
On the use of machine learning techniques to
detect malware in mobile applications

Catarina Palma1, , Artur Ferreira1,3, , and Mário Figueiredo2,3,

1 ISEL, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa
2 IST, Instituto Superior Técnico, Universidade de Lisboa

3 Instituto de Telecomunicações, Lisboa, PORTUGAL
A45241@alunos.isel.pt artur.ferreira@isel.pt

mario.figueiredo@tecnico.ulisboa.pt

Abstract. The presence of malicious software (malware), for example
in Android applications (apps), has harmful or irreparable consequences
to the user and/or the device. Despite the protections provided by app
stores to restrict apps containing malware, it keeps growing in both so-
phistication and diffusion. In this paper, we explore the use of machine
learning (ML) and feature selection (FS) approaches to detect malware
in Android applications using public domain datasets. We focus on dif-
ferent data pre-processing, dimensionality reduction, and classification
techniques, assessing the generalisation ability of the learned models.
The support vector machine (SVM) and random forest (RF) classifiers
achieve the best results, with high accuracy and a low false negative
(FN) rate. The performance of ML methods is highly dependent on the
dataset and its pre-processing and on FS methods identifying the most
decisive features to classify an app as malware.

Keywords: Android Applications · Datasets · Feature Selection · Ma-
chine Learning · Malware Detection · Security · Supervised Learning.

1 Introduction

The use of smartphones has grown exponentially on the past decade. This growth
has been accompanied by the popularisation of Android, an open-source oper-
ating system (OS) based on the Linux kernel, mainly designed for touchscreen
mobile devices. It was first launched in 2008, becoming one of the most popular
mobile OS, with 70% of mobile phones using Android, followed by the iPhone
OS, with a market share of 28% [15]. Nowadays, we have a huge number of An-
droid applications for different purposes: in the third quarter of 2022, the Google
Play Store had approximately 3.5 million apps available [9]. For the most popu-
lar apps, the number of users reaches thousands or millions, dealing with a large
amount of user-sensitive data. Attackers might target the user’s data contained
in the smartphone itself via the apps, or they might want to use the device to
execute other attacks. Furthermore, from the attacker’s perspective, the users
are all potential targets and/or victims to download their malware. In a matter

https://orcid.org/0009-0008-4329-1991
https://orcid.org/0000-0002-6508-0932
https://orcid.org/0000-0002-0970-7745


Actas do décimo quarto Simpósio de Informática (INForum 2023)

of minutes, millions of users can download one app. Malicious attacks against
Android mobile devices have increased. In 2020, Kaspersky detected 5.7 million
malware Android packages, three times more than in 2019 (2.1 million) [3]. Fig-
ure 1 summarises the increase in malware installation packages for smartphone
devices from 2017 to 2021. There are software and applications focused on secu-
rity, such as antiviruses, and major app stores, such as the Google Play Store,
also have security and detection mechanisms, such as Google Play Protect, to
mitigate malicious apps. These security measures are, to some extent, success-
ful, but malware keeps growing in both sophistication and diffusion, sometimes
easily bypassing them. Thus, the need to detect malicious applications is a ma-
jor issue and machine learning (ML) approaches have been proposed to detect
malware on Android applications.

In this paper, we explore FS techniques combined with ML for malware
detection in Android applications. We emphasize the importance and impact of
pre-processing in improving malware detection in Android applications, aspects
that have been lacking in many previous studies.

The remainder of this paper is organised as follows. Section 2 provides an
overview of the related work for Android malware detection. The proposed ap-
proach is described in Section 3. The experimental evaluation is reported in
Section 4. Finally, Section 5 ends the paper with concluding remarks and future
work directions.

2 Related Work

This section provides an overview of the main topics related to Android mal-
ware detection. First, we address the Android OS main blocks (Section 2.1).
Then, we discuss the types of malware (Section 2.2). A description of the exist-
ing datasets and approaches is provided in Section 2.3. An analysis of existing
malware detection techniques is presented in Section 2.4.

Malware installation packages for smartphone devices

2017 5,7

2018 5,3

2019 3,5

2020 5,6

2021 9,5

0

2

4

6

8

10

2017 2018 2019 2020 2021

N
u

m
b

er
 o

f 
p

ac
ka

ge
s 

(i
n

 m
ill

io
n

s)

Malware installation packages for smartphone devices

Fig. 1. Malware installation packages for smartphone devices [3].

20 Sessão: Ciência dos Dados (Artigo)



Actas do décimo quarto Simpósio de Informática (INForum 2023)

2.1 Android Operating System

Android is an open-source OS based on the Linux kernel, mainly designed for
touchscreen mobile devices. First launched in 2008, it has many versions, with
releases taking place every few months. To understand how malware exploits
the security vulnerabilities of the Android OS, it is essential to know the basic
components of an Android application. Figure 2 shows the components that
integrate the Android package kit (APK) file of an Android application [17].

AndroidManifest.xml

classes.dex

resources.arsc

res

assets

lib

META-INF

ComponentsAPK File

Fig. 2. Android app’s components (inspired by Figure 1 in [17]).

Knowledge about the app’s components allows understanding the critical
security aspects of the Android system. For instance, the applications require
system permissions, e.g., access to the camera or the photo gallery to perform
specific functionalities. Malware often exploits these accesses and permissions to
perform attacks [15]. Thus, the ‘AndroidManifest.xml’ file, which contains the
permissions requested by the application, is of major relevance in determining
whether an application is malicious or not.

2.2 Types of Malware

Malware takes different forms in various approaches, such as remote access tro-
jans, banking trojans, ransomware, adware, spyware, scareware, premium text,
and others. In general, malware aims to steal sensitive and personal data stored
in mobile devices, by exploiting system vulnerabilities such as design weak-
nesses and security flaws and/or luring the user (e.g., through social engineer-
ing) to install applications containing malware [5]. There are well-documented
cases of Android malware families, such as “ExpensiveWall”, “HummingBad”,
“FalseGuide”, “Judy”, and “Chamois”, among others, which can be embedded or
hidden in many apps on the app stores and then downloaded by millions of users.
There are several security measures to mitigate malware attacks, such as using
secure internet connections, installing anti-malware apps, and pre-publication

Sessão: Ciência dos Dados (Artigo) 21



Actas do décimo quarto Simpósio de Informática (INForum 2023)

validation of the applications by the app stores. Additionally, from the user’s
perspective, one should keep the apps updated.

Some security measures are inherent to the Android system since the ker-
nel provides key security features, namely, application sandboxing and process
isolation [15]. These security measures are widely used and, to some extent,
successfully mitigate malware attacks. However, sometimes malware can bypass
them: there are a variety of techniques to hinder the identification and neutral-
isation of malware, e.g., some sophisticated malicious apps can recognise when
being executed in emulated environments [14].

2.3 Datasets and Approaches

There are datasets for malware detection in Android applications, such as the
Drebin, MalGenome, and VirusShare [17]. These datasets include data ranging
from application permissions to application programming interface (API) calls.
The Drebin dataset was first published in 2014 and contains malware apps from
179 families. Its features are numeric and mostly binary (0 or 1). The CICAnd-
Mal2017 dataset was developed by the Canadian Institute and published in 2018
[6]; it contains malware samples from 42 unique malware families, organised into
four categories: Adware, Ransomware, Scareware, and SMS Malware. Unlike the
Drebin dataset, CICAndMal2017 has both numerical and categorical features.

Kouliaridis and Kambourakis [14] pointed out that regarding feature extrac-
tion, there is a stronger focus on source code and the ‘AndroidManifest.xml’ file
analysis and that most publicly available and standard datasets are not recent
or up-to-date. Similarly, Muzaffar et al. [15] concluded that many existing stud-
ies use outdated datasets. Wu et al. [17] explored ML-based Android malware
detection research papers from January 2019 to November 2020; the authors con-
cluded that the most used features are based on API calls, native opcodes, raw
APK files, intents, and permissions. In addition, they provide some insight into
the most popular datasets used in the literature, such as Drebin and MalGenome.

Islam et al. [12] utilised the CCCS-CIC-AndMal2020 dataset, with 12 major
malware categories, 53439 instances, and 141 features. Concerning pre-processing,
the authors performed missing data imputation using the “mean” strategy.
To deal with class imbalance, the synthetic minority oversampling technique
(SMOTE) was applied. Additionally, they used the Min-Max method for nor-
malisation and transformed the categorical data into numerical data via one-hot
encoding. To perform feature selection (FS), the authors applied recursive fea-
ture elimination (RFE), discarding 60.2% features, achieving 95% accuracy. The
authors concluded that the reduced set of features lessened the complexity and
improved the accuracy. AlOmari et al. [4] proposed a multi-class approach with
five classes: Adware, Banking Malware, SMS Malware, Mobile Riskware, and Be-
nign, using the CICMalDroid2020 dataset. The dataset contains 11598 instances
and 470 features. Regarding pre-processing, the authors applied z-score normali-
sation. They used SMOTE and principal component analysis (PCA), concluding
that SMOTE and z-score normalisation improved the results, while PCA was
not beneficial. Keyvanpour et al. [13] conducted experiments with the Drebin

22 Sessão: Ciência dos Dados (Artigo)



Actas do décimo quarto Simpósio de Informática (INForum 2023)

dataset. In the pre-processing step, the authors applied three FS strategies (ef-
fective, high weight, and effective group FS) and concluded that effective FS led
to the best results. Alkahtani and Aldhyani [3] applied deep learning algorithms
to identify malware on the Drebin and CICAndMal2017 datasets.

2.4 Malware Detection Techniques

To detect malware in Android applications, one of three types of approaches can
be followed: static, dynamic, and hybrid. In static analysis, the application is
analysed without executing it (in a non-runtime environment). Feature extrac-
tion is usually done by code analysis or analysing the ‘AndroidManifest.xml’ file
[14]. Dynamic analysis occurs during the app’s regular operation, i.e., when it
is running, and is usually performed in monitored, controlled, or sandbox en-
vironments [17] to analyse its behaviour. Finally, hybrid analysis combines the
previous two types of approach [15].

Wu et al. [17] surveyed ML-based Android malware detection papers, from
2016 to November 2020. They concluded that static analysis is the most popu-
lar, followed by dynamic and hybrid analysis. Kouliaridis and Kambourakis [14]
reached the same conclusion. In fact, static analysis is more popular because it
is the simplest approach.

Regarding the use of ML classifiers for Android malware detection, Wu et
al. [17] found that the most popular classifier was SVM, followed by RF and
k-nearest neighbours (KNN). Kouliaridis and Kambourakis [14] also analysed
several studies, concluding that RFs are the most used among the literature,
followed by SVM. Thus, in this paper we consider these classifiers as well as
KNN and naive Bayes (NB).

AlOmari et al. [4] propose a multi-classification approach based on light gra-
dient boosting model (LightGBM) using the CICMalDroid2020 dataset. They
also analysed the performance of several algorithms, such as KNN, RF, decision
tree (DT), linear discriminant analysis (LDA), and NB. The LightGBM showed
the best accuracy and F1-score, achieving 95.49% and 95.47%, respectively.

Islam et al. [12] performed multi-classification based on dynamic analysis,
with an ensemble ML approach with weighted voting that incorporates RF,
KNN, multi-layer perceptron (MLP), DT, SVM, and logistic regression (LR),
with the CCCS-CIC-AndMal2020 dataset. Their proposed weighted voting method
showed an accuracy of 95%.

Keyvanpour et al. [13] proposed embedding FS in a learning model. The
authors opted for effective FS with RF. They also conducted tests with other
classifiers, such as KNN and NB. The authors concluded that RF outperformed
other models based on several metrics. Based on the FS method, the RF al-
gorithm employs the selected features to detect malicious applications. FS has
shown to improve the performance of the RF classifier.

Alkahtani and Aldhyani [3] applied SVM, KNN, and LDA classifiers to iden-
tify malware in mobile environments using the Drebin and CICAndMal2017
datasets. SVM achieved the best results with 80.71% accuracy on the Drebin
dataset. The results with the CICAndMal2017 dataset were especially positive,

Sessão: Ciência dos Dados (Artigo) 23



Actas do décimo quarto Simpósio de Informática (INForum 2023)

with an accuracy of 100%. Overall, it was shown that SVM successfully detects
malware. The authors also listed results of other studies that applied RF to the
Drebin dataset, obtaining in terms of accuracy, different outcomes such as 98.7%,
94%, 96.7%, and 96%. Some results with SVM also tend to stay within these
values, with accuracies of 93.7% (in a 2019 study) and 95% (in a 2021 study) on
the Drebin dataset.

Muzaffar et al. [15] found that many studies cite high accuracy rates for mal-
ware detection. However, several issues with existing approaches may limit their
real-world performance. Namely, the use of outdated datasets and inappropriate
metrics may give a misleading view of performance.

Shaojie Yang et al. [18] proposed an Android malware detection and clas-
sification approach based on contrastive learning. Pektaş et al. [16] proposed
Android malware classification by applying online ML. Adebayo and Aziz [1]
proposed an improved malware detection model using the A-priori association
rule algorithm. Finally, some authors resort to deep learning techniques [2, 10].

3 Proposed Approach

The approach proposed in this study is depicted in Figure 3. We begin by using
a dataset from which we obtain the Android app data, namely the Drebin [7]
and CICAndMal2017 [8] datasets. Next, some pre-processing is performed as
well as data splitting methods and techniques are applied to properly prepare
and organise the data, significantly impacting the model’s performance.

ML classifiers

Evaluation metrics

Dataset

Predictions

Evaluate

MaliciousBenign

Input data

Analysis

Pre-processing

Data pre-processing

Data splitting

Test set Train set Validation set

Hyperparameter
tuningModel

Fig. 3. Block diagram of the proposed approach for Android malware detection.

24 Sessão: Ciência dos Dados (Artigo)



Actas do décimo quarto Simpósio de Informática (INForum 2023)

Three subsets result from the data splitting phase: the train, validation, and
test sets. Regarding ML classifiers, this study relies mainly on SVM and RF.
Additionally, some experiments with KNN and NB are also performed. With
the trained model, input data can be classified as ‘benign’ or ‘malicious’. Thus,
it is a binary classification problem.

The next phase is to improve and analyse the model performance. The other
two subsets, validation and test, are required for this task. The first one allows
evaluating the model to tune the hyperparameters of the ML algorithms to im-
prove the resulting model. The latter enables the analysis of the model through
standard evaluation metrics, such as accuracy and confusion matrix. Based on
the values reported by these metrics, the methods and techniques used in the
data pre-processing and data splitting phases can be improved, thus, enhanc-
ing the performance of the trained model in identifying malware in Android
applications.

4 Experimental Evaluation

This section reports the experimental evaluation process. The experiments in
this study were conducted using the Python programming language and the
ML library ‘scikit-learn’. Section 4.1 reports dataset analysis while Section 4.2
describes the evaluation metrics we use to assess the performance of the ML tech-
niques. The experimental evaluation of four well-known classifiers is reported in
Section 4.3. Section 4.4 reports experimental results after handling missing val-
ues with different approaches. Section 4.5 presents experimental results obtained
after applying FS. Finally, Section 4.6 compares some of the experimental results
obtained with those from existing studies.

4.1 Dataset Characteristics

The Drebin dataset has n=15036 instances and d=215 features, with no missing
values, and all its features are numerical, primarily binary. It has a ratio between
class labels of approximately one-third, with the majority belonging to the ‘be-
nign’ class label. The CICAndMal2017 dataset has n=29999 instances and d=183
features. It contains missing values (around 200) and numerical and categorical
features. It also has a ratio between class labels of approximately one-third, but,
as opposed to the Drebin dataset, the majority belongs to the ‘malicious’ class
label. Thus, both datasets are not balanced, and the data from CICAndMal2017
requires more pre-processing than Drebin’s data. The CICAndMal2017 dataset
contains categorical features and missing values, both incompatible with the
SVM algorithm.

4.2 Evaluation Metrics

In this section, we describe the evaluation metrics used to assess the performance
of the ML models. We consider two target classes: ‘benign’ and ‘malicious’. A

Sessão: Ciência dos Dados (Artigo) 25



Actas do décimo quarto Simpósio de Informática (INForum 2023)

true positive (TP) means to classify a malicious app as malicious correctly, a true
negative (TN) is to classify a benign app as benign, a false positive (FP) is to
classify a benign app as malicious and a false negative (FN) refers to classifying
a malicious app as benign. When assessing performance, we aim to minimise
type 1 (FP) and type 2 (FN) errors. However, we consider the type 2 errors to
be more problematic since it is preferable to label a benign app as malicious
rather than to indicate that the app is safe when it has malicious code leading
to compromised security. The accuracy (Acc) measures the proportion of correct
classifications out of all predictions and is given by

Acc =
TN + TP

TN + TP + FN + FP
. (1)

Although we aim for high accuracy, this can be misleading when working with
imbalanced data, with some disparity in the proportion of instances per class.
We have checked that the Drebin and CICAndMal2017 datasets have some im-
balances in the data. For this reason, in our experiments, we have also assessed
the Recall (Rec) metric,

Rec =
TP

TP + FN
, (2)

also known as the true positive rate or sensitivity.

4.3 Experimental Results: Baseline

First, basic data pre-processing was required to apply the different ML classi-
fiers, RF, SVM, KNN and NB, to the Drebin and CICAndMal2017 datasets.
We converted each categorical feature to numeric through label encoding. Ad-
ditionally, to initially deal with missing values, instances containing them were
removed.

Regarding the data splitting phase, a first, simple and traditional machine
learning approach was taken by random splitting the data with a ratio of 70-
30 for training and testing, respectively. The first experimental results were
obtained with the evaluation metrics, accuracy, confusion matrix, and recall for
each ML classifier with each dataset, as shown in Table 1.

The four classifiers showed promising results in detecting malware on the
Drebin dataset, with RF providing the best result in terms of accuracy (98.60%).
However, experiments using the CICAndMal2017 dataset showed mostly unsat-
isfactory results, with only the RF classifier achieving a reasonable accuracy of
80.49%. For the recall metric, the classifiers also presented good results on the
Drebin dataset, since the number of FN was below 100 for each classifier. On the
CICAndMal2017 dataset, we obtained the best recall value of 99.76% with the
SVM classifier and the worst of 80.84% with the KNN classifier. Although the
SVM classifier got the best result with the CICAndMal2017 for the recall met-
ric, in terms of accuracy it only obtained 65.82%. Thus, as seen in the confusion
matrix, it presents a low value of FN but a very high FP rate.

On the Drebin dataset, the FN occurrences tend to occur more than FP, likely
because the Drebin dataset has more instances of benign apps than malicious

26 Sessão: Ciência dos Dados (Artigo)



Actas do décimo quarto Simpósio de Informática (INForum 2023)

Table 1. Experimental results with the evaluation metrics Acc, confusion matrix ele-
ments (TN, FP, FN, and TP), and Rec for each ML classifier on each dataset.

Classifier Dataset Acc (%) TN FP FN TP Rec (%)

RF Drebin 98.60 2814 13 50 1634 97.03
RF CICAndMal2017 80.49 2060 930 781 5001 86.49

SVM Drebin 97.94 2805 22 71 1613 95.78
SVM CICAndMal2017 65.82 6 2984 14 5768 99.76

KNN Drebin 97.58 2782 45 64 1620 96.20
KNN CICAndMal2017 64.00 940 2050 1108 4674 80.84

NB Drebin 93.08 2611 216 96 1588 94.30
NB CICAndMal2017 65.50 461 2529 497 5285 91.40

ones. For the CICAndMal2017 experiments, there are more FP occurrences than
FN since it has a higher number of malicious apps. Additionally, since both the
RF and SVM are the classifiers presenting overall better results for this problem,
as was also stated in the surveyed works, our following experiments proceeded
with the use of both these methods.

Using the ‘GridSearchCV’ function, we aimed to tune the hyperparameters
of the classifiers to improve the results on both datasets. Namely, we tuned the
most relevant parameters in each classifier, such as the number of trees in RF
and the C parameter in SVM. The tuning of the ML classifier’s hyperparameters
slightly improved the efficiency of the trained model, but this improvement didn’t
rise more than 1% in terms of accuracy. Hyperparameter tuning might provide
a better result for one dataset but worse for another.

4.4 Experimental Results: Handling Missing Values

After hyperparameter tuning, we aimed to improve the data pre-processing stage,
namely, how we handle missing values in the CICAndMal2017 dataset. The first
approach was to remove the instances containing them. Table 2 reports these
experimental results.

Table 2. Experimental results with the evaluation metrics Acc, confusion matrix el-
ements (TN, FP, FN, and TP), and Rec, for the RF and SVM classifiers on the CI-
CAndMal2017 dataset, for each of the methods chosen to impute missing values.

Classifier Method Acc (%) TN FP FN TP Rec (%)

RF Removing instances with missing values 80.55 2074 916 790 4992 86.33
RF Removing features with missing values 80.88 2089 883 838 5190 86.1
RF Replacing missing values with the mean 81.06 2088 884 821 5207 86.38

SVM Removing instances with missing values 65.74 219 2771 234 5548 95.95
SVM Removing features with missing values 67.28 419 2553 392 5636 93.5
SVM Replacing missing values with the mean 67.07 373 2599 365 5663 93.94

In general, the obtained results for each method do not vary substantially.
With the RF classifier, the method of dealing with missing values by replacing

Sessão: Ciência dos Dados (Artigo) 27



Actas do décimo quarto Simpósio de Informática (INForum 2023)

them with the median achieved the best result. While for the SVM classifier,
removing features and instances containing missing values provided better results
in terms of accuracy and recall, respectively. The latter result, plus the fact that
the results after removing whole instances or features (containing missing values)
do not differ significantly from the ones where we replace missing values with
the estimated mean value, is an indicator that the CICAndMal2017 dataset
possesses data that is irrelevant, maybe even harmful, for the training of the
model. Thus it would be adequate to perform dimensionality reduction by using
FS techniques, for example.

4.5 Experimental Results: Feature Selection

Following the previous conclusions, we aimed to apply FS to the datasets. How-
ever, before using any FS technique, we deemed some more pre-processing nec-
essary. Namely, in the CICAndMal2017 dataset, five features were categorical
and, thus, converted to numerical. However, since we are using label encoding,
there are discrepancies between the values. Min-Max normalisation was applied
to accommodate all the values of both datasets between 0 and 1.

After normalisation, the results improved in the CICAndMal2017 dataset,
with the accuracy achieved by SVM rising from 67.07% to 71.42%. No impact
was seen in the case of the Drebin dataset since its values were binary (thus,
unaffected by the normalisation applied).

Finally, for FS, we opted to apply the relevance-redundancy FS (RRFS)
filter [11]. As relevance measure, we used the Fisher ratio, and as a redundancy
measure, we used the absolute cosine (AC). Table 3 summarises, in terms of
accuracy, the baseline and experimental results after applying RRFS.

Aside from the SVM classifier on the CICAndMal2017 dataset, which im-
proved substantially from 65.82% to 70.42%, the remaining results do not seem
to vary much and sometimes even worsen slightly, as is the case with the Drebin
dataset. However, these slight drops in accuracy in some of the results are ar-
guably compensated by the reduction of the number of features. Table 4 presents
the original numbers of features versus the numbers of features after applying
the RRFS approach.

In both datasets, the number of features was significantly reduced, and,
as seen in Table 3, the accuracy obtained only differed slightly, remaining a
good result while being able to reduce the number of features substantially.
Besides this, the RRFS approach also allows insight into the most relevant

Table 3. Experimental results at baseline and after FS with the Acc (%) evaluation
metric for the RF and SVM classifiers on the Drebin and CICAndMal2017 datasets.

Classifier Dataset Baseline RRFS

RF Drebin 98.60 96.92
RF CICAndMal2017 80.49 81.42
SVM Drebin 97.94 96.36
SVM CICAndMal2017 65.82 70.42

28 Sessão: Ciência dos Dados (Artigo)



Actas do décimo quarto Simpósio de Informática (INForum 2023)

Table 4. Number of features (d) for the Drebin and CICAndMal2017 datasets, before
and after applying the RRFS approach [11].

Dataset d (Original) d (after RRFS)

Drebin 215 94
CICAndMal2017 183 64

features on each dataset to classify malware. The five most relevant features
according to the RRFS approach to classify malware on the Debrin dataset
are the following: transact, SEND_SMS, Ljava.lang.Class.getCanonicalName,
android.telephony.SmsManager and Ljava.lang.Class.getField.

Keyvanpour et al. [13] also applied FS with effective and high weight FS,
and reported the most relevant features on the Drebin dataset. Two of them co-
incide with our five most relevant features: SEND_SMS and android.telephony.

SmsManager.

4.6 Experimental Results: Comparative Analysis of Results

Since the datasets herein used, Drebin and CICAndMal2017, are also used by
Alkahtani and Aldhyani [3], we will briefly compare our results with theirs.
Similarly to our approach, those authors randomly divided the datasets into 70%
for training and 30% for testing. Regarding pre-processing, they only mention
Min-Max normalisation. Aside from this, no other pre-processing methods or
tuning of hyperparameters are mentioned. Thus, the methodology with which
the results were obtained differs from ours. Since the authors did not use the
RF classifier, we will compare only the accuracy results regarding SVM. Table
5 summarises these results.

The proposed approach presented better accuracy on the Drebin dataset,
achieving 96.36% accuracy compared to 80.71% reported by Alkahtani and Ald-
hyani [3]. However, regarding the CICAndMal2017 dataset, the proposed ap-
proach only achieved 70.42% compared to the accuracy of 100% that those au-
thors claim to have achieved. This disparity in the obtained results between the
two studies using the same datasets lies in the different methodologies applied,
namely, the pre-processing applied, which significantly impacts the obtained re-
sults.

Table 5. Comparison of the experimental results, in terms of accuracy (%), obtained
by Alkahtani and Aldhyani [3] with the SVM classifier with the ones obtained with the
proposed approach using the same classifier.

Dataset Alkahtani and Aldhyani Proposed

Drebin 80.71 96.36
CICAndMal2017 100.00 70.42

Sessão: Ciência dos Dados (Artigo) 29

transact
SEND_SMS
Ljava.lang.Class.getCanonicalName
android.telephony.SmsManager
Ljava.lang.Class.getField
SEND_SMS
android.telephony.SmsManager
android.telephony.SmsManager


Actas do décimo quarto Simpósio de Informática (INForum 2023)

5 Conclusions

Malware in Android applications affects millions of users worldwide and is con-
stantly evolving. Thus, its detection is a current and relevant problem. In the
past few years, ML approaches have been proposed to mitigate malware in mobile
applications by performing supervised classification. In this study, an approach
was proposed, and experiments were performed to explore the ML methods and
techniques that effectively mitigate this problem. Namely, we performed exper-
iments with the RF, SVM, KNN, and NB classifiers and then, with some more
experimental results, we aimed to improve the trained model.

Based on the surveyed works, we concluded that the RF and SVM classi-
fiers presented better results, thus, being the most popular. There are a variety
of publicly available datasets, with one of the most popular being the Drebin
dataset, but many seem not to be up-to-date. Static analysis is the most used
throughout the existing approaches regarding the analysis type. As for evalua-
tion metrics, the accuracy metric is commonly the most used. Lastly, disclosing
the data pre-processing methods and techniques used seems to be absent in many
existing studies. Often authors reference the data splitting method (usually ran-
dom split) but do not specify any method or technique for data pre-processing,
making it difficult to reproduce the experiments and compare results accurately.

Our experimental results show that the RF and SVM classifiers perform best
in this problem. The experiments using the CICAndMal2017 dataset showed
unsatisfying results, most likely because it requires more pre-processing than
the Drebin dataset. Namely, it contains missing values and categorical features,
while the Drebin dataset presented no missing values and all its features were
already numerical. Furthermore, we also concluded that data pre-processing and
hyperparameter tuning of the ML classifiers greatly impacts the performance of
the trained model. However, they might provide a better result for one dataset
but a worse outcome for another. Thus, there is no ideal solution for all datasets.
Hence, experiments with more datasets should take place.

In future work, more attention should be given to the data pre-processing
and dimensionality reduction stages. Some other evaluation metrics can be con-
sidered, such as F1-score and area under the curve, to further evaluate ML
approaches in the detection of malware in Android applications.

References

[1] Olawale Surajudeen Adebayo and Normaziah Abdul Aziz. “Improved mal-
ware detection model with apriori association rule and particle swarm op-
timization”. In: Security and Communication Networks 2019 (2019). doi:
https://doi.org/10.1155/2019/2850932.

[2] Muhammad Shoaib Akhtar and Tao Feng. “Detection of Malware by Deep
Learning as CNN-LSTM Machine Learning Techniques in Real Time”. In:
Symmetry 14.11 (2022). issn: 2073-8994. doi: 10.3390/sym14112308.
url: https://www.mdpi.com/2073-8994/14/11/2308.

30 Sessão: Ciência dos Dados (Artigo)

https://doi.org/https://doi.org/10.1155/2019/2850932
https://doi.org/10.3390/sym14112308
https://www.mdpi.com/2073-8994/14/11/2308


Actas do décimo quarto Simpósio de Informática (INForum 2023)

[3] Hasan Alkahtani and Theyazn HH Aldhyani. “Artificial intelligence al-
gorithms for malware detection in Android-operated mobile devices”. In:
Sensors 22.6 (2022), p. 2268.

[4] Hani AlOmari, Qussai M. Yaseen, and Mohammed Azmi Al-Betar. “A
Comparative Analysis of Machine Learning Algorithms for Android Mal-
ware Detection”. In: Procedia Computer Science 220 (2023). The 14th In-
ternational Conference on Ambient Systems, Networks and Technologies
Networks (ANT 2022) and The 6th International Conference on Emerg-
ing Data and Industry 4.0 (EDI40), pp. 763–768. issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2023.03.101. url: https://www.
sciencedirect.com/science/article/pii/S1877050923006361.

[5] Ebtesam J Alqahtani, Rachid Zagrouba, and Abdullah Almuhaideb. “A
Survey on Android Malware Detection Techniques Using Machine Learning
Algorithms.” In: 2019 Sixth International Conference on Software Defined
Systems (SDS). IEEE. 2019, pp. 110–117.

[6] Android Malware 2017 — Datasets — Research — Canadian Institute
for Cybersecurity — UNB. https : / / www . unb . ca / cic / datasets /

andmal2017.html. (Accessed on 27/02/2023).
[7] Android Malware Dataset for Machine Learning — Kaggle. https://www.

kaggle . com / datasets / shashwatwork / android - malware - dataset -

for-machine-learning. (Accessed on 27/02/2023).
[8] Android Permission Dataset — Kaggle. https : / / www . kaggle . com /

datasets/saurabhshahane/android-permission-dataset. (Accessed
on 27/02/2023).

[9] Biggest app stores in the world 2022 — Statista. https://www.statista.
com/statistics/276623/number-of-apps-available-in-leading-

app-stores/. (Accessed on 13/02/2023).
[10] Omar N. Elayan and Ahmad M. Mustafa. “Android Malware Detection

Using Deep Learning”. In: Procedia Computer Science 184 (2021). The
12th International Conference on Ambient Systems, Networks and Tech-
nologies (ANT) / The 4th International Conference on Emerging Data and
Industry 4.0 (EDI40) / Affiliated Workshops, pp. 847–852. issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2021.03.106. url: https://
www.sciencedirect.com/science/article/pii/S1877050921007481.

[11] Artur Ferreira and Mário Figueiredo. “Efficient feature selection filters
for high-dimensional data”. In: Pattern Recognition Letters 33.13 (2012),
pp. 1794–1804. issn: 0167-8655. doi: http://dx.doi.org/10.1016/j.
patrec.2012.05.019. url: http://dx.doi.org/10.1016/j.patrec.
2012.05.019.

[12] Rejwana Islam et al. “Android malware classification using optimum fea-
ture selection and ensemble machine learning”. In: Internet of Things
and Cyber-Physical Systems 3 (2023), pp. 100–111. issn: 2667-3452. doi:
https://doi.org/10.1016/j.iotcps.2023.03.001. url: https://
www.sciencedirect.com/science/article/pii/S2667345223000202.

Sessão: Ciência dos Dados (Artigo) 31

https://doi.org/https://doi.org/10.1016/j.procs.2023.03.101
https://www.sciencedirect.com/science/article/pii/S1877050923006361
https://www.sciencedirect.com/science/article/pii/S1877050923006361
https://www.unb.ca/cic/datasets/andmal2017.html
https://www.unb.ca/cic/datasets/andmal2017.html
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/saurabhshahane/android-permission-dataset
https://www.kaggle.com/datasets/saurabhshahane/android-permission-dataset
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/https://doi.org/10.1016/j.procs.2021.03.106
https://www.sciencedirect.com/science/article/pii/S1877050921007481
https://www.sciencedirect.com/science/article/pii/S1877050921007481
https://doi.org/http://dx.doi.org/10.1016/j.patrec.2012.05.019
https://doi.org/http://dx.doi.org/10.1016/j.patrec.2012.05.019
http://dx.doi.org/10.1016/j.patrec.2012.05.019
http://dx.doi.org/10.1016/j.patrec.2012.05.019
https://doi.org/https://doi.org/10.1016/j.iotcps.2023.03.001
https://www.sciencedirect.com/science/article/pii/S2667345223000202
https://www.sciencedirect.com/science/article/pii/S2667345223000202


Actas do décimo quarto Simpósio de Informática (INForum 2023)

[13] Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, and Farideh
Heydarian. “Android malware detection applying feature selection tech-
niques and machine learning”. In: Multimedia Tools and Applications 82.6
(2023), pp. 9517–9531. doi: https://doi.org/10.1007/s11042-022-
13767-2.

[14] Vasileios Kouliaridis and Georgios Kambourakis. “A comprehensive sur-
vey on machine learning techniques for Android malware detection”. In:
Information 12.5 (2021), p. 185.

[15] Ali Muzaffar et al. “An in-depth review of machine learning based Android
malware detection”. In: Computers & Security (2022), p. 102833.

[16] Abdurrahman Pektaş, Mahmut Çavdar, and Tankut Acarman. “Android
Malware Classification by Applying Online Machine Learning”. In: Com-
puter and Information Sciences. Ed. by Tadeusz Czachórski et al. Cham:
Springer International Publishing, 2016, pp. 72–80.

[17] Qing Wu, Xueling Zhu, and Bo Liu. “A survey of Android malware static
detection technology based on machine learning”. In: Mobile Information
Systems (2021).

[18] Shaojie Yang et al. “An Android Malware Detection and Classification
Approach Based on Contrastive Lerning”. In: Computers & Security 123
(2022), p. 102915. issn: 0167-4048. doi: https://doi.org/10.1016/j.
cose.2022.102915. url: https://www.sciencedirect.com/science/
article/pii/S016740482200308X.

References

1. Ferreira, A. and Figueiredo, M. (2012). Efficient feature selection filters for high-
dimensional data. Pattern Recognition Letters, 33(13):1794 – 1804.

2. Turner, A. Android vs. Apple Market Share: Leading Mobile Operating Systems
(OS). https://www.bankmycell.com/blog/android-vs-apple-market-share/.
Last accessed Jun 2023

3. Alkahtani, H. & Aldhyani, T. Artificial intelligence algorithms for malware detection
in Android-operated mobile devices. Sensors. 22, 2268 (2022)

4. Elayan, O. & Mustafa, A. Android Malware Detection Using Deep Learning. Pro-
cedia Computer Science. 184, 847-852, (2021)

5. Akhtar, M. & Feng, T. Detection of Malware by Deep Learning as CNN-LSTM
Machine Learning Techniques in Real Time. Symmetry. 14, 2308, (2022)

6. Wu, Q., Zhu, X. & Liu, B. A survey of Android malware static detection technology
based on machine learning. Mobile Information Systems. (2021)

7. Muzaffar, A., Hassen, H., Lones, M. & Zantout, H. An in-depth review of machine
learning based Android malware detection. Computers & Security. pp. 102833 (2022)

8. Alqahtani, E., Zagrouba, R. & Almuhaideb, A. A Survey on Android Malware De-
tection Techniques Using Machine Learning Algorithms.. 2019 Sixth International
Conference On Software Defined Systems (SDS). pp. 110-117 (2019)

9. Kouliaridis, V. & Kambourakis, G. A comprehensive survey on machine learning
techniques for Android malware detection. Information. 12, 185 (2021)

10. Yang, S., Wang, Y., Xu, H., Xu, F. & Chen M., An Android Malware Detection
and Classification Approach Based on Contrastive Learning. Computers & Security.
123, pp. 102915 (2022)

32 Sessão: Ciência dos Dados (Artigo)

https://doi.org/https://doi.org/10.1007/s11042-022-13767-2
https://doi.org/https://doi.org/10.1007/s11042-022-13767-2
https://doi.org/https://doi.org/10.1016/j.cose.2022.102915
https://doi.org/https://doi.org/10.1016/j.cose.2022.102915
https://www.sciencedirect.com/science/article/pii/S016740482200308X
https://www.sciencedirect.com/science/article/pii/S016740482200308X
https://www.bankmycell.com/blog/android-vs-apple-market-share/


Actas do décimo quarto Simpósio de Informática (INForum 2023)

11. Pektaş, A., Çavdar, M. & Acarman, T. Android Malware Classification by Ap-
plying Online Machine Learning. Computer And Information Sciences. pp. 72-80
(2016)

12. Adebayo, O. & Abdul Aziz, N. Improved Malware Detection Model with Apriori
Association Rule and Particle Swarm Optimization. Security And Communication
Networks. 2019 pp. 2850932 (2019,8), https://doi.org/10.1155/2019/2850932

13. Keyvanpour, M., Barani Shirzad, M. & Heydarian, F. Android malware detection
applying feature selection techniques and machine learning. Multimedia Tools And
Applications. 82, 9517-9531 (2023)

14. AlOmari, H., Yaseen, Q. & Al-Betar, M. A Comparative Analysis of Machine
Learning Algorithms for Android Malware Detection. Procedia Computer Science.
220 pp. 763-768 (2023)

15. Islam, R., Sayed, M., Saha, S., Hossain, M. & Masud, M. Android malware clas-
sification using optimum feature selection and ensemble machine learning. Internet
Of Things And Cyber-Physical Systems. 3 pp. 100-111 (2023)

16. Statista, https://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/. Last accessed Jun
2023

17. UNB, https://www.unb.ca/cic/datasets/andmal2017.html. Last accessed Jun
2023

18. Kaggle, Android Malware Dataset for Machine Learning, https://www.kaggle.
com/datasets/shashwatwork/android-malware-dataset-for-machine-learning

Last accessed June 2023
19. Kaggle, Android Permission Dataset, https://www.kaggle.com/datasets/

saurabhshahane/android-permission-dataset Last accessed Jun 2023

Sessão: Ciência dos Dados (Artigo) 33

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.unb.ca/cic/datasets/andmal2017.html
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/saurabhshahane/android-permission-dataset
https://www.kaggle.com/datasets/saurabhshahane/android-permission-dataset

	On the use of machine learning techniques to detect malware in mobile applications

