

1. the current step 2 finds cs12, cs13 and cs23;

2. a second (new iteration) would add cs123 = cs12 ∩ cs13 = cs12 ∩ cs23 = cs13 ∩ cs23;

3. no further iteration is necessary to handle the new single CS cs123.

We are afraid that CSs shared by k expressions (k > 2) are not useful in practice, and we will study and
experiment this advanced version of I-CSE to confirm this result.

128

6.3 Implementation of I-CSE

6.3 Implementation of I-CSE

I-CSE has been implemented using Mathematica version 6 [Wolfram, 2009]. Mathematica first auto-
matically transforms the equations into a canonical form, where additions and multiplications are n-ary
and where are performed reductions, i.e., factorizations by a constant. For instance, the expression
2x− y + x+ z is transformed into 3x+ (−y) + z. The n-ary representation of equations is useful for the
pairwise intersections of I-CSE (Step 2).

The solving algorithms are developed in the open source interval-based library in C++ called Ibex [Chabert,
2009; Chabert and Jaulin, 2009c]. A given benchmark is solved by a branch and prune process: the vari-
ables are bisected in a round-robin manner and contracted by constraint propagation (HC4 only, or 3BCID
using HC4 (see Section 3.2.4.2)) and interval Newton. As mentioned at the end of Section 6.2.4, Ibex offers
facilities to create two systems of equations in memory for which domains of variables are synchronized
during the search of solutions.

I-CSE-B and I-CSE-NC

We have theoretically proven that the benefits of I-CSE lie in the additional pruning it permits and not
only in a decrease of the number of operations. To confirm in practice this significant result, we have
designed two variants of I-CSE that compute fewer CSs. I-CSE-B (Basic I-CSE) simply ignores the step 2
of I-CSE. The commutativity and associativity of + and × are not taken into account. Additive and
multiplicative n-ary expressions are considered in a fixed binary form in which only a few subexpressions
can be detected. For instance, the CS x+ y is detected in two expressions x+ y+ z1 and x+ y+ z2, but
not in expressions x+ z1 + y and x+ z2 + y.

I-CSE-NC (I-CSE with No Conflicts) completely exploits the commutativity and associativity of + and
×, but does not take into account conflictive CSs. I-CSE-NC lowers the worst case time complexity of
I-CSE, but does not create all the CSs. If a given system does not contain CSs in conflict, I-CSE and
I-CSE-NC return the same new system (with no redundant equations). In the example, I-CSE-NC does
not create the redundant equation v3 = −1 + y + v4, so that the equation v4 = v1 + y3 is not created

either. The second (initial) equation finally becomes: (x2+y3)×v5+14
v5

= 8.

Existing CSE algorithms, including the one proposed in [Vu et al., 2004, 2009b], take place between
I-CSE-B and I-CSE-NC in terms of number of detected useful CSs.

6.4 Experiments

Benchmarks have been taken in the first two sections (polynomial and non-polynomial systems) of the
COPRIN page [Merlet, 2009]. The selected sample fulfills systematic criteria: every tested benchmark is
an NCSP with a finite number of isolated solutions (no optimization); all the solutions can be found by
the ALIAS system [Merlet, 2000] in a time comprised between one second and one hour; selected systems
are written with the following primitive operators: +, -, ×, /, sin, cos, tan, exp, log, power. With these
criteria, we have selected 40 benchmarks. The I-CSE algorithm detects no CS in 16 of them. There are
also two more benchmarks (Fourbar and Dipole2) for which no test has finished before the timeout (one
hour), providing no indication. 9 of the remaining 22 benchmarks are scalable, that is, can be defined
with any number of variables. Table 6.2 provides information about the selected benchmarks. When
there is no conflictive CS, I-CSE and I-CSE-NC return the same new system and there is no redundant

129

6. Exploiting Common Subexpressions

Table 6.2: Selected benchmarks. The columns yield the name of the benchmark, the number of solutions
(#s), the number of variables (n), the number of useful CSs (#cs) found by I-CSE-B, I-CSE-NC, I-CSE, the
number of redundant constraints created by I-CSE due to conflictive CSs (#rc).

Benchmark I-CSE-B ICSE-NC I-CSE Benchmark I-CSE-B ICSE-NC I-CSE

#s n #cs #cs #cs #rc #s n #cs #cs #cs #rc
6body 5 6 2 3 3 0 Katsura-20 7 21 90 90 90 0
Bellido 8 9 0 1 1 0 Kin1 16 6 13 13 19 3
Brown-7 3 7 3 7 21 24 Pramanik 2 8 0 15 15 0
Brown-7* 3 7 3 1 1 0 Prolog 0 21 0 7 7 0
Brown-30 2 30 26 53 435 783 Rose 16 3 5 5 5 0
BroyBand-20 1 20 22 37 97 73 Trigexp1-30 1 30 29 29 29 0
BroyBand-100 1 100 102 119 479 473 Trigexp1-50 1 50 49 49 49 0
Caprasse 18 4 6 7 11 2 Trigexp2-11 0 11 15 15 15 0
Design 1 9 3 3 3 0 Trigexp2-19 0 19 27 27 27 0
Dis-Integral-6 1 6 4 6 18 9 Trigonom-5 2 5 7 9 20 14
Dis-Integral-20 3 20 18 34 207 171 Trigonom-5* 2 5 7 6 6 0
Eco9 16 8 0 3 7 1 Trigonom-10 24 10 15 15 26 15
EqCombustion 4 5 7 8 11 1 Trigonom-10* 24 10 15 12 12 0
ExtendWood-4 3 4 2 2 2 0 Yamamura-8 7 8 5 10 36 48
Geneig 10 6 11 14 14 0 Yamamura-8* 7 8 5 1 1 0
Hayes 1 8 9 8 8 0 Yamamura-12 9 12 9 18 78 119
I5 30 10 3 4 10 5 Yamamura-12* 9 12 9 1 1 0
Katsura-19 5 20 81 81 81 0 Yamamura-16 9 16 13 26 136 224

constraints (#rc=0). The interval-based solver results will be the same.

For all the benchmarks, the CPU time required by I-CSE (and variants) is often negligible and always
less than 1 second.

Remark. In the scalable benchmarks marked with a star (*), the equations have not been initially
rewritten into the canonical form by Mathematica (see Section 6.3). This leads to fewer CSs, but these
CSs correspond to larger subexpressions shared by more expressions, providing generally better results.

Tables 6.3 and 6.4 compare the CPU times required by Ibex to solve the initial system (Init) and the
systems generated by I-CSE-B, I-CSE-NC and I-CSE. Table 6.3 reports the results obtained by a standard
branch and prune approach with bisection, Newton and HC4. Table 6.4 reports the results obtained by
a branch and prune approach with bisection, Newton and 3BCID (using HC4 as a refutation algorithm).
Both tables report CPU times in seconds obtained on a 2.40 GHz Intel Core 2 processor with 1 Gb of
RAM, and the corresponding gain w.r.t. the solving of the original system. The time limit has been
set to 3600 seconds. The tables also report the number of generated boxes (#Boxes) during the search.
This corresponds to the number of nodes in the tree search and highlights the additional pruning due to
I-CSE. The precision of solutions has been set to 10−8 for all the benchmarks. The parameter used by
HC4 has been set to 1% in Table 6.3. The parameters used by HC4 and 3BCID have been set to 10% in
Table 6.4. We have put at the end of both tables the results corresponding to scalable benchmarks. To
return a fair comparison between algorithms, we have selected for the scalable systems the instance with
the largest number of variables n such that the solver on the original system finds the solutions in less
than one hour. This number n is greater with 3BCID (Table 6.4) than with only HC4 (Table 6.3) because
3BCID is generally more efficient than HC4.

Tables 6.3 and 6.4 clearly highlight that I-CSE is very interesting in practice. We observe a gain in
performance greater than a factor 2 on 15 among the 24 lines (on both tables). The gain is of two orders
of magnitude (or more) for 5 benchmarks with HC4 (corresponding to 4 different systems) and for 10
benchmarks with 3BCID (corresponding to 8 different systems).

I-CSE clearly outperforms the variants extracting fewer useful CSs, as shown on Table 6.3 (see Brown-7,
Dis-Integral-6, Broyden-Banded-20) and Table 6.4 (see Brown-7, Dis-Integral-6, Yamamura-12,

130

6.5 Perspectives

Table 6.3: Results obtained with HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

EqCombustion >3600 26.1 0.35 0.14 >137 >10000 >25000 >1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35 >3e+07 865099 865099
Hayes 141 51.9 15.7 15.7 2.7 9 9 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8 425153 122851 122851
I5 >3600 >3600 1534 1565 ? >2.3 >2.3 >3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 84.9 84.9 0.97 1.05 1.05 487255 378879 378879
Bellido 15.7 15.9 15.6 15.6 0.99 1.01 1.01 29759 29319 29319
Eco9 23.9 23.9 24 24.1 1.00 1.00 0.99 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 1.42 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997 422705 353 353
Brown-7 500 350 30.7 1.49 1.42 16.1 332 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4 172959 46761 12623
Trigonometric-5* 15.8 12.3 1.49 1.49 1.28 10.6 10.6 10531 1503 1503
Trigonometric-5 15.8 12.3 8.94 6.97 1.28 1.77 2.27 10531 7369 5307
Yamamura-8 13 13.3 44.6 10.8 0.98 0.3 1.20 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90 145839 153193 153193
Trigexp1-30 2465 3244 3244 3244 0.76 0.76 0.76 1e+07 1e+07 1e+07

Trigonometric-10). In these cases, the gains in CPU time are significant. They are sometimes of
several orders of magnitude. The few exceptions for which I-CSE is worse than its simpler variants give
only a slight advantage to I-CSE-NC or I-CSE-B.

The number of boxes is generally decreasing from the left to the right of tables. This confirms our
theoretical analysis that expects gains in filtering when a system has additional equations due to CSs.
This experimentally proves that exploiting conflictive CSs is useful. This confirms an intuition shared by
a lot of practitioners of partial consistency algorithms that redundant constraints are often useful because
they allow a better pruning effect [Harvey and Stuckey, 2003]. Benchmarks Brown-30, Dis-Integral-20
and Yamamura-16, have been added at the end of Table 6.4 to highlight this trend: I-CSE produces a
gain in performance of 3 orders of magnitude while it adds hundreds of redundant equations.

Most of the obtained results are good or very good, but four benchmarks observe a loss of performance
lying between 20% and 42%: Caprasse with both strategies, and Pramanik, Geneig, Katsura with
3BCID. The loss in performance observed for Katsura-20 (10% or 42% according to the strategy) is due
to the domains of the variables that are initialized to [0,1]. Without detailing, such domains imply that
the pruning in the search tree is due to the evaluation (bottom-up) phase and not to the (top-down)
narrowing phase of HC4-revise.

6.5 Perspectives

In other experiments (not detailed in this thesis) we observed the benefits of using I-CSE and symbolic-
based extensions (described in Section 2.4.5) together. Consider for example a set of two expressions:
f = x1y1 + x1y2 and g = x2y2 + x2y3. The I-CSE algorithm cannot detect any CS in the set. However if

131

6. Exploiting Common Subexpressions

Table 6.4: Results obtained with 3BCID using HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

Rose 2882 5.17 4.04 4.04 557 713 713 4e+06 5711 5711
Prolog 38.5 60 0.14 0.14 0.64 275 275 4647 11 11
EqCombustion 0.42 0.37 0.06 0.06 1.35 7 7 427 23 23
Hayes 32.6 27.2 5.67 5.67 1.13 5.7 5.7 17455 1675 1675
Design 52 17.9 13.3 13.3 2.9 3.9 3.9 16359 4401 4401
I5 33.5 41.1 17.9 17.8 0.81 1.9 1.9 10619 4387 4281
6-body 0.14 0.08 0.1 0.1 1.75 1.4 1.4 173 51 51
Kin1 1.66 2.66 1.76 1.23 0.62 0.94 1.35 85 161 197
Bellido 10.3 10.4 9.98 9.98 1 1.03 1.03 4487 4341 4341
Eco9 11.6 11.6 12.4 13.2 1 0.94 0.88 6205 6045 5749
Pramanik 73.8 114 96.8 96.8 0.65 0.76 0.76 124663 95305 95305
Caprasse 1.96 2.51 2.5 2.92 0.74 0.78 0.67 1285 1311 1219
Geneig 696 1050 1050 1050 0.66 0.66 0.66 362225 362045 362045
Trigexp2-19 2308 2.23 0.03 0.03 1035 77000 77000 250178 7 7
Brown-7* 600 318 0.01 0.01 1.88 60000 60000 662415 9 9
ExtendWood-4 185 0.03 0.03 0.03 6167 6167 6167 669485 35 35
Dis-Integral-6 135 0.18 0.51 0.03 750 264 4500 86487 185 7
Brown-7 600 318 4.75 0.22 1.88 126 2700 662415 2035 23
Yamamura-12* 1751 1842 1.01 1.01 0.95 1700 1700 364105 307 307
Yamamura-12 1751 1842 31.1 8.72 0.95 56.3 200 364105 5647 445
Trigonometric-10* 1344 506 19.4 19.4 2.67 69 69 140512 2033 2033
Trigonometric-10 1344 506 156 49.6 2.67 8.62 27 140512 19883 3339
Broy-Banded-100 9.96 20.3 14.8 8.21 0.49 0.67 1.21 13 23 11
Trigexp1-50 0.15 0.19 0.17 0.17 0.79 0.88 0.88 1 1 1
Katsura20 3457 5919 5919 5919 0.58 0.58 0.58 62451 120929 120929
Brown-30 >3600 >3600 >3600 22.9 ? ? >150 >210021 >151527 31
Dis-Integral-20 >3600 >3600 >3600 1.12 ? ? >3200 >111512 >75640 39
Yamamura-16 >3600 >3600 681 35.6 ? >5 >100 >522300 96341 919

we transform the expressions using a Horner scheme we obtain the new set:

fh(x1) = x1(y1 + y2)

gh(x2) = x2(y1 + y2)

Now, I-CSE can detect the CS y1 + y2.

We have implemented a simple Horner-based algorithm (motivated by the works of Ceberio, Granvilliers
and Kreinovich [Ceberio and Granvilliers, 2001; Ceberio and Kreinovich, 2004]) that applies the Horner
scheme in every sum expression f before performing I-CSE. The Horner scheme is applied to the factor
appearing more times in f .

Example 34 The result obtained by our algorithm when it is applied to different expressions is:

f1 = x2x3 + x2x1 → f ′1 = x2(x3 + x1)

f2 = x2(x3 + x1) + x1(x3 + x1) → f ′2 = (x3 + x1)(x1 + x2)

f3 = x31x2 + x21x3 + x21x2x3 → f ′3 = x31x2 + x21(x3 + x2x3)

The Horner scheme has been applied to the factors x1, (x3 +x1) and x21 respectively. Observe that for f3,
x21 is not factorized in the first term x31x2 because it would not lower the number of occurrences of x1.

Results show that, for instance, in the Virasoro benchmark (also obtained from the COPRIN web page),
using this method we obtain a gain in CPU time close to 4 w.r.t. I-CSE.

132

6.6 Conclusion

6.6 Conclusion

This chapter has presented the algorithm I-CSE for exploiting common subexpressions in numerical CSPs.
A theoretical analysis has shown that gains in filtering can be expected only when CSs do not correspond
to monotonic and continuous operators like x3 or log. Contrarily to a belief in the community, this means
that CSs can bring significant gains in filtering/contraction, and not only a decrease in the number of
operations. These are good news for the significance of this line of research.

Experiments have been performed on 40 benchmarks among which 24 contain CSs. Significant gains of
one or several orders of magnitude have been observed on 10 of them. I-CSE differs from existing CSEs in
that it also detects conflictive CSs. As compared to I-CSE-NC (better than or similar to existing CSEs),
the additional contraction involved by the corresponding redundant equations leads to improvements of
one or several orders of magnitude on 4 benchmarks (Brown, Dis-Integral, Yamamura and, only for HC4,
BroyBanded).

A future work is to compare our implementation based on the standard HC4 algorithm (and the manage-
ment of two systems), with the sophisticated propagation algorithm carried out on the elegant DAG-based
structure proposed by Vu, Schichl and Sam-Haroud. However, our experimental results have underlined
that the gain in contraction has a greater impact on efficiency than the time required to reach the fixpoint
of propagation. Thus, we suspect that both implementations will show similar performances.

We have concluded that performing I-CSE as a preprocessing procedure can bring significant gains in
filtering to a solving strategy based on the HC4 algorithm. However this is not always true when the
strategy is based on more sophisticated propagation algorithms (e.g., Mohc, Box). The problem is that
replacing subexpressions by auxiliary variables can increase the locality problem due to the decomposition
of constraints (see Section 3.6). One alternative is to extend the propagation algorithms for using the
DAG representation of the system. Another alternative would be to modify the Revise procedures of
the propagation algorithms to take into account both the initial and the generated system (with CSs).

In the next chapter we present a new constraint propagation algorithm focusing on subsystems of size k.

133

6. Exploiting Common Subexpressions

134

Chapter 7

A Filtering Algorithm Using
Well-constrained Subsystems

Contents

7.1 Introduction: From decomposable to sparse systems . 135
7.2 Box-k partial consistency . 138
7.3 Contraction algorithm using well-constrained subsystems as global constraints 140
7.4 Multidimensional splitting . 144
7.5 Experiments . 144
7.6 Conclusion . 147

In this chapter we describe a new constraint propagation algorithm called Box-k. Box-k contracts domains
of variables involved in well-constrained subsystems of size k (k constraints and k variables). Well-cons-
trained subsystems act as global constraints that can bring additional filtering w.r.t. interval Newton
(described in Section 3.2.1) and constraint propagation algorithms like HC4 (described in Section 3.2.3.4)
or Box (described in Section 3.2.3.5).

(A part of the material presented in this chapter is published in [Araya et al., 2009c,d].)

7.1 Introduction: From decomposable to sparse systems

Neveu, Trombettoni, Bliek, Jermann and Chabert have proposed in [Bliek et al., 1998; Neveu et al.,
2006, 2005] an algorithm to treat decomposable systems. Inter-Block Backtracking (IBB) solves nonlinear
systems of constraints that have been first decomposed into a sequence of irreducible blocks/subsystems
[Ait-Aoudia et al., 1993]. When the blocks are sufficiently small, IBB outperforms classical solvers in
several orders of magnitude. This is due to the fact that the classical solvers have no knowledge about
the structure of the system implying possible bad selection of variables to bisect (the bisections performed
by IBB depend on the sequence of subsystems).

IBB treats each block/subsystem in the order provided by the sequence. The algorithm interleaves
contraction steps (performed by HC4 and interval Newton) and bisections inside the block until atomic
boxes (solutions) are obtained. Choice points are then made: the variables of the block are replaced by
one of the atomic boxes, i.e., they are considered constants/parameters in subsequent blocks.

Let us write, in Algorithm 19, a simple variant of IBB.

135

7. A Filtering Algorithm Using Well-constrained Subsystems

Algorithm 19 IBB(in:P = (C,X, [B0]), ε, out:L)

1: L ← {[B0]}
2: while There exist non-atomic boxes in L do
3: Select and delete a non-atomic box [B] from L
4: P ∗ ← Parameterize Atomic Intervals(P, [B])
5: P k×k ← Get Subsystem(P ∗)
6: S ← Solve(P k×k, ε) /* using a branch and prune based strategy */
7: L ← L ∪ S
8: end while

L maintains a set of boxes that will be narrowed and split until becoming atomic. L can be seen as the
set of leaves of the search tree. At the beginning L is initialized with the initial domains [B0]. While there
exist non atomic boxes in L, such a box [B] in L is processed by the Parameterize Atomic Intervals

procedure. The procedure replaces each variable xi associated to an atomic interval in the system P
by the atomic constant [xi], creating a new system P ∗. (Constraints that are not related with any
variable after the replacement, are excluded from P ∗).) Then, the Get SubProblem procedure uses the
new system for finding a well-constrained subsystem (see Definition 23) of k constraints related to exactly
k variables. The Solve procedure uses a branch & prune strategy (see Section 3.1) for finding the set of
solutions/boxes S of the subsystem P k×k with a precision ε. Remark that only k of the n intervals of
the boxes in S are reduced to atomic intervals by the Solve procedure. Thus, non-atomic boxes in S are
still processed by IBB until they becomes atomic or are eliminated.

The main difference with the original IBB is that Algorithm 19 performs the decomposition on the fly
(line 5). Whereas, IBB simply picks the next block in the precomputed sequence of subsystems.

P(2x2)

dim:7

P(2x2)

dim:5

P(2x2)

dim:5

P(2x2)

dim:5

P(3x3) P(3x3) P(3x3)

L={ }

f1
f2

f3
f4

f3
f4

f3
f4

f5
f6
f7

f5
f6
f7

f5
f6
f7

1

2

3

4 5

6 7
dim:3 dim:3 dim:3

Figure 7.1: Example of a tree search performed by the IBB algorithm.

Consider the system P = (X,C, [B]), where the set of constraints C is given by:

f1(x1, x2) = 0 f5(x1, x3, x4, x5, x6, x7) = 0
f2(x1, x2) = 0 f6(x3, x4, x5, x6, x7) = 0

f3(x1, x3, x4) = 0 f7(x4, x5, x6, x7) = 0
f4(x1, x2, x3, x4) = 0

136

7.1 Introduction: From decomposable to sparse systems

and X = {x1, ..., x7}. In Figure 7.1 we can observe a trace of a tree search performed by the algorithm
on P . All the rectangles represent a subproblem of P . The top left number indicates the order in
which the subproblems are treated. The top right number indicates the dimension of the box associated
to the problem (without taking into account the atomic intervals). Consider, for instance, the root
problem (rectangle 1). It corresponds to the initial problem P . When the algorithm executes the
GetSubsystem procedure in P = (X,C, [B]), it obtains a 2 × 2 well-constrained subsystem P 2×2 =
(X ′, C ′, [B]) (represented by the rectangle inside the rectangle 1). The system P 2×2 is given by:

f1(x1, x2) = 0

f2(x1, x2) = 0

The solving of this subproblem returns three solutions (the black squares in the figure). Each solution/box
[B′] generates a new subproblem P ′ = (X,C, [B′]) (corresponding to rectangles 2,4 and 5 in the figure).
Consider for example the first solution/box (ẋ1, ẋ2, [x3], ..., [x8]), with ẋ1 and ẋ2 the atomic intervals
obtained by the solver. Continuing with this solution, the Parameterize Atomic Intervals procedure
will create the following new system P ∗:

f∗3 (x3, x4) = f3(ẋ1, x3, x4) = 0 f6(x3, x4, x5, x6, x7) = 0
f∗4 (x3, x4) = f4(ẋ1, ẋ2, x3, x4) = 0 f7(x4, x5, x6, x7) = 0
f5(x1, x3, x4, x5, x6, x7, x8) = 0

The GetSubsystem procedure then finds the following well-constrained subsystem P 2×2:

f∗3 (x3, x4) = 0

f∗4 (x3, x4) = 0

Then, the subsystem is solved and only one solution is found (ẋ3, ẋ4) leading to the box
(ẋ1, ..., ẋ4, [x5], ..., [x8]). Observe that each subproblem is treated as a new independent one, i.e., in each
of them the algorithm searches for a new square subsystem and solves it.

When all the boxes in L become atomic and satisfy all the equations of the system P , L becomes the set
of solutions of the problem.

In this chapter, we propose a generalization of Algorithm 19 called Box-k. Our algorithm also manages
k×k well-constrained subsystems. However, it treats subsystems containing thick constants/parameters.
Our algorithm solves a given subsystem of size k with a rough precision before returning the hull of the
thick solutions, thus obtaining a contraction on the involved variables. As a result, contrarily to IBB,
Box-k is a propagation algorithm embedded in a classical branch & prune method.

The contraction algorithm is presented in Section 7.3. It enforces a new kind of consistency presented in
Section 7.2. In Section 7.4, we present multidimensional splitting (in short multisplit). A multisplit

consists in splitting several variable domains simultaneously in order to perform a choice point in the
search (i.e., the current box is split in several subboxes). multisplit generalizes line 7 of Algorithm 19,
where IBB adds in L the solutions/boxes of the solved subsystem.

Promising experiments, presented in Section 7.5, highlight the benefits of our approach for decomposed
and structured systems.

137

7. A Filtering Algorithm Using Well-constrained Subsystems

7.2 Box-k partial consistency

As explained in Section 3.2.3.5, the Box-consistency yields an outer approximation/box of 1×1 subsystems
(c, x). The Box-k-consistency introduced in this thesis generalizes Box-consistency by yielding an outer
approximation of k × k subsystems.

Definition 21 (Subsystem) Consider the NCSP P = (X,C, [B]). C ′ ⊂ C (with C ′ : F ′(X ′) = 0) is a
subset of constraints involving the variables in X ′ = (XI ∪XO) ⊂ X (XI and XO are two disjoint sets
of variables).

P ′ = (XO, C
′′, [XO]), with a set of equations C ′′(XO) : F ′′(XO) = 0, is a subsystem of P if

F ′′(XO) = F ′([XI], XO)

Observe that the variables in XI have been replaced by their domains.

• XI is the set of input parameters of the subsystem P ′ and

• XO is the set of output variables of the subsystem P ′.

Definition 22 (Box-k-consistency) Consider the subsystem of equations C : F (XO) = 0 with |XO| =
k. C is box-k-consistent in the box [B] = [XI]× [XO] ([XI] is the box related to the input parameters of
C) if there exists a k-box [Xε

O] of size 1u.l.p. on every face of the k-box [XO] such that each constraint
[f](XO) = 0 in C is satisfied, i.e.:

0 ∈ [f]([Xε
O])

If a box-k-consistent subsystem has an empty set of input parameters, note that this subsystem is also
global hull consistent [Cruz and Barahona, 2001]. Thus, like for the standard box-consistency (i.e.,
box-1-consistency), the presence of input parameters makes box-k-consistency weaker than global hull-
consistency.

Figure 7.2-left shows an example of a 2×2 subsystem. The outer box is box-consistent since it optimally
approximates the solution set of constraints c1 and c2 individually. The inner box is box-2-consistent
since it optimally approximates the set of six “thick” solutions to both constraints. Constraints are thick
because the input parameters (e.g., w1, w2, w3) are replaced by intervals.

Figure 7.2: Illustration of Box-2-consistency

Partial consistencies are generally defined modulo a precision ε that is used in practice by the correspond-
ing algorithm to reach a fixpoint earlier. ε must then replace 1 u.l.p. in the previous definitions.

138

7.2 Box-k partial consistency

7.2.1 Benefits of Box-k-consistency

The following example theoretically shows that a contraction obtained by a k × k subsystem may be
stronger than contraction on 1× 1 subsystems and on the whole n× n system performed by an interval
Newton. Consider the system S = ({x, y, z}, {x − y = 0, x + y + z = 0, (z − 1)(z − 4)(2x + y + 2) =
0}, {[−106, 106], [−106, 106][−10, 10]}).

Figure 7.3: Illustration of a subsystem of size 2, with [z] = [−10, 10] as input parameter. {[-5,5],[-5,5]} is
box-2-consistent w.r.t. the 2 constraints x− y = 0 and x+ y + [z] = 0.

Running Box and interval Newton on S does not filter the box. Achieving Box-2-consistency on the
2 × 2 subsystem ({x,y}, {x-y=0, x+y+z=0}) narrows the intervals of x and y to [−5, 5] as shown in
Figure 7.3. Also, if branching was used to find solutions, only two bisections (choice points) would be
necessary to isolate the 3 solutions {(−23 ,

−2
3 ,

4
3), (−0.5,−0.5, 1), (−2,−2, 4)}. We should highlight that

Newton on the whole system does not contract the box because it contains several solutions, whereas
Newton on the 2× 2 subsystem does because it contains only one (thick) solution (segment in bold). Of
course, this small example is didactic. Experiments described in Section 7.5 show larger and nonlinear
instances highlighting the benefits of structural partial consistencies over stronger partial consistencies
like 3B-consistency [Lhomme, 1993].

7.2.2 Achieving Box-k-consistency in well-constrained subsystems of equations

Enforcing Box-k-consistency in every subsystem of given size k is too time-consuming and counter-
productive in practice. The number of subsets of k variables in a system with n variables is high and one
needs to consider only promising subsystems.

We have thus used several criteria to reduce the number of subsystems that are candidate. We first
select subsystems with only equations (no inequalities) because equations bring a great reduction of the
search space and have nice properties. To understand these properties, we have to pay attention to
systems that admit a finite number of solutions. These systems contain n variables but also the same
number n of independent equations (additional inequalities can reduce the number of solutions). Also,
the corresponding bipartite constraint graph verifies the following structural/graph property [Ait-Aoudia
et al., 1993].

Definition 23 Let S be a system of n independent equations constraining n variables. The vertices of
the bipartite constraint graph G corresponding to S are the n variables and the n equations, and
edges connect one equation to its involved variables.

The system of equations S is (structurally) well-constrained if its constraint graph G has a perfect
matching [Dulmage and Mendelsohn, 1958].

139

7. A Filtering Algorithm Using Well-constrained Subsystems

For instance, Figure 7.2-right, page 138 shows the perfect matching (bold-faced edges) of the correspond-
ing subgraph. This structural well-constriction can be viewed as a necessary condition to obtain a finite
set of solutions. It appears that interval Newton also requires this condition (while it is of course not
sufficient) for contracting a box. Indeed, if the system is not structurally well-constrained, the Jaco-
bian matrix will necessarily be singular [Ait-Aoudia et al., 1993]. Our subsystems fulfill this condition
because Interval Newton is used by our new Box-k-Revise procedure (see Section 7.3) to achieve faster
a box-k-consistent subsystem. (Also, the time complexity of interval Newton is cubic in the number of
variables, so that it is sometimes intractable to apply it to very large systems. Instead, we could use
interval Newton only inside subsystems.)

We finally require our subsystems to be connected for performance considerations. Indeed, if a given
subsystem of size k contained several disconnected components of size at most k′ (k′ < k), we could make
it box-k-consistent by achieving box-k’-consistency in every component.

To sum up, restricting the subsystems to well-constrained and connected subgraphs of equations has two
virtues. First, it allows a strong filtering in specific subparts of the system, which is useful for sparse
systems or for (globally) under-constrained ones, e.g., systems mixing equalities and inequalities. Second,
it allows the use of an interval Newton to faster contract the subsystem.

7.3 Contraction algorithm using well-constrained subsystems as global
constraints

Instead of contracting all the well-constrained subsystems of given size k, we have designed an AC3-
like propagation that manages selected subsystems of different sizes: subsystems of size 1 but also
well-constrained subsystems of larger size. Well-constrained subsystems are thus similar to global con-
straints [Lebbah et al., 2005; Régin, 1994] that can be defined by the user or automatically (see Sec-
tion 7.5).

All the subsystems are first put into a propagation queue and revised in sequence. When a variable
domain is reduced more than a ratio ρpropag, all the subsystems involving this variable are pushed into
the queue, if they are not already in it. This propagation process is just specialized by the revise procedure
used for contracting the subsystems of size greater than 1 and detailed below.

7.3.1 The Box-k revise procedure

The revise procedure, described in Algorithm 20 is based on a branch & prune method limiting the
bisection to the k (output) variables X of the subsystem, and using a breadth-first search. At the end of
this local tree search, the current box is replaced by the hull of the leaves of the local tree. The algorithm
Box-k-Revise is a generic procedure that achieves a box-k-consistent subsystem. The procedure manages
a list L of nodes that are leaves of the local tree. A leaf l in L has three significant components: l.box
designs the (n-dimensional) search space associated to the node; l.precise is a boolean stating whether
l.box has reached the precision ε in all the dimensions (ε also yields the precision of the global solution);
l.certified is a boolean asserting whether l.box contains a unique solution. The box parameter is the
current global box (search space) when the revise procedure is called.

A combinatorial process (tree search) is performed by the while loop. At every iteration, one leaf in L,
which is not precise and not certified, is selected, bisected and the two new sub-boxes are contracted. The
search ends if all the leaves are tagged as certified or precise or if a limit τleaves in the number of leaves

140

7.3 Contraction algorithm using well-constrained subsystems as global constraints

Algorithm 20 Box-k-Revise (in-out L, box; in X, C, ε, subContractor, τleaves, τρio)

UpdateLocalTree(L, box, X, C, ε, subContractor)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}
while 0 < L′.size and L.size < τleaves do
l← L′.front() /* Select a leaf in breadth-first order */
(l1, l2)←bisect(l,X)
contract(l1, subContractor, X, C, ε)
contract(l2, subContractor, X, C, ε)
if l1.box 6= ∅ then L.pushBack(l1) end if
if l2.box 6= ∅ then L.pushBack(l2) end if
L.remove(l)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}

end while
box ←hull(L) /* Outer approximation of the union of all the boxes l.box, l ∈ L */

is reached. τleaves limits the memory storage requirement (see Section 7.3.5) and allows one to quickly
propagate the obtained reductions to the other subsystems.

A leaf is simply selected in breadth-first order. We first tried a more sophisticated heuristic function
for selecting a “large” box on the border of the hull of the different leaves. The idea was to maximize
the gain in volume on the current global box in case the selected leaf would be eliminated by filtering.
This multi-dimensional generalization of the BoxNarrow algorithm (see Section 3.2.3.5, page 50) has been
discarded because it did not bring a significant gain in performance.

Algorithm 21 contract(in-out l; in subContractor, X, C, ε)

if ¬l.precise then
if ¬l.certified then subContractor(l.box) end if
if l.box 6= ∅ and I-Newton(l.box,X) then l.certified ← true end if
if maxDiameter(l.box) < ε then l.precise ← true end if

end if

The procedure contract is mainly parameterized by the contraction procedure subContractor

(HC4 [Benhamou et al., 1999] or 3BCID [Trombettoni and Chabert, 2007] in our experiments). The scope
C of subContractor is the considered k-set of equations. After a call to subContractor, an interval
Newton limited to the k × k subsystem is launched. If Newton certifies a unique solution in a leaf,
I-Newton contracts l.box and returns true so that this leaf is tagged as certified.

7.3.2 The S-kB-Revise variant

S-kB-Revise is the name of a variant of Box-k-Revise for which the entire system is used in the contract
procedure. That is, the scope C of subContractor includes the whole n-set of constraints, instead of
the k-set of constraints attached to the subsystem. (However, the propagation queue of subContractor
is incrementally initialized with the k constraints.) With S-kB-Revise, the k-set of constraints in the
subsystem is mainly used by interval Newton. This variant brings additional filtering, but at a higher
cost.

141

7. A Filtering Algorithm Using Well-constrained Subsystems

7.3.3 Reuse of the local tree (procedure UpdateLocalTree)

A simpler version of Algorithm 20 did not call the UpdateLocalTree procedure and simply initialized
the list L with the current box. However, instead of performing an intensive search effort in only one
subsystem, we preferred to quickly propagate the obtained reductions to the other subsystems. Therefore
the UpdateLocalTree procedure reuses the local tree (i.e., its leaves) that has been saved in a previous
call to Algorithm 20. Every leaf in the current list L is just updated by intersection with the current box
and filtered with subContractor.

Algorithm 22 UpdateLocalTree (in-out L; in box, X, C, ε, subContractor)

if L = ∅ then
L← {Leaf(box)} /* Initialize the root of the local tree with the current box */

else
for all l ∈ L do

/* Update and contract every leaf of the stored local tree */
if l.box 6= (l.box ∩ box) then
l.box ← l.box ∩ box

contract(l, subContractor, C, ε))
if l.box = ∅ then L.remove(l) end if

end if
end for

end if

In fact, the leaves of the local trees are also maintained in the global search tree. To do so, the list L
is implemented as a backtrackable data-structure updated in case of backtracking. It avoids redoing the
same job in the subsystems several times, in particular when the multisplit splitting heuristic is chosen
(see Section 7.4).

7.3.4 Lazy handling of a leaf (procedure ProcessLeaf?)

Our first experiments have shown us that handling a leaf in a local tree, i.e., bisecting it and contracting
the two sub-boxes, was often counterproductive. We have then defined an input/output ratio ρio that
decides whether a given leaf related to the subsystem P k×k(XO, C, [B]) must be handled in the local tree.

The function ProcessLeaf? calculates ρio in the subsystem P k×k. If the ratio between the impact of the
input parameters and the impact of the output variables is less than a threshold, then τio the subsystem
will be revised. The computation of ρio is given by:

ρio(P
k×k, XI) =

maxxi∈XI (smear(xi, C, [B]))

maxxi∈XO(smear(xi, C, [B]))

where XI is the set of input parameters of P k×k. The impact of each variable xi on the subsystem is
calculated using the well-known smear function (described in Section 3.3). Consider a set of constraints
defined by C : F (X) = 0. The smear function, associated to a variable xi in X, is given by is given by:

smear(xi, C, [B]) = max
f∈F

(∣∣∣∣[∂f∂xi
]

([B])

∣∣∣∣× Diam([xi])

)
The denominator of ρio can be directly explained by it: output variables (XO) with a great smear
evaluation (implying a small ratio ρio) often lead to a great contraction when they are bisected inside

142

7.3 Contraction algorithm using well-constrained subsystems as global constraints

the local subsystem tree. Desiring a small impact of the input parameters (XI) is less intuitive. We
understand that large input domains generally lead to large output domains (i.e., leaf boxes) in the
subsystem and thus yields a poor reduction. The same argument holds in fact for the derivatives of
functions. To illustrate this point, let us take a subsystem of size 1 like 0.001 y + x2 − 1 = 0 (x is the
output variable; [x] = [y] = [−1, 1]) having ρio = 0.002

4 = 0.0005. After one bisection on x, the subsystem
contraction leads to a very small interval for x. A large interval would be obtained for x if the considered
subsystem was y + x2 − 1 = 0 with ρio = 2

4 = 0.5.

7.3.5 Properties of the revise procedure

The following proposition formalizes the correctness, the memory and time complexities of the procedure
Box-k-Revise.

Proposition 26 Let P ′ = (X ′, C ′, [B]) (with |X ′| = |C ′| = k) be a subsystem of P = (X,C, [B]). The
Box-k-Revise procedure, called with τleaves = +∞ and τρio = +∞, is able to enforce the box-k-consistency
in P ′.

Let Diam be the largest interval diameter in [B]. Let d be log2(
Diam
ε), the maximum number of times a

given interval must be bisected to reach the precision ε. 1

The memory complexity of Box-k-Revise is O(k τleaves).

The number of calls to subContractor is O(k d τleaves).

Proof 14 The correction is based on the combinatorial process performed by the procedure Box-k-Revise.
Called with τleaves = +∞ and with the subsystem P ′, the procedure computes all the atomic k-dimensional
boxes, related to X ′, of precision ε before returning the hull of them, thus achieving roughly (i.e., assuming
that the input parameters are atomic) the global consistency of C ′.

The memory complexity comes from the breadth-first search that must store the O(τleaves) leaves of the
local tree. The revise procedure works with n-dimensional boxes but, in order to save memory, stores at
the end only k intervals of a k × k subsystem.

The number of calls to subContractor is bounded by the number of nodes in the local search tree. The
number of leaves of this tree is τleaves (corresponding to living boxes that can contain solutions) plus the
number of dead leaves eliminated by filtering. For any living leaf l, the number of nodes created in the
tree to reach l is at most 2× d× k since the root must be at most bisected d times in all its k dimensions.
Although numerous such internal nodes are “shared” by several living leaves, this bounds the number of
calls to a sub-filtering operator with O(k d τleaves). �

Another property allows us to better understand the gain in contraction obtained by the S-kB-Revise

variant (see Section 7.3.2).

Proposition 27 Consider a propagation algorithm calling S-kB-Revise on all the subsystems of size k
in a given NCSP P .
This algorithm computes the (k + 2)B-consistency of P .

The kB-consistency, introduced by Lhomme [Lhomme, 1993] (see Section 3.2.4.1), is a strong partial
consistency related to the k-consistency (in finite-domain CSPs) restricted to the bounds of intervals.

1d generally falls between 20 and 60 in systems occurring in practice.

143

7. A Filtering Algorithm Using Well-constrained Subsystems

7.4 Multidimensional splitting

It turns out that the Box-k-Revise procedure has not only a contraction effect, but also provides a new
way to make choice points, that is, to build the (global) search tree. This new splitting strategy is called
multidimensional splitting (in short multisplit).

Definition 24 Consider a k × k subsystem P ′ defined inside an NCSP P = (X,C, [B]). Consider a set
S of m boxes associated to P ′ such that S contains all the solutions to P , and the m boxes obtained by
projection on P ′ of the boxes in S are pairwise disjoint.

A multisplit of dimension k consists in splitting the search space [B] into the m boxes in S.

In practice, the m boxes correspond to the leaves of a subsystem local tree. At the end of a Box-k

propagation, our solving strategy makes a choice between a classical bisection and a multisplit. If all
the subsystems have a ratio ρm larger than a user-defined threshold τm, then a standard bisection is
performed. Otherwise, we multisplit the subsystem with the smallest ratio ρm, i.e., we replace the
current box by the set L of m leaves associated to its local tree.

ρm =

∑
l∈L Volume(l)

Volume(Hull(L))

Multisplit generalizes a procedure used by IBB. IBB performs a multisplit once it finds the m solutions
(i.e., atomic boxes) in a given block. The difference here is that a multisplit may occur with non atomic
boxes whose size has not reached the required precision.

7.5 Experiments

The Box-k based propagation algorithm has been implemented in the Ibex open source interval-based
solver in C++ [Chabert, 2009; Chabert and Jaulin, 2009a]. The variant with multisplit (msplit) performs
a multisplit of a subsystem with the minimum ratio ρm, provided that ρm < τm=0.99. All the competitors
are also available in the same library, making the comparison fair.

7.5.1 Experiments on decomposed benchmarks

Ten decomposed benchmarks, described in [Neveu et al., 2006, 2005], appear in Table 7.1. They have
been previously decomposed by equational algorithms (eq) like maximum-matching, or by more sophisti-
cated geometrical algorithms (geo). They are challenging for general-purpose interval methods, but can
efficiently be solved by IBB [Neveu et al., 2006, 2005] (described in sections 3.4.3 and 7.1).

Experimental protocol

Every Box-k based strategy has been tuned with 6 different sets of parameter values: τρio is 0.01, 0.2
or 0.8 (0.01 is always the best value on decomposed systems); the precision ρpropag used in the HC4

propagation is 1% or 10%; All the other parameters have been empirically fixed: the precision ρpropag in
the Box-k propagation is always 10%; the maximum number τleaves of leaves inside a subsystem tree is

144

7.5 Experiments

Benchmark n #sols HC4 Box 3BCID IBB Box-k(HC4) Box-k(3BCID)

msplit msplit

Chair(eq) 178 8 >3600 >3600 >3600 0.27 >3600 16.5 >3600 0.52
1x15,1x13,1x9,5x8,3x6,... 575 15

Latham(eq) 102 96 >3600 >3600 39.9 0.17 0.94 1.35 1.5 1.08
1x13,1x10,1x4,25x2,25x1 587 839 199 991 189

Ponts(eq) 30 128 33.4 33.4 1.89 0.59 6.85 8.19 0.79 0.71
1x14,6x2,4x1 20399 20399 357 783 231 307 231

Ponts(geo) 38 128 44.1 44.1 2.6 0.16 2.01 0.31 1.45 0.39
13x2,12x1 18363 18363 685 6711 767 6711 767

Sierp3(geo) 124 198 >3600 >3600 77.5 0.62 49.0 1.38 52.5 1.77
44x2,36x1 1727 84169 1513 84169 1513

Star(eq) 46 128 >3600 >3600 4.9 0.05 35.6 0.12 44.0 0.26
3x6,3x4,8x2 283 44195 263 44023 263

Tangent(eq) 28 128 77 77 2.1 0.08 1.74 0.08 1.87 0.14
1x4,10x2,4x1 390903 390903 753 12027 255 12235 255

Tangent(geo) 42 128 – – 7.38 0.08 0.80 0.19 0.80 0.19
2x4,11x2,12x1 859 1415 251 1407 251

Tetra(eq) 30 256 1281 1281 12.3 0.63 33.6 1.06 13.57 0.76
1x9,4x3,1x2,7x1 607389 607389 1713 4619 483 2243 483

Sierp3(eq) see Section 7.5.2 >5000 see Section 7.5.2

Table 7.1: Experimental results on IBB benchmarks.

10; the number of slices of 3BCID in Box-k(3BCID) is 10. To be fair, the parameters of the competitor
algorithms have been tuned so that 8 trials have been performed for Box and HC4, and 16 trials have
been run for 3BCID. For all the tests, the Newton ceil (size of maximum diameter under which interval
Newton is run) is 10, and the same variable order is used in a round-robin strategy (except for IBB and
for Box-k with multisplit).

The subsystems given to our Box-k propagation are defined automatically. The irreducible blocks pro-
duced by the IBB decomposition simply become the well-constrained subsystems handled by Box-k-Re-

vise.

Results

Table 7.1 shows results on IBB benchmarks. The first 3 columns include the name of the system, its
number n of variables and its number of solutions. The next three columns yield the CPU time (above)
and the number of boxes, i.e., choice points (below), obtained on an Intel 6600 2.4 GHz by existing
strategies based on HC4, Box or 3BCID followed by interval Newton (between two bisections selected
in a round-robin way for the variable selection). The last four columns report the results obtained
by our algorithms on the same computer: Box-k-Revise parameterized by subContractor=HC4 or
subContractor=3BCID, with multisplit (msplit) or without. To be the closest to IBB, Box-k-Revise,
and not the S-kB-Revise variant, is used by our constraint propagation algorithm.

Strategies based on HC4, Box and 3BCID followed by interval Newton are not competitive at all with Box-k

and IBB on the tested decomposed systems. The comparison of Box-k against IBB is very positive because

145

7. A Filtering Algorithm Using Well-constrained Subsystems

the CPU times reported for IBB are really the best that have never been obtained with any variant of
this dedicated algorithm. Also, no timeout is reached by Box-k+multisplit and IBB is on average only
twice faster than Box-k(3BCID) (at most 6 on Latham). As expected, the results confirm that multisplit
is always relevant for decomposed benchmarks. For the benchmark Sierp3(eq) (the fractal Sierpinski
at level 3 handled by an equational decomposition), an equational decomposition makes appear a large
irreducible 50× 50 block of distance constraints. This renders IBB inefficient on it (timeout).

7.5.2 Experiments on structured systems

Eight structured systems appear in Table 7.2. They are scalable chains of constraints of reasonable ar-
ity [Merlet, 2009]. They are denoted structured because they are not sufficiently sparse to be decomposed
by an equational decomposition, i.e., the system contains only one irreducible block, thus making IBB

pointless. A brief and manual analysis of the constraint graph of every benchmark has led us to define a
few well-constrained subsystems of reasonable size (between 2 and 10). In the same way, we have replaced
the 50× 50 block in Sierp3(eq) by 6× 6 and 2× 2 Box-k subsystems.

Benchmark n #sols HC4 Box 3BCID S-kB(HC4) S-kB(3BCID) Box-k-Revise

msplit msplit HC4 3BCID

Bratu 60 2 58 626 48.7 47.0 33.0 135 126 86.4 96.2
29x3 15653 13707 79 39 17 43 25 125 129

Brent 10 1015 1383 127 17.0 28.5 20.2 44.9 31.0 20.8 34.9
2x5 7285095 42191 9849 2975 4444 4585 1309 5215 4969

BroydenBand 20 1 >3600 0.17 0.11 0.45 0.15 0.91 0.31 0.30 0.28
1x6,3x5 1 21 4 19 17 3 7 3

BroydenTri 30 2 1765 0.16 0.25 0.22 0.24 0.39 0.29 0.19 0.23
6x5 42860473 63 25 11 19 9 3 19 17

Reactors 30 120 >3600 >3600 288 340 315 81.4 67.5 250 194
3x10 39253 14576 10247 1038 788 35867 21465

Reactors2 10 24 >3600 >3600 28.8 9.5 12.3 10.4 12.2 9.93 11.9
2x5 128359 4908 10850 4344 5802 5597 5353

Sierp3Bis(eq) 83 6 >3600 >3600 4917 >3600 >3600 >3600 389 >3600 4503
1x14,6x6,15x2,3x1 44803 218 122409

Trigexp1 30 1 >3600 13 0.08 0.08 0.08 0.08 0.09 0.08 0.08
6x5 27 1 1 1 1 1 1 1

Trigexp2 11 0 1554 >3600 83.7 81.2 85.7 105 83.0 80.6 82.1
2x4,2x3 2116259 16687 15771 16755 3797 2379 15771 11795

Table 7.2: Results on structured benchmarks.

Table 7.2 reports the results on structured benchmarks. The same protocol as above has been followed,
except that the solving strategy is more sophisticated. Between two bisections, the propagation with
subsystems follows a 3BCID contraction and an interval Newton. The four S-kB columns report the
results obtained by the S-kB-Revise variant. The results obtained by Box-k-Revise are generally worse
and appear, with multisplit only, in the last two columns.

Standard strategies based on HC4 or Box followed by interval Newton are generally not competitive with
Bok-k on the tested benchmarks. The solving strategy based on S-kB-Revise with subContractor=3BCID

(column S-kB(3BCID)) appears to be a robust hybrid algorithm that is never far behind 3BCID and is

146

7.6 Conclusion

sometimes clearly better. The gain w.r.t. 3BCID falls indeed between 0.7 and 12. The small number of
boxes highlights the additional filtering power brought by well-constrained subsystems. Again, multisplit
is often the best option.

The success of Box-k on Sierp3Bis(eq) has led us to try a particular version of IBB in which the inter-
block filtering [Neveu et al., 2005] is performed by 3BCID. Although this variant seldom shows a good
performance, it can solve Sierp3(eq) in 330 seconds.

7.5.3 Benefits of sophisticated features

Tables 7.3 has finally been added to show the individual benefits brought by two features: the user
parameter τρio driving the procedure ProcessLeaf? and the backtrackable list of leaves used to reuse
the job achieved inside the subsystems.

Table 7.3: Benefits of the backtrackable data structure (BT) and of τρio in the Box-k-based strategy. Setting
τρio =∞ means that subsystem leaves will be always processed in the revise procedure.

Chair Latham Ponts(eq) Ponts(geo) Sierp3(geo) Star Tan(eq) Tan(geo) Tetra

BT, τρio 0.52 1.08 0.71 0.31 1.38 0.12 0.08 0.19 0.76
¬ BT, τρio 10.8 4.61 1.51 1.27 23.9 2.34 0.71 1.58 2.13
BT, τρio =∞ 23.4 4.71 2.60 1.00 23.8 1.67 1.09 1.81 3.57
¬ BT, τρio =∞ 24.2 6.60 2.80 1.11 23.9 2.40 1.15 1.82 3.54

Bratu Brent BroyB. BroyT. Sierp3B(eq) Reac. Reac.2 Trigexp1 Trigexp2

BT, τρio 33.0 20.2 0.15 0.24 389 67 12.2 0.08 83
¬ BT, τρio 33.2 21.0 0.14 0.23 411 97 12.0 0.07 85
BT, τρio =∞ 33.9 23.8 0.38 0.28 519 164 13.1 0.10 103
¬ BT, τρio =∞ 33.0 28.7 0.40 0.38 533 401 18.7 0.07 148

Every cell reports the best result (CPU time in second) among both subcontractors. Multisplit is allowed
in all the tests. The first line of results corresponds to the implemented and sophisticated revise procedure;
the next ones correspond to simpler versions for which at least one of the two advanced features has been
removed.

Three main observations can be drawn. First, when a significant gain is brought by the features on a
given system, then this system is efficiently handled against competitors in Tables 7.1 and 7.2. Second,
τρio seems to have a better impact on performance than the backtrackable list, but the difference is slight.
Third, several systems are only slightly improved by one of both features, whereas the gain is significant
when both are added together. This is true for most of the IBB benchmarks. On these systems it
often occurs that a job inside several subsystems (during the same propagation process) leads to identify
atomic boxes (some others are not fully explored thanks to τρio). Although we multisplit only one of
these subsystems, the job on the others is saved in the backtrackable list.

7.6 Conclusion

We have proposed a new type of filtering algorithms handling k × k well-constrained subsystems in an
NCSP. k × k interval Newton calls and selected bisections inside such subsystems are useful to better
contract decomposed and structured NCSPs. In addition, the local trees built inside subsystems allow a
solving strategy to learn interesting choice points splitting several variable domains simultaneously.

147

7. A Filtering Algorithm Using Well-constrained Subsystems

Solving strategies based on Box-k propagations and multisplit have mainly three parameters: the choice
between Box-k-Revise and S-kB-Revise (although Box-k-Revise seems better suited only for decom-
posed systems), the choice of subcontractor (although 3BCID seems to be often a good choice), and τρio.
This last parameter appears to be finally the most important one.

On decomposed and structured systems, our first experiments suggest that our new solving strategies
are more efficient than standard general-purpose strategies based on HC4, Box or 3BCID (with interval
Newton). Box-k+multisplit can be viewed as a generalization of IBB. It can also solve large decomposed
NCSPs with relatively small blocks in less than one second, but can also handle structured NCSPs that
IBB cannot treat.

If a system is decomposable, then there exists a partial order between well-constrained subsystems, i.e.,
a DAG of blocks can be found. Thus, IBB can work with this DAG of blocks to compute the solutions.
However, no such subsystems can be extracted if the system is not decomposable. Box-k can go further
by not imposing any order between its subsystems. The blocks may form circuits. This is not an issue
for a propagation algorithm that can work with a cyclic constraint graph. That is why Box-k can work
with irreducible (while structured) systems. However, a crucial question remains: How to automatically
determine subsystems provided to a Box-k based strategy?

We could imagine the following principle for selecting a promising subsystem. Consider the NCSP
P = (X,C, [B])).

1. As a preprocessing, based on the material concerning the impact computation introduced in Sec-
tion 7.3.4, we compute all the pairs (c, x) (with c ∈ C and x ∈ X) such that the impact of the
variable x on the constraint c is weak.

2. We remove the weak arcs corresponding to these pairs from the constraint graph.

3. We use maximum-matching machinery to extract a well-constrained subsystem of k constraints
related to exactly k variables (see the last part of [Bliek et al., 1998]).

Finally, instead of partitioning the pairs into two parts (the weak one and the strong ones) and use
a maximum matching, we could maybe take into account the real-valued impact with a flow-based
algorithm.

148

Chapter 8

Conclusions and future perspectives

In this thesis, we have presented several contributions related to interval-based methods and solving of
systems of equations.

The first of them, Mohc (see Chapter 4), is a constraint propagation algorithm. It uses several proce-
dures exploiting the monotonicity of a function f in an adaptive way, i.e., only when the evaluation by
monotonicity of f is better enough than the natural evaluation of f (identifying a condition for which
the procedures exploiting the monotonicity deserve to be used). Experiments have shown that Mohc has
a potential to advantageously replace the classical contractors HC4 and Box.

In Section 4.2.1 we have presented the algorithm MinMaxRevise of Mohc. The procedure allows us, using
the monotonicity of a function f , to contract:

• variables appearing once in f ,

• occurrences of non-monotonic variables of f , and

• some occurrences of monotonic variables of f (thanks to the improvements proposed in Section
4.7).

MinMaxRevise performs all the contractions in time O(e), where e is the number of unary and binary
operations of the function. We are working on a new improvement of this procedure (MinMaxRevise2) that
allows us to maximize the contraction of each occurrence of monotonic variables. It consists, basically,
in performing a simple symbolic manipulation that transforms an occurrence x in the linear expression
ax′+(1−a)x (with x′ = x). The value of a should be chosen such that the projection over x′ is maximized
and the monotonicity of the projection function related to x′ is maintained.

Consider a simple constraint c : x+2x = 0 with domain [x] = [−1, 1]. The classical contractor HC4-Revise
can converge to the solution x = 0 if it is called until reaching the fixpoint. Instead, MinMaxRevise2 would
replace the first occurrence of x by the expression ax′ + (1− a)x (with a = 3), i.e., c′ : (3x′ − 2x) + 2x =
0. Then, the procedure would project over x′ evaluating the projection function (px′(x) = 2x−2x

3) by
monotonicity, i.e.: [

x′
]
← [x′] ∩ [px′]m([x]) = [0, 0]

In the example, the hull-consistency of c is enforced with only one call to MinMaxRevise2. We believe
that this algorithm would have the same time complexity as MinMaxRevise and HC4, i.e., O(e).

A second future work related to Mohc consists in allowing the MonotonicBoxNarrow procedure (described
in Section 9) to treat non-monotonic variables (recall the procedure treats only monotonic variables), i.e.

149

8. Conclusions and future perspectives

the variables in W . In this case, the procedure should be closer to the classical BoxNarrow procedure
(described in Section 3.2.3.5) but using the evaluation by monotonicity instead of the natural evaluation.
The main motivation comes from the fact that if a given function f has only one variable w in W , then
the classical BoxNarrow procedure, using the evaluation by monotonicity, is able to project optimally on
w.

Another future work related to Mohc consists in implementing an adaptive version of the τmohc parameter
(described in Section 4.3.1). Recall that this parameter allows us to decide whether the monotonic-based
procedures are executed with a function f according to a ratio (ρmohc) between the diameter of the
evaluation by monotonicity and the diameter of the natural evaluation of f . The experiment about the
application frequency of the monotonicity-based procedures (see Section 4.6.1.4) suggests that when the
ρmohc ratio of a function f has often high values (e.g., ρmohc[f] > 0.7) it is worth increasing τmohc for
using more often the monotonic-based procedures in f . Otherwise, it is worth decreasing τmohc.

Our second contribution, Occurrence Grouping (described in Chapter 5) is a new method for computing
the image of functions that improves the evaluation by monotonicity. The Occurrence Grouping method
creates for each variable three auxiliary, respectively increasing, decreasing and non monotonic variables
in f . Then it transforms f into a function fog that groups the occurrences of a variable into these auxiliary
variables. As a result, the evaluation by occurrence grouping of f , i.e., the evaluation by monotonicity of
fog, is better than the evaluation by monotonicity of f .

Three points suggest to combine constraints linearly such that the monotonicity of the combination brings
an additional contraction:

• The possibility of computing the hull-consistency in monotonic functions with multiple occurrences
of variables.

• The reduction of the dependency problem thanks to the occurrence grouping method.

• Our sophisticated algorithm MinMaxRevise’ (soon MinMaxRevise2) that allows us to compute
projections over each variable occurrence using the monotonicity.

The third contribution is related to the algorithm I-CSE (described in Chapter 6), a variant of the well-
known Common Subexpression Elimination (CSE) technique. I-CSE is used as a preprocessing technique.
It replaces the common subexpressions of a system by auxiliary variables for improving the filtering power
of constraint propagation algorithms (in particular HC4). Experiments have shown significant gains of
one or several orders of magnitude on several benchmarks when I-CSE is used.

In a short term, we see two interesting works related to I-CSE. The first one has been introduced briefly
in Section 6.5. It consists in using techniques from symbolic computation for finding more CSs (e.g.,
factorizations using the Horner scheme). Consider the equations c1 : 2x+2y = a and c2 : yx+y2 +z = b.
At a first glance, they do not share CS. However, the transformation into c1 : 2(x + y) = a and c2 :
y(x+ y) + z = b makes appear the CS x+ y.

The second future work consists in making constraint propagation algorithms compatible with the addi-
tional contraction provided by I-CSE. The replacement of subexpressions by auxiliary variables improves
the contraction filtering by adding new constraints but it also increases the locality problem due to the
decomposition of constraints (see Section 3.6). HC4 is not impacted by this decomposition, because it
already works with a decomposition of the system in primitive constraints. However, more sophisticated
contractors like Box and Mohc may show a loss in performance.

150

Our last contribution, Box-k (described in Chapter 7), consists in a new type of filtering algorithms
handling k×k well-constrained subsystems in an NCSP. k×k interval Newton calls and selected bisections
inside such subsystems are useful to better contract decomposed and structured NCSPs. In addition,
the local trees built inside subsystems allow a solving strategy to learn interesting choice points splitting
several variable domains simultaneously.

Section 7 has described a way to automatically determine subsystems provided to a Box-k based strategy.

151

8. Conclusions and future perspectives

152

Appendix A

Proofs of Properties Related to Mohc

A.1 Proof of Lemma 4

First recall that in every node of the expression tree Tfmax (resp. Tfmin) representing fmax (resp. fmin),
there is no overestimation due to the variables in X because they are replaced by points. The proof of
Lemma 4 is based on Lemma 6 proved below and Lemma 2 (see Section 4.4.2, page 81) which shows that
a second call to MinMaxRevise following the call to MonotonicBoxNarrow would not bring additional
contraction to any [yj].

Lemma 6 Two traversals of Tfmax (with HC4-Revise) are sufficient to reach a fixpoint in contraction
on variables yj ∈ Y occurring once in Tfmax.

Proof 15 Since f is a continuous function and, for every yj ∈ Y , 0 /∈ ∂f
∂yj

([B]), then the (bottom-up)

evaluation or (top-down) narrowing functions g called in every node during HC4-Revise of Tfmin (or
Tfmax) are continuous and monotonic in every of their arguments intervals. This comes from the rule

of composition of functions stating ∂f
∂yj

([B]) = ∂f
∂g (g([B])) × ∂g

∂yj
([B]). Since the multiplication preserves

the 0 in the resulting interval, 0 /∈ ∂f
∂yj

([B]) implies that 0 /∈ ∂f
∂g (g([B])) and 0 /∈ ∂g

∂yj
([B]). The same rule

applies to two nodes g1 and g2 for which g2 is an argument of g1: ∂f
∂g2

([B]) = ∂f
∂g1

(g1([B])) × ∂g1
∂g2

([B]).

The same reasoning yields that 0 /∈ ∂g1
∂g2

([B]). Thus, every bottom-up evaluation function g is monotonic
in every of their arguments intervals. The same reasoning applies to the top-down narrowing functions
g since an “inverse” function of a monotonic (continuous) function is also monotonic.

Because every node function g in Tfmin (or Tfmax) is monotonic, g computes an arc-consistent output
interval [zg], i.e., every real number z ∈ [zg] has a support in the input intervals. Since Tfmin (or Tfmax)
is a tree, the two traversals of Tfmin performed by HC4-Revise then optimally narrow every yj ∈ Y . This
is an application [Faltings, 1994] of a result by Freuder [Freuder, 1982] concerning the finite-domain
CSPs stating that two (directed) arc-consistent traversals of an acyclic CSP makes it globally-consistent.
That is, no propagation loop is necessary and the two traversals are sufficient to reach the fixpoint in
filtering. �

153

A. Proofs of Properties Related to Mohc

A.2 Proof of Lemma 5, page 84

First recall that MonotonicBoxNarrow cannot result in an empty box (no solution) because MinMaxRevise
has been called before with success (see Lemma 1). This precondition implies that for any bound of each
xi ∈ X, only the three cases depicted in Figure 4.3, page 82, may occur. When the case 1 occurs, the
dichotomic narrowing process performed by LeftNarrowFmax (or symmetric procedures) converges onto
a final interval [l] including surely a zero of fximax. Contrarily to the classical LeftNarrow procedure used
by Box [Benhamou et al., 1999; Van Hentenryck et al., 1997], [l] surely contains the zero because the
fximax evaluations lead to no overestimation (see proof of Lemma 4). When the cases 2 or 3 occur (see
Figure 4.3), [xi] cannot be (left) narrowed because the bound is a zero of the function.

After only one loop on each variable xi ∈ X (i ∈ 1, ..., n), each of the 2×n bounds of [xi] are optimal either
because computed by the dichotomic process (case 1 explained above), or because applyFmin([i])=true
(or applyFmax([i])=true), which ensures that no further reduction is expected in these cases 2 or 3
(see Section 4.4.3). �

A.3 Proof of Proposition 10, page 84

Proposition 10 follows Lemmas 4 and 5. One call to MinMaxRevise and one loop on the monotonic
variables in X ensure that hull-consistency is achieved. �

A.4 Proof of Proposition 11, page 84

Lemma 5 also holds for Proposition 11, but Lemma 7 must replace Lemma 4.

Lemma 7 With the same hypotheses as in Proposition 11, one call to MinMaxRevise’ (calling TAC-revise)
contracts optimally every [yj] ∈ [Y].

Lemma 7 can be proved using the proof of Lemma 6 and the correctness of TAC-revise.

Remark. We assume in Proposition 11 that f is continuous in the current box. This hypothesis can be
relaxed provided that the bottom-up expression evaluations are performed by a “TAC-eval” procedure
that would combinatorially combine the continuous parts extracted in the different nodes of the expression
tree.

A.5 Proof of Proposition 12 (time complexity), page 85

Calls to HC4-Revise (two traversals of an expression tree), GradientCalculation (computing all the
partial derivatives also amounts in two tree traversals) and MinMaxRevise are O(e). One call to
OccurrenceGrouping is O(nk log2(k)). The complexity of MonotonicBoxNarrow is time O(n e log2(

1
ε))

(see page ??). One Newton iteration takes O(e) (one function evaluation, plus one gradient calculation).
The maximum number of possible slices in one interval [xi] is 1

ε . The number of Newton iterations is
O(log2(

1
ε)) (see Lemma 9). In LazyMohc-Revise, MonotonicBoxNarrow is time O(n) because are called

only two constant-time Newton iterations per interval.

154

A.6 The LazyMonotonicBoxNarrow procedure

Overall, the time complexity of Mohc-Revise is O(e) plus O(nk log2(k)) (if OccurrenceGrouping is
called), plus O(n e log(1ε)). The time complexity of LazyMohc-Revise is O(e) plus O(nk log2(k)) (if
OccurrenceGrouping is called).

�

A.6 The LazyMonotonicBoxNarrow procedure

Algorithm 23 LazyMonotonicBoxNarrow (in-out [B]; in fmax, fmin, X, [G], ε)

1: for all variable xi ∈ X do

2: zmax ← [fmax]([B]); [zmin]← [fmin]([B])

3: if zmax > 0 and applyFmax[i] then
4: if [gi] > 0 then

5: [l]← [xi] ∩
(
xi − zmax

[g]

)
6: if l > xi /* xi is contracted */ then
7: ∀j 6= i : applyFmin[i]← false
8: end if
9: else

10: [r]← [xi] ∩
(
xi − zmax

[g]

)
11: if r < xi then ∀j 6= i : applyFmin[i]← false end if
12: end if
13: end if

14: if zmin < 0 and applyFmin[i] then

15: if [gi] > 0 then

16: [r]← [xi] ∩
(
xi − zmin

[g]

)
17: if r < xi then ∀j 6= i : applyFmax[i]← false end if
18: else
19: [l]← [xi] ∩

(
xi − zmin

[g]

)
20: if l > xi then ∀j 6= i : applyFmax[i]← false end if
21: end if
22: end if
23: [xi]← [l, r]
24: end for

Algorithm 23 is a simplified version of the MonotonicBoxNarrow procedure (see Algorithm 9). It only
calls the first and cheap Newton iteration described in Section Lazy evaluations of fmin and fmax, page
83, for every bound of xi in X. Lines 7, 11, 17 and 20 corresponds to the improvements related to arrays
applyFmin and applyFmin explained in Section 4.4.4.

A.7 The latest version of Mohc-Revise algorithm

Algorithm 24 is the optimized version of Mohc-Revise (and LazyMohc-Revise). Observe that the proce-
dure calls first LazyMonotonicBoxNarrow and then MonotonicBoxNarrow. As LazyMonotonicBoxNarrow

155

A. Proofs of Properties Related to Mohc

Algorithm 24 Mohc-Revise (in-out [B]; in f , Y , W , ρmohc, τmohc, ε)

HC4-Revise(f(Y,W) = 0, Y,W, [B])
if W 6= ∅ and ρmohc[f] ≤ τmohc then

([G], [Go])← GradientCalculation(f,W, [B])
(fog,W)← OccurrenceGrouping(f,W, [B], [Go])
(fmax, fmin, X,W)← ExtractMonotonicVars(fog,W, [B], [G])
MinMaxRevise([B], fmax, fmin, Y,W)
LazyMonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)
/* Comment the next line in LazyMohc-Revise */
MonotonicBoxNarrow([B], fmax, fmin, X, [G], ε)

end if

is cheap, calling first allows us to set to false some values of the applyFmin and applyFmax arrays before
calling the dichotomic and more expensive MonotonicBoxNarrow procedure (Algorithm 9, page 83).

A.8 The LeftNarrowFmax procedure revisited

The fact that our LeftNarrowFmax procedure works with the punctual function [fxmax] using floating point
precision might imply the loss of the unique solution due to floating point errors. When this happens a
modification of LeftNarrowFmax allows the algorithm to be conservative returning a lower bound of L.

x

f [l0]=[x]

[l]

[l]∩[l']={}

[l']

x

f [l0]=[x]

[l1]
[l2]

[l3]
A

B

A

B

C

Rounding error
overestimation

L L

x

f

A

L

x ← l' [fmax]Fx
x ← l1'[fmax]Fx[fmax]x

Figure A.1: (Left) Newton iteration when [fxmax] is computed with real precision. (Center) Newton iteration
returns an empty box due to rounding errors. (Right) A Newton variant (Algorithm 26) converging to L in
log-time.

In Figure A.1-left we can see the ideal case. [fxmax] is evaluated over the real numbers, i.e., without
floating point errors. In this case, the Newton iteration always projects over a segment in [x] containing
the solution (projection of the point A). Figure A.1-center shows [fxmax]F evaluated using floating point
precision1. As the interval derivative used by the Newton operator is related to [fxmax] (a real interval
function), it can project over a segment that does not contain the solution. In this case the univariate
Newton method could return an empty interval (projections of A and B have no intersection).

We propose two solutions:

1. (Algorithm 25) We know that, after performing successfully the test of existence (line 3), there
exists only one solution in [x]. Then, when the case of Figure A.1-center happens (i.e., [l]∩ [l′] = ∅),

1The rounding errors are generally of few u.l.p.s.

156

A.8 The LeftNarrowFmax procedure revisited

the algorithm contracts [x] using the rightmost left bound between the current interval ([l]) and
the next Newton projection over x ([l′]) (i.e., x ← max(l, l′))). In the figure: [x] ← [l′, x]. This
procedure allows a fast convergence of the Newton method but the distance between L and the new
left bound of [x] could be theoretically a bit greater than the required precision.

2. (Algorithm 26) The second solution produces always an interval sharper than the precision and
maintains the logarithmic convergence (it is illustrated in Figure A.1-right). The Newton operator
is replaced by the classic Newton operator (using all the evaluation interval), i.e.,

[l]← xm −
[fxmax](xm)

[g]
(instead of [l]← xm −

[fxmax](xm)

[g]
)

Thus, if [fxmax](xm) is positive (meaning the solution is in the right side of xm): [l]← [l]∩ [−∞, xm]
(line 10). Otherwise, if [fxmax](xm) is negative, then the intersection is not necessary because Newton
considers automatically the left side of xm (the projection of B in Figure A.1-right).

Algorithm 25 LeftNarrowFmax1 (in-out [x]; in fxmax, [g], ε, i)

1: [l]← [x]

2: [zl]← [fxmax](x)

3: if zl < 0 /* test of existence */ then

4: [l]← [l] ∩
(
x− zl

[g]

)
/* second cheap Newton iteration */

5: size← ε× Diam([l])

6: while [l] 6= ∅ and Diam([l]) > size do

7: xm ← Mid([l]); zm ← [fxmax](xm) /* zm ← [fxmin](xm) in {Left|Right}NarrowFmin */

8: [l′]← xm − zm
[g]

9: if [l] ∩ [l′] 6= ∅ then
10: [l]← [l] ∩ [l′] /* Newton iteration */
11: else
12: ∀j 6= i : applyFmax[i]← false
13: [x]← [max(l, l′), x]; return
14: end if

15: end while

16: if l > x then ∀j 6= i : applyFmax[i]← false end if
17: [x]←

[
l, x
]

18: end if

Algorithms 25 and 26 are sophisticated versions of the LeftNarrowFmax procedure. Note that a cheap
Newton iteration has been added after the existence test (the improvement is explained in Section 4.4.4).
Also the updates to the ApplyFmax array have been added as detailed in Section 4.4.3.

We have implemented the first version (just because the idea arrived first). We still have to compare the
two versions both in time and contraction power.

The other three procedures (RightNarrowFmin, LeftNarrowFmin and RightNarrowFmax) are also accord-
ingly modified.

157

A. Proofs of Properties Related to Mohc

Algorithm 26 LeftNarrowFmax2 (in-out [x]; in fxmax, [g], ε, i)

1: [l]← [x]

2: [zl]← [fxmax](x)

3: if zl < 0 /* test of existence */ then

4: [l]← [l] ∩
(
xm − [zl]

[g]

)
/* second cheap Newton iteration */

5: size← ε× Diam([l])

6: while [l] 6= ∅ and Diam([l]) > size do

7: xm ← Mid([l]); [zm]← [fxmax](xm) /* [zm]← [fxmin](xm) in {Left|Right}NarrowFmin */

8: [l]← [l] ∩
(
xm − [zm]

[g]

)
9: if zm > 0 then

10: [l]← [l] ∩ [−∞, xm]
11: end if

12: end while

13: if l > x then ∀j 6= i : applyFmax[i]← false end if
14: [x]←

[
l, x
]

15: end if

158

Appendix B

Proofs of Properties Related to
Occurrence Grouping

B.1 Proof of Proposition 16, page 108

Proof 16 Due to propositions 28 and 29, there exist real values r∗ai, r
∗
bi

and r∗ci inside the intervals
computed by Algorithm11, such that the monotonicity conditions w.r.t. variables xa and xb are satisfied.

Let us call fog∗(xa, xb, xc) the function f(x) in which every occurrence xi is replaced by the convex linear
combination r∗aixa + r∗bixb + r∗cixc. The evaluation by monotonicity of fog∗ over intervals [xa] = [xb] =
[xc] = [x] is thus an overestimate of the hull of the image by f of all x ∈ [x]. The evaluation by
monotonicity of the actual function fog computed by Algorithm 11 using intervals [rai], [rbi] and [rci] is
an overestimate of the evaluation of fog∗ and thus is also an overestimate of the hull of the image by f
of all x ∈ [x]. �

Proposition 28 Algorithm 12 (OG case2) computes, for every occurrence i, intervals [rai], [rbi] and [rci]
that satisfy the constraints:

(∀i = 1 . . . k)(∃rai ∈ [rai])(∃rbi ∈ [rbi])(∃rci ∈ [rci]) :

rai + rbi + rci = 1
k∑
i=1

girai ≥ 0

k∑
i=1

girbi ≤ 0

Proof 17 For every occurrence i, according to conditions met by [gi], for rai we choose the value 1−α1

(line 8), α2 (line 10) or 0 (line 12); for rbi, we choose α1, 1 − α2 or 0; for rci, we choose 0 or 1 (that
are both reals and floats); where α1 and α2 are the following two real numbers (not necessarily floating
point numbers):

α1 =
G+G− +G−G−

G+G− −G−G+
and α2 =

G+G+ +G−G+

G+G− −G−G+

First, thanks to the conservative interval-based computation of [α1] and [α2] performed at lines 3 and 4,
we have α1 ∈ [α1] and α2 ∈ [α2].

159

B. Proofs of Properties Related to Occurrence Grouping

Second, this is straightforward to check at lines 8, 10 and 12 that the chosen values for rai, rbi, rci verify
the relation rai + rbi + rci = 1.

Finally, the main difficulty consists in proving that, for any occurrence i,
k∑
i=1

girai ≥ 0 and
k∑
i=1

girbi ≤ 0.

First, α1 and α2 are computed by analytically solving the equations:

(1− α1)×G+ + α2 ×G− = 0

α1 ×G+ + (1− α2)×G− = 0

The values G+, G+, G− and G− are computed in lines 1 and 2 of the algorithm. Due to floating point
errors, these values are overestimated, i.e., G+ ≤

∑
[gi]≥0

gi, G+ ≥
∑

[gi]≥0
gi, G

− ≤
∑

[gi]≤0
gi and G− ≥

∑
[gi]≤0

gi.

Thus, we obtain:

k∑
i=1

girai = (1− α1)
∑
[gi]≥0

gi + α2

∑
[gi]≤0

gi ≥ (1− α1)×G+ + α2 ×G− = 0

k∑
i=1

girbi = α1

∑
[gi]≥0

gi + (1− α2)
∑
[gi]≤0

gi ≤ α1 ×G+ + (1− α2)×G− = 0

�

Proposition 29 Algorithm 13 (OG case3+), for every occurrence i, computes intervals [rai], [rbi] and
[rci] that satisfy the constraints:

(∀i = 1 . . . k)(∃rai ∈ [rai])(∃rbi ∈ [rbi])(∃rci ∈ [rci]) :

rai + rbi + rci = 1
k∑
i=1

girbi ≤ 0

k∑
i=1

girai ≥ 0

Proof 18 Let us denote by i′ = index(j′) the occurrence i studied at lines 15, 16 of the algorithm. We
distinguish three main cases: i < i′ (lines 2–13), i > i′ (lines 18–21) and i = i′ (lines 15–16):

• i < i′: We choose (rai , rbi , rci) = (1, 0, 0).
(Recall that 0 and 1 are floating point numbers.)

• i > i′ (i ∈ {index(j′ + 1), . . . , index(k)}):
We choose (rai , rbi , rci) = (0, 0, 1).

• i = i′: We choose (ra′i , rb′i , rc′i) = (α, 0, 1 − α). That is, for ra′i, we select the lower bound α of the
interval [α] computed in line 15 of the algorithm.

First, this is straightforward to check in the three cases that the chosen values for rai, rbi, rci verify the
relation rai + rbi + rci = 1.

160

B.2 Proof of Proposition 17, page 108

Second, this is also straightforward to check
k∑
i=1

girbi ≤ 0 since, for all i, we always select the value 0 for

rbi.

Finally, the main difficulty consists in proving that, for any occurrence i,
k∑
i=1

girai ≥ 0.

We have:
k∑
i=1

girai =
∑

[gi]≥0
gi +

j=j′−1∑
i=index(j)

j=1

gi + gi′rai′ .

Let ġa denote the real number
∑

[gi]≥0
gi +

j=j′−1∑
i=index(j)

j=1

gi (ġa is not necessarily a floating point number.) By

construction, we have ġa + gi′α = 0, where α = − ġa
gi′

. Indeed, ġa − gi′
ġa
gi′

= 0.

However, the real number α does not necessarily belong to the interval [α] =
ga
gi′

computed at line 15

(because of the overestimate induced by rounding errors in the sum
∑

[gi]≥0
gi +

j=j′−1∑
i=index(j)

j=1

gi over the floats).

Fortunately, we have 0 ≤ ga ≤ ġa =
∑

[gi]≥0
gi +

j=j′−1∑
i=index(j)

j=1

gi and thus α ≤ α.

Finally, recalling that gi′ ≤ 0, we obtain:

k∑
i=1

girai = ġa + gi′α ≥ ġa + gi′α = 0

�

B.2 Proof of Proposition 17, page 108

Proof 19 (Proposition 17) Following Lemma 8, we can rewrite the objective function as G = Diam([G0])+
G1 +G2, where G1 = ga − gb and G2 =

∑k
i=1

(
(|[gi]| − Diam([gi])rci)

)
. The term Diam([G0]([B])) is con-

stant; Lemmas 9 and 10 show that the algorithm finds values rai, rbi and rci that minimize G1 and G2

resp. Thus, Algorithm 12 finds an optimal solution for G. �

Lemma 8 The objective function (5.3) can be rewritten as:

G = Diam([G0]) + ga − gb − Diam([gc]) +
k∑
i=1

(
|[gi]|rci

)
(B.1)

where [G0] =
k∑
i=1

[gi].

Proof 20 (Lemma 8) We observe that [G0] = [ga] + [gb] + [gc] and using interval arithmetic properties
Diam([G0]) = Diam([ga]) + Diam([gb]) + Diam([gc]).

161

B. Proofs of Properties Related to Occurrence Grouping

Taking into account the constraints (5.4) and (5.5), page 102: Diam([ga]) = ga − ga and Diam([gb]) =
−gb + gb. The diameter of [G0] can be written: Diam([G0]) = ga − gb − (ga − gb) + Diam([Gc]). Replacing
ga − gb in (5.3) by Diam([G0]) + ga − gb + Diam([Gc]) we obtain B.1.

Lemma 9 Let P1 be the following linear program: find values rai, rbi, and rci for all i = 1..k that
minimize G1 = ga − gb subject to (5.4), (5.5),(5.6) and (5.7) (see page 102). If 0 ∈ [Gm], then
Algorithm 12 finds an optimal of P1.

Proof 21 Due to constraints (5.4) and (5.5), we deduce that G1 ≥ 0.

If we analyze the for loop (lines 6 to 14) of Algorithm 12 we note that each variable rai gets the value
1−α1 if [gi] ≥ 0, gets the value α2 if [gi] < 0; rai gets the value 0 otherwise. Then, at the end of the for

loop we can compute:

ga = (1− α1)
∑
[gi]≥0

gi + α2

∑
[gi]<0

gi (B.2)

As G+ =
∑

[gi]≥0
gi and G− =

∑
[gi]<0

gi (lines 1-2 of the algorithm), Equation B.2 is reduced to: ga =

(1 − α1)G
+ + α2G

−. Then replacing α1 and α2 by their values in lines 3-4 of the algorithm we obtain
ga = 0 (in the same way we obtain gb = 0) respecting constraints (5.4) and (5.5) and finding the minimum
of G1 = 0. Constraint (5.6) remains satisfiable in lines 8, 10 and 12 of the algorithm.

The satisfaction of Constraint (5.7) requires 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1. This is achieved in lines 3-4
and can be proved using some inequality properties of the parameters: G+ ≥ G+ and G− ≥ G− (inherent
property of intervals); G+ ≥ 0, and G− ≤ 0; −G− ≤ G+ and G+ ≤ −G− (deduced by the condition
0 ∈ [Gm]([B]) where [Gm]([B]) = [G+] + [G−]). �

Lemma 10 Let P2 be the linear program: find values rai, rbi, and rci for all i = 1..k that minimize

G2 =
∑k

i=1 ((|[gi]| − Diam([gi])) rci), subject to (5.6) and (5.7). Algorithm 12 finds an optimal solution
of P2.

Proof 22 |[gi]| − Diam([gi]) is less than 0 iff 0 ∈ g[i], then to minimize G2 it is enough that for each g[i]
containing 0, rci = 1. For respecting constraints (5.6) and (5.7) we add rai = 0 and rbi = 0. This setting
is achieved in line 12 of Algorithm 12. �

B.3 Proof of Proposition 18, page 108

Definition 25 (Fractional knapsack problem) Given a knapsack with capacity M and a list of k
elements with weights W = {w1, ..., wk} and values V = {v1, ..., vk}. The fractional knapsack problem

FKP (M,W,V) consists in finding the set R = {r1, ..., rn} that maximizes the total value
k∑
i=1

viri subject

to M −
k∑
i=1

wiri ≥ 0 and ri ∈ [0, 1].

Proof 23 According to Lemma 11 the minimum of G can be found only if ∀i : rbi = 0. Then, following
Lemma 12 the problem can be transformed into the fractional knapsack problem instance:

FKP (M, {w1, ..., wk}, {v1, ..., vk}), where vi = − (gi − |[gi]|), wi = −gi and M =
k1∑
i=1

gi.

162

B.3 Proof of Proposition 18, page 108

Finally, proposition 30 shows that a greedy algorithm that put the items sorted by vi
wi

is capable of reaching
the optimal solution. Algorithm 13 does exactly that. �

Proposition 30 Let FKP (M,W,V) an instance of the fractional knapsack problem. W.l.o.g., assume
that W and P are sorted in decreasing order by the ratio vi

wi
. It means that the given sets are sorted such

that v1
w1
≥ v2

w2
≥ ... ≥ vk

wk
. The optimal solution is found when:

ri = 1 for i = 1, ..., s− 1

rs =

M −
s−1∑
i=1

wi

ws
rj = 0 for j = s+ 1, ..., k

In other words, we add elements to the solution set in order until we reach the capacity M or all the
elements are used. Observe that there are at most one fractionary element in the solution set (rs). All
others are either full elements (ri = 1), or are not part of the solution (rj = 0).

Proof 24 The proof can be found in [Martello and Toth, 1990].

Lemma 11 Let G be the objective function:

G = ga − gb +
k∑
i=1

(|[gi]|rci) (B.3)

subject to the constraints (5.4), (5.5),(5.6) and (5.7) (see page 102). If Gm ≥ 0 (where [Gm] is the sum
of the partial derivatives of the monotonic occurrences, i.e., [Gm] =

∑
i=1..k,0 6∈[gi]

[gi]), then for all grouping

og1 with
∑k

i=0 rbi 6= 0 (i.e., the set of occurrences xb is not empty) there exists a grouping og2, such that
G(og2) ≤ G(og1).

Proof 25 Consider a grouping og1 such that the partial derivatives w.r.t. xa, xb and xc are given resp.
by:

[g1a] = [gma] + [g0a][
g1b
]

= [gmb] + [g0b][
g1c
]

= [gmc] + [g0c]

where [gma] (resp. [gmb] and [gmc]) corresponds to the sum of the partial derivatives of the monotonic
occurrences of xa (resp. xb and xc), i.e., [gma] =

∑
i=1..k,0 6∈[gi]

([gi]rai). [g0a] (resp. [g0b] and [g0c]) corresponds

to the sum of the partial derivatives of the nonmonotonic occurrences of xa (resp. xb and xc), i.e.,
[g0a] =

∑
i=1..k,0∈[gi]

([gi]rai). We can compute G(og1) using (B.3):

G(og1) = gma + g0a − (gmb + g0b) +
∑

i=1..k,06∈[gi]

(|[gi]|rci) + γ

163

B. Proofs of Properties Related to Occurrence Grouping

where
γ =

∑
i=1..k,0∈[gi]

(|[gi]|rci)

Consider a grouping og2 such that the partial derivatives w.r.t. xa, xb and xc are given resp. by:

[g2a] = [gma] + [gmb] + [gmc] + α× [g0a][
g2b
]

= [0, 0][
g2c
]

= [g0c] + (1− α)× [g0a] + [g0b]

where 0 ≤ α ≤ 1. To create the grouping og2 from og1 is always possible. A way consists in ‘moving’ all
the monotonic occurrences, from xb and xc, to xa. Maybe, we would also need to move a fraction (1−α)
of each non monotonic occurrence from xa to xc for keeping satisfied the constraint (5.4), i.e. g1a ≥ 0.

We can compute G(og2):
G(og2) = gma + gmb + gmc + α× g0a + γ + β

where
β = (1− α)

∑
i=1..k,0∈[gi]

(|[gi]|rai) +
∑

i=1..k,0∈[gi]

(|[gi]|rbi)

As 0 ∈ [gi] implies that |[gi]| ≤ (gi − gi):

β ≤ (1− α)
∑

i=1..k,0∈[gi]

(
(gi − gi)rai

)
+

∑
i=1..k,0∈[gi]

(
(gi − gi)rbi)

)
Finally,

β ≤ (1− α)(g0a − g0a) + (g0b − g
0
b)

Now we can compute the subtraction G(og1)−G(og2):

G(og1)−G(og2) = gma + g0a − gmb − g0b +
∑

i=1..k,06∈[gi]

(|[gi]|rci) + γ − gma − gmb − gmc − α× g0a − γ − β

G(og1)−G(og2) = g0a − gmb − g0b +
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmb − gmc − α× g0a − β

If we use the upper bound of β:

G(og1)−G(og2) ≥ g0a − gmb − g0b +
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmb − gmc − α× g0a − (1− α)(g0a − g0a)− g0b + g0b

G(og1)−G(og2) ≥ −gmb +
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmb − gmc + (1− α)g0a − g0b

We can write the constraints (5.4), (5.5) for the grouping og1:

gma + g0a ≥ 0 (B.4)

−gmb − g0b ≥ 0 (B.5)

It is trivial that if 0 6∈ [gi], then |[gi]| − (gi − gi) ≥ 0. Extending this relation we can obtain:∑
i=1..k,06∈[gi]

(|[gi]|rci)− (gmc − gmc) ≥ 0 (B.6)

164

B.3 Proof of Proposition 18, page 108

It is also trivial to verify that if 0 6∈ [gi], then |[gi]| − gi ≥ 0. Extending this relation we can obtain:∑
i=1..k,06∈[gi]

(|[gi]|rci)− gmc ≥ 0 (B.7)

According to the constraint (5.4) in the grouping og2, the value of α must satisfy:

α ≤
−(gma + gmb + gmc)

g0a

The right side of the constraint is always positive: gma + gmb + gmc = Gm > 0 and g0a < 0. Thus, we can
identify two cases:

• When the right side is less than one if we set α to
−(gma +gmb +gmc)

g0a
(i.e., (1−α)g0a = g0a+gma +gmb +gmc),

then we obtain in (B.4):

G(og1)−G(og2) ≥ −gmb +
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmb − gmc + g0a + gma + gmb + gmc − g0b

G(og1)−G(og2) ≥

 ∑
i=1..k,06∈[gi]

(|[gi]|rci)− (gmc − gmc)

+ (gma + g0a) + (−gmb − g0b)

Observe that the three expressions in parenthesis are positive according to (B.4), (B.5) and (B.6).
Then G(og1) ≥ G(og2).

• When the right side is more than one if we set α to 1, then we obtain in (B.4):

G(og1)−G(og2) ≥ −gmb +
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmb − gmc − g0b

G(og1)−G(og2) ≥ −gmb + (−gmb − g0b) + (
∑

i=1..k,06∈[gi]

(|[gi]|rci)− gmc)

Observe that the first term in the left side (−gmb) must be positive to satisfy the constraint (B.5),

the second and third terms are positive according to (B.5) and (B.7). Thus, G(og1) ≥ G(og2). �

Lemma 12 Let P3 be the following linear program: find values rai rbi and rci for all i = 1..k that

minimize G3 = Diam([G0]) + ga − gb − Diam([gc]) +
k∑
i=1
|[gi]|rci subject to (5.4), (5.5),(5.6) and (5.7) (see

page 102). If ∀i : rbi = 0, then P3 is equivalent to the following fractional knapsack problem:

(W.l.o.g., assume that the occurrences are sorted: only the first k1 occurrences have a positive partial

derivative.) Find the values rai, rci for i = k1 + 1..k that maximize G′3 =
k∑

i=k1+1

virai, subject to:

M −
k∑

i=k1+1

wirai ≥ 0

rai ∈ [0, 1]

rci = 1− rai

where vi = − (gi − |[gi]|), wi = −gi and M =
k1∑
i=1

gi.

165

B. Proofs of Properties Related to Occurrence Grouping

Proof 26 The condition ∀i : rbi = 0 implies that gb = 0. Thus, we can rewrite the objective function:

G3 = Diam([G0]) +

k∑
i=1

(
girai +

(
−(gi − gi) + |[gi]|

)
rci
)

as rai + rci = 1, the function is equivalent to:

G3 = Diam([G0]) +
k∑
i=1

(
girai +

(
−(gi − gi) + |[gi]|

)
(1− rai)

)

G3 = Diam([G0]) +
k∑
i=1

(
−(gi − gi) + |[gi]|

)
+

k∑
i=1

(
gi −

(
−(gi − gi) + |[gi]|

)
rai
)

simplifying we finally obtain:

G3 = Diam([G0]) +
k∑
i=1

(
−(gi − gi) + |[gi]|

)
+

k∑
i=1

((gi − |[gi]|) rai)

Observe that if [gi] ≥ 0, |[gi]| = gi, thus, G3 = Diam([G0]) +
k∑
i=1

(
−(gi − gi) + |[gi]|

)
. In other words, if

[gi] ≥ 0 the objective function does not depend on the values of rai and rci. Thus we set rai = 1, for all i
with [gi] ≥ 0 because in this way we maximize the relaxation of the constraint (5.6):

k∑
i=1

girai ≥ 0

As only the first k1 occurrences have a positive partial derivative. We can rewrite the objective function:

G3 = Diam([G0]) +
k∑
i=1

(
−(gi − gi) + |[gi]|

)
+

k∑
i=k1+1

(gi − |[gi]|) rai

and the constraint (5.6):
k1∑
i=1

gi −
k∑

i=k1+1

(−gi)rai ≥ 0

Note that Diam([G0]) +
k∑
i=1

(
−(gi − gi) + |[gi]|

)
and

k1∑
i=1

gi are constants, thus the problem can be rewritten

as the fractional knapsack problem of Lemma 12. �

B.4 The average computation used for performing the comparison on
evaluation diameters

Consider ρ1, ..., ρn the set of computed ratios (data set). We compute the quasi-arithmetic mean using
the function h(ρ) = ρ

ρ+1 , i.e.,

ρ = h−1

(
1

n

n∑
i=1

h(ρi)

)
where h−1(ρ∗) = ρ∗

1−ρ∗ is the inverse function of h. This method gives equal weight to each data point,
i.e., it is not affected by very high or very low values of ρi.

166

Bibliography

Ait-Aoudia, S., Jegou, R., and Michelucci, D. (1993). Reduction of Constraint Systems. In Compugraphic.
135, 139, 140

Araya, I., Neveu, B., and Trombettoni, G. (2008a). Exploiter les sous-expressions communes dans les csp
numériques. In Journées francophones de programmation par contraintes (JFPC), pages 375–384. 115

Araya, I., Neveu, B., and Trombettoni, G. (2008b). Exploiting Common Subexpressions in Numerical
CSPs. In Proc. CP, LNCS 5202, pages 342–357. 115

Araya, I., Neveu, B., and Trombettoni, G. (2009a). A New Monotonicity-Based Interval Extension Using
Occurrence Grouping. In Workshop IntCP, pages 51–64. 99

Araya, I., Neveu, B., and Trombettoni, G. (2009b). An Interval Constraint Propagation Algorithm
Exploiting Monotonicity. In Workshop INTCP, pages 65–83. 73

Araya, I., Trombettoni, G., and Neveu, B. (2009c). Filtering Numerical CSPs Using Well-Constrained
Subsystems. In Proc. CP, LNCS 5732, pages 158–172. 135

Araya, I., Trombettoni, G., and Neveu, B. (2009d). Utilisation de sous-systèmes bien-contraints pour le
filtrage de csp numériques. In Journées francophones de programmation par contraintes (JFPC). 135

Archimedes (Before 212 BC). On the measurement of the circle. In In Thomas L. Heath (ed.), The
Works of Archimedes, Cambridge University Press, 1897 ; Dover edition, 1953, pages 91–98. 9

Baharev, A. and Rév, E. (2009). A Complete Nonlinear System Solver Using Affine Arithmetic. In Proc.
CP, LNCS 5732, pages 17–33. 43

Batnini, H., Michel, C., and Rueher, M. (2005). Mind The Gaps: A New Splitting Strategy for Consis-
tency Techniques. In Proc. CP, LNCS 3709, pages 77–91. 60

Benhamou, F. and Goualard, F. (2004). Universally Quantified Interval Constraints. In Proc. CP, LNCS
1894, pages 67–82. 66

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999). Revising Hull and Box Consis-
tency. In ICLP, pages 230–244. 47, 49, 50, 51, 60, 77, 141, 154

Benhamou, F., McAllester, D., and Van Hentenryck, P. (1994). CLP(Intervals) revisited. In Proc. of
Logic Programming Symposium, pages 124–138. 47, 50

Bliek, C. (1992). Computer methods for design automation. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA. 40

Bliek, C., Neveu, B., and Trombettoni, G. (1998). Using Graph Decomposition for Solving Continuous
CSPs. In Proc. CP, LNCS 1520, pages 102–116. 135, 148

167

BIBLIOGRAPHY

Buchberger, B. (1985). Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. Multidi-
mensional Systems Theory, pages 184–232. 1

Carrizosa, E., Hansen, P., and Messine, F. (2004). Improving Interval Analysis Bounds by Translations.
Journal of Global Optimization, 29(2):157–172. 32

Ceberio, M. and Granvilliers, L. (2001). Solving Nonlinear Systems by Constraint Inversion and Interval
Arithmetic. In Proc. AISC, Artificial Intelligence and Symbolic Computation, LNCS 1930, pages 127–
141. 32, 132

Ceberio, M. and Granvilliers, L. (2002). Solving Nonlinear Equations by Abstraction, Gaussian Elimi-
nation, and Interval Methods. In Proc. of FroCoS, pages 117–131. 62

Ceberio, M. and Kreinovich, V. (2004). Greedy Algorithms for Optimizing Multivariate Horner Schemes.
SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation), 38(1):8–15.
32, 132

Chabert, G. (2007). Techniques d’intervalles pour la résolution de systèmes d’équations. PhD thesis,
University of Nice-Sophia Antipolis, France. (in french). 28, 49

Chabert, G. (2009). www.ibex-lib.org. 26, 40, 65, 66, 85, 108, 129, 144

Chabert, G. and Jaulin, L. (2009a). Contractor Programming. Artificial Intelligence, 173:1079–1100. 66,
85, 108, 144

Chabert, G. and Jaulin, L. (2009b). Hull Consistency Under Monotonicity. In Proc. CP, LNCS 5732,
pages 188–195. 51, 53, 73, 83

Chabert, G. and Jaulin, L. (2009c). QUIMPER, A Language for Quick Interval Modelling and Program-
ming in a Bounded-Error Context. Artificial Intelligence, 173:1079–1100. 40, 65, 129

Chabert, G., Trombettoni, G., and Neveu, B. (2005). Box-Set Consistency for Interval-based Constraint
Problems. In SAC - 20th ACM Symposium on Applied Computing, pages 1439–1443. 49, 60, 84

Collavizza, H., Delobel, F., and Rueher, M. (1999). Comparing Partial Consistencies. Reliable Computing,
5(3):213–228. 46, 116

Cruz, J. and Barahona, P. (2001). Global Hull Consistency with Local Search for Continuous Constraint
Solving. In Proc. EPIA, LNAI 2258, pages 349–362. 138

Demidovitch, B. and Maron, I. (1973). Éléments de calcul numérique. Editions Mir, Moscou. 42

Domes, F. (2009). GloptLab - a Configurable Framework for Solving Continuous, Algebraic CSPs. In
IntCP, int. WS on interval analysis, constraint propagation, applications, at CP conference, pages
1–16. 65

Dulmage, A. and Mendelsohn, N. (1958). Covering of Bipartite Graphs. Canadian Journal of Mathe-
matics, 10:517–534. 139

Faltings, B. (1994). Arc-consistency for Continuous Variables. Artif. Intelligence, 65:363–376. 153

Flajolet, P., Sipala, P., and Steyaert, J.-M. (1990). Analytic variations on the common subexpression
problem. In Proc. Automata, Languages, and Programming, LNCS 443, pages 220–334. 121

Freuder, E. (1982). A Sufficient Condition for Backtrack-Free Search. J. ACM, 29(1):24–32. 153

168

BIBLIOGRAPHY

Gelfand, I., Kapranov, M., and Zelevinsky, A. (1994). Discriminants, Resultants, and Multidimensional
Determinants. Birkhäuser. 1

Goldsztejn, A., Michel, C., and Rueher, M. (2009). Efficient Handling of Universally Quantified Inequal-
ities. Constraints, 14(1):117–135. 73

Granvilliers, L. and Benhamou, F. (2006). Algorithm 852 : Realpaver : An Interval Solver using Con-
straint Satisfaction Techniques. ACM Transactions on Mathematical Software., 31(1):138–156. 65

Granvilliers, L., Monfroy, E., and Benhamou, F. (2001). Symbolic-Interval Cooperation in Constraint
Programming. In Int. Symp. on Symbolic and Algebraic Computation (ISSAC), ACM, pages 150–166.
115

Hansen, E. and Walster, G. W. (2003). Global Optimization using Interval Analysis, Second Edition.
CRC Press. 25, 30, 40, 59

Harvey, W. and Stuckey, P. (2003). Improving Linear Constraint Propagation by Changing Constraint
Representation. Constraints, 7:173–207. 131

Hirsch, M., Meneses, C., Pardalos, P., and Resende, M. (2007). Global Optimization by Continuous
GRASP. Opt. Lett., 1(2):201–212. 1

Horner, W. G. (1819). A new Method of Solving Numerical Equations of all Orders, by Continuous
Approximation. Philos. Trans. Roy. Soc. London, 109:308–335. 31, 100

Hyvönen, E. (1992). Constraint reasoning based on interval arithmetic: The tolerance propagation
approach. Artificial Intelligence, 58:71–112. 45

Iri, M. (1984). Simultaneous Computation of Functions, Partial Derivatives and Estimates of Rounding
Errors : Complexity and Practicality. Japan J. Appl. Math., (1):223–252. 18

Jaulin, J., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied Interval Analysis. Springer. 66

Kearfott, R. B., Lakeyev, A., Rohn, J., and Kahl, P. (1996). Rigorous Global Search : Continuous
Problems. Kluwer, Dordrecht. 3, 43, 61

Kearfott, R. B. and Novoa III, M. (1990). INTBIS, a portable interval Newton/Bisection package. ACM
Trans. on Mathematical Software, 16(2):152–157. 59

Krawczyk, R. (1969). Newton-Algorithmen zur Besstimmung von Nullstellen mit Fehlerschranken. Com-
puting, 4:187–201. 42

Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P. (1997). Computational complexity and feasibility of
data processing and interval computations. Kluwer. 22

Lebbah, Y., Michel, C., Rueher, M., Daney, D., and Merlet, J.-P. (2005). Efficient and Safe Global Con-
straints for Handling Numerical Constraint Systems. SIAM Journal on Numerical Analysis, 42(5):2076–
2097. 43, 65, 66, 79, 140

Lhomme, O. (1993). Consistency Techniques for Numeric CSPs. In IJCAI, pages 232–238. 45, 54, 79,
139, 143

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations. John
Wiley & Sons. 163

169

BIBLIOGRAPHY

Martinez, J. (1994). Algorithms for Solving Nonlinear Systems of Equations. In Continuous Optimization:
The State of the Art, pages 81–108. 1

Merlet, J.-P. (2000). ALIAS: An Algorithms Library for Interval Analysis for Equation Systems. Technical
report, INRIA Sophia. www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html. 3, 26, 31, 32, 42, 60, 61, 65, 73,
129

Merlet, J.-P. (2002). Optimal Design for the Micro Parallel Robot MIPS. In Proc. ICRA, International
Conference on Robotics and Automation, IEEE, pages 1149–1154. 40, 46

Merlet, J.-P. (2007). Interval Analysis and Robotics. In 13th Int. Symp. of Robotics Research. 66

Merlet, J.-P. (2009). www-sop.inria.fr/coprin/ logiciels/ALIAS/Benches/benches.html. 85, 108, 129,
146

Moore, R. (1966). Interval Analysis. Prentice Hall. 9, 16, 22, 23, 35

Muchnick, S. (1997). Advanced Compiler Design and Implementation. Morgan Kauffmann. 115

Neumaier, A. and Shcherbina, O. (2004). Safe Bounds in Linear and Mixed-Integer Programming. In
Math. Programming A 99, pages 283–296. 43

Neveu, B., Chabert, G., and Trombettoni, G. (2006). When Interval Analysis helps Interblock Back-
tracking. In Proc. CP, LNCS 4204, pages 390–405. 63, 135, 144

Neveu, B., Jermann, C., and Trombettoni, G. (2005). Inter-Block Backtracking: Exploiting the Structure
in Continuous CSPs. In Selected papers WS COCOS, LNCS 3478, pages 15–30. 63, 135, 144, 147

Nielson, J. and Roth, B. (1999). On the Kinematic Analysis of Robotic Mechanisms. Int. J. Robotics
Research, 18(12):1147–1160. 1

Ortega, J. and Rheinboldt, W. (1970). Iterative Solution of Nonlinear Equations in Several Variables.
Academic Press, New York. 42

Rall, L. (1981). Automatic Differentiation: Techniques and Applications. LNCS 120, Springer. 17

Ratz, D. (1994). Box-splitting Strategies for the Interval GaussSeidel Step in a Global Optimization
Method. Computing., 53:337–354. 60

Ratz, D. (1996). Inclusion Isotone Extended Interval Arithmetic - A Toolbox Update. Technical Report
5/1996, Institut für Angewandte Mathematik, Universität Karlsruhe. 19, 39

Régin, J.-C. (1994). A Filtering Algorithm for Constraints of Difference in CSPs. In Proc. AAAI, pages
362–367. 140

Rendl, A., Miguel, I., and Gent, I. P. (2009a). Common Subexpressions in Constraint Models of Planning
Problems. In Symp. SARA 2009. 61

Rendl, A., Miguel, I., and Gent, I. P. (2009b). The Cost of Flattening with Common Subexpression
Elimination. In ModRef, WS on Constraint Modelling and Reformulation, pages 117–131. 61

Rueher, M., Goldsztejn, A., Lebbah, Y., and Michel, C. (2008). Capabilities of Constraint Programming
in Rigorous Global Optimization. In NOLTA, int. Symp. on Nonlinear Theory and its Applications.
43, 66

170

BIBLIOGRAPHY

Sahinidis, N. V. and Twarmalani, M. (2002). Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht. 43

Sam-Haroud, D. and Faltings, B. (1996). Consistency Techniques for Continuous Constraints. Con-
straints, 1(1-2):85–118. 66

Schichl, H. and Neumaier, A. (2005). Interval Analysis on Directed Acyclic Graphs for Global Optimiza-
tion. Journal of Global Optimization, 33(4):541–562. 3, 61, 115

Sherali, H. and Adams, W. (1999). Reformulation-Linearization Technique for Solving Discrete and
Continuous Nonconvex Problems. Kluwer Academic Publishers. 43

Speelpenning, B. (1980). Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD
thesis, Champaign, IL, USA. 17

Stahl, V. (1995). Interval Methods for Bounding the Range of Polynomials and Solving Systems of
Nonlinear Equations. PhD thesis, University of Linz, Austria. 32

Sunaga, T. (1958). Theory of Interval Algebra and its Application to Numerical Analysis. Research
Association of Applied Geometry (RAAG), 2:29–46. 9

Tapia, R. (1971). The Kantorovitch Theorem for Newton’s Method. American Mathematic Monthly,
78(1):389–392. 42

Trombettoni, G. and Chabert, G. (2007). Constructive Interval Disjunction. In Proc. CP, LNCS 4741,
pages 635–650. 56, 57, 79, 109, 141

Trombettoni, G. and Wilczkowiak, M. (2006). GPDOF - a Fast Algorithm to Decompose Under-
constrained Geometric Constraint Systems: Application to 3S Modeling. Int. J. Computational Ge-
ometry and Applications, 16(5-6):479–512. 63

Van Hentenryck, P. and Michel, L. (2005). Constraint-Based Local Search. The MIT press. 65

Van Hentenryck, P., Michel, L., and Deville, Y. (1997). Numerica : A Modeling Language for Global
Optimization. MIT Press. 3, 50, 51, 54, 61, 65, 77, 154

Van Hentenryck, P., Saraswat, V., and Deville, Y. (1994). Design, Implementation, and Evaluation of
the Constraint Language CC(FD). Journal of Logic Programming, 37(1-3):139–164. 45

Vu, X.-H., Sam-Haroud, D., and Faltings, B. (2009a). Enhancing Numerical Constraint Propagation
using Multiple Inclusion Representations. Annals of Mathematics and Artificial Intelligence, 55(3-
4):295–354. 43

Vu, X.-H., Schichl, H., and Sam-Haroud, D. (2004). Using Directed Acyclic Graphs to Coordinate
Propagation and Search for Numerical Constraint Satisfaction Problems. In Proc. ICTAI, IEEE,
pages 72–81. 3, 61, 62, 115, 126, 127, 129

Vu, X.-H., Schichl, H., and Sam-Haroud, D. (2009b). Interval Propagation and Search on Directed Acyclic
Graphs for Numerical Constraint Solving. J. of Global Optimization, 45(4):499–531. 61, 62, 115, 126,
127, 129

Warmus, M. (1956). Calculus of Approximations. Bulletin de l’Academie Polonaise de Sciences, 4(5):253–
257. 9

Wolfram, S. (2009). www.wolfram.com/products/mathematica/index.html. 129

171

BIBLIOGRAPHY

Yamamura, K. (2000). Finding all Solutions of Nonlinear Equations using Linear Combination of Func-
tions. Reliable Computing, 6:105–113. 62

Young, R. C. (1931). The Algebra of Multi-valued Quantities. Mathematische Annalen, 104:260–290. 9

172

	1 Introduction
	1.1 Contributions
	1.2 Organization of the document

	I State of the Art
	2 Interval Arithmetic
	2.1 Basic notions
	2.1.1 Intervals
	2.1.2 The hull operator
	2.1.3 Image of intervals

	2.2 Interval Arithmetic
	2.2.1 Binary operators
	2.2.2 Unary operators
	2.2.3 Evaluation of interval expressions
	2.2.4 Interval gradient computation
	2.2.4.1 Symbolic differentiation
	2.2.4.2 Automatic differentiation

	2.2.5 Interval Hessian matrix computation
	2.2.6 Time complexity of interval evaluation and automatic differentiation
	2.2.7 Extended interval arithmetic
	2.2.8 Intervals and floating point numbers

	2.3 Properties of interval arithmetic
	2.3.1 Conservativeness
	2.3.2 Non-optimal evaluation
	2.3.3 Dependency problem

	2.4 Interval extensions of real functions
	2.4.1 The natural extension
	2.4.2 Monotonicity-based extensions
	2.4.3 The Taylor extension
	2.4.4 The Hansen extension
	2.4.5 Symbolic-based extensions
	2.4.6 Combining extensions

	3 Intervals for solving Systems of Equations
	3.1 Solving systems of constraints: the classical interval-based strategy
	3.2 Filtering/contraction algorithms
	3.2.1 Operators from interval analysis
	3.2.1.1 Gauss-Seidel method
	3.2.1.2 Preconditioning
	3.2.1.3 The Krawczyk operator
	3.2.1.4 Kantorovich's theorem

	3.2.2 Linear relaxation
	3.2.3 Constraint propagation algorithms
	3.2.3.1 Arc-consistency
	3.2.3.2 Hull-consistency
	3.2.3.3 Hull-consistency of primitive constraints
	3.2.3.4 The algorithm HC4-Revise
	3.2.3.5 The Box-Revise algorithm
	3.2.3.6 Other filtering techniques for enforcing hull-consistency

	3.2.4 Strong consistency algorithms
	3.2.4.1 The 3B algorithm
	3.2.4.2 The 3BCID algorithm

	3.2.5 Global Hull Consistency and the locality problem

	3.3 Splitting Algorithms
	3.3.1 Variable selection
	3.3.2 Value selection

	3.4 Other tools related to interval-based methods
	3.4.1 Common subexpression elimination
	3.4.1.1 A DAG representation of the system

	3.4.2 Combining constraints
	3.4.3 The IBB algorithm

	3.5 Interval-based solving tools
	3.6 Other research fields related to intervals
	3.7 Conclusion

	II Contributions
	4 An Algorithm Exploiting Monotonicity
	4.1 Introduction
	4.2 The MOnotonic Hull Consistency algorithm
	4.2.1 The MinMaxRevise procedure
	4.2.2 The MonotonicBoxNarrow procedure
	4.2.3 The LeftNarrowFmax procedure

	4.3 Advanced features of Mohc-Revise
	4.3.1 The user-defined parameter mohc and the array mohc
	4.3.2 The OccurrenceGrouping procedure

	4.4 Understanding and improving Mohc-Revise
	4.4.1 MinMaxRevise ensures the existence of a solution in the box
	4.4.2 Duality of the contraction process
	4.4.3 When the narrowing procedures are useless
	4.4.4 Improvements

	4.5 Properties
	4.6 Experiments
	4.6.1 Mohc as a subcontractor of 3BCID
	4.6.1.1 Tuning the user-defined parameters
	4.6.1.2 Experimental protocol
	4.6.1.3 Results
	4.6.1.4 Profiling

	4.6.2 Mohc as the main contractor
	4.6.2.1 Tuning the user-defined parameters
	4.6.2.2 Experimental protocol
	4.6.2.3 Results

	4.7 Advanced MinMaxRevise' procedure
	4.7.1 A motivating example
	4.7.2 Evaluations and projections in MinMaxRevise'

	4.8 Related Work
	4.9 Conclusion and Future Work

	5 A New Monotonicity-based Interval Extension
	5.1 Introduction
	5.2 Evaluation by monotonicity with occurrence grouping
	5.3 A 0,1 linear program to perform occurrence grouping
	5.3.1 Taylor-based over-estimate
	5.3.2 A linear program

	5.4 A linear programming problem achieving a better occurrence grouping
	5.5 An efficient Occurrence Grouping algorithm
	5.5.1 Properties

	5.6 Experiments
	5.6.1 Occurrence grouping for improving a monotonicity-based existence test
	5.6.2 Occurrence grouping inside Mohc
	5.6.3 Performance comparison with Simplex
	5.6.4 Evaluation diameter comparison
	5.6.5 Frequency of interesting evaluations

	5.7 Conclusion

	6 Exploiting Common Subexpressions
	6.1 Properties of HC4 and CSE
	6.1.1 Additional propagation
	6.1.2 Unary operators
	6.1.3 N-ary operators (sums, products)

	6.2 The I-CSE algorithm
	6.2.1 Step 1: DAG generation
	6.2.2 Step 2: Pairwise intersection between sums and products
	6.2.3 Step 3: Integrating CSs into the DAG
	6.2.4 Step 4: Generation of the new system
	6.2.5 Advanced Feature: Simplification of redundant expressions
	6.2.6 Time complexity
	6.2.7 Maximal CSs shared by more than two expressions

	6.3 Implementation of I-CSE
	6.4 Experiments
	6.5 Perspectives
	6.6 Conclusion

	7 A Filtering Algorithm Using Well-constrained Subsystems
	7.1 Introduction: From decomposable to sparse systems
	7.2 Box-k partial consistency
	7.2.1 Benefits of Box-k-consistency
	7.2.2 Achieving Box-k-consistency in well-constrained subsystems of equations

	7.3 Contraction algorithm using well-constrained subsystems as global constraints
	7.3.1 The Box-k revise procedure
	7.3.2 The S-kB-Revise variant
	7.3.3 Reuse of the local tree (procedure UpdateLocalTree)
	7.3.4 Lazy handling of a leaf (procedure ProcessLeaf?)
	7.3.5 Properties of the revise procedure

	7.4 Multidimensional splitting
	7.5 Experiments
	7.5.1 Experiments on decomposed benchmarks
	7.5.2 Experiments on structured systems
	7.5.3 Benefits of sophisticated features

	7.6 Conclusion

	8 Conclusions and future perspectives
	A Proofs of Properties Related to Mohc
	A.1 Proof of Lemma 4
	A.2 Proof of Lemma 5, page 84
	A.3 Proof of Proposition 10, page 84
	A.4 Proof of Proposition 11, page 84
	A.5 Proof of Proposition 12 (time complexity), page 85
	A.6 The LazyMonotonicBoxNarrow procedure
	A.7 The latest version of Mohc-Revise algorithm
	A.8 The LeftNarrowFmax procedure revisited

	B Proofs of Properties Related to Occurrence Grouping
	B.1 Proof of Proposition 16, page 108
	B.2 Proof of Proposition 17, page 108
	B.3 Proof of Proposition 18, page 108
	B.4 The average computation used for performing the comparison on evaluation diameters

	References

