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ABSTRACT: Cladoceran and copepod carcasses in both marine and freshwater environments repre-
sent concentrated reservoirs of organic substrates for water column bacteria. We studied the micro-
bial abundance, activities, and diversity associated with decomposing carcasses of different zoo-
plankton species over short and long time scales, and in oligotrophic vs. eutrophic environments.
Fresh carcasses of Daphnia cucullata, Diaphanosoma brachyurum, and Eudiaptomus gracilis were
rapidly colonized by bacteria, which reached peak abundances within 1.5 d at 20°C and then
decreased. Cell-specific exoenzymatic activity on protein and lipid analogs and production rate of
bacteria associated with the carcasses were all higher than in the ambient water. ANOSIM analyses
of DGGE banding patterns revealed that bacterial communities associated with both cladoceran and
copepod carcasses rapidly diverged from the initial bacterial community in the ambient water. The
high similarity of bacteria on both types of carcasses indicates that the carcasses were decomposed
by similar bacterial groups. Estimated carcass decomposition rate was lower at 6°C, with an esti-
mated Qo of 2.4. Carcasses suspended in the eutrophic Lake Dagow had a higher average carbon
loss rate than those suspended in the oligotrophic Lake Stechlin. Cladoceran carcasses were initially
colonized by bacteria faster than copepod carcasses in both laboratory and field experiments, sug-
gesting that cladoceran carcasses were more prone to exploitation by bacteria, yet copepod carcasses
lost carbon at higher rates. Overall, our results suggest that pelagic zooplankton production can be
directly converted to water column bacterial production via carcass decomposition, especially during
the mid-summer zooplankton decline commonly observed in lakes.
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INTRODUCTION

Conventional zooplankton ecology tends to ignore
the existence of zooplankton carcasses in aquatic envi-
ronments largely due to methodological difficulties in
identifying and quantifying carcasses in natural sam-
ples. Despite these challenges, several studies have
shown that zooplankton carcasses are sometimes
prevalent in both marine and freshwater environments
(Fig. 1). In a review of literature data, Hirst & Kierboe
(2002) estimated that ' to '4 of the total mortality of
marine planktonic copepods can be attributed to non-
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predatory causes. In many lakes, Daphnia populations
exhibit a mid-summer decline (Threlkeld 1979).
Besides predation, it is almost certain that noncon-
sumptive factors, such as starvation and parasitism,
contribute to this decline (Gries & Guide 1999, Hiils-
mann & Weiler 2000, Benndorf et al. 2001, Hilsmann &
Voigt 2002). Zooplankton carcasses resulting from
nonconsumptive mortality could become an important
organic source for water column bacteria, especially in
oligotrophic waters (Grossart 1995).

Harding (1973) suggested that the decomposition of
zooplankton carcasses is mainly driven by exogenous
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Fig. 1. Reported occurrences of dead zooplankton (as average % of total zooplankton in samples). Data sources are provided
in the reference list

bacteria (i.e. bacteria originating from the surrounding
water) rather than endogenous bacteria, and recent
studies have shown that zooplankton carcasses were
rapidly colonized and decomposed by bacteria (Tang
et al. 2006a,b). Microbial decomposition of zooplank-
ton carcasses may provide an alternative but largely
overlooked pathway for nutrient regeneration, ele-
mental recycling and microbial production in the water
column (Harding 1973, Lee & Fisher 1992, Reinfelder
et al. 1993). Tang et al. (2006b) showed that during the
decomposition of the copepod Mesocyclops leuckarti,
bacterial abundance and protease activity increased
significantly in the surrounding water. Although data
on carcass-associated bacteria were not available, the
authors conservatively estimated that protease activity
was enhanced by up to 6-fold inside the carcasses
(Tang et al. 2006b). DGGE analysis of amplified 16S
TRNA genes further showed a significant shift in the
bacterial community composition during the decompo-
sition process, indicating that certain types of bacteria
were more adapted to exploit the resources associated
with zooplankton carcasses (Tang et al. 2006b). Many
zooplankton species occur in both eutrophic and oligo-
trophic systems where bacterial community struc-
tures and behaviors could be very different (Rath et al.
1993, Tang et al. 2006c¢); consequently, the fate of zoo-
plankton carcasses and their effects on the ambient
bacterial community may also differ between these
systems.

Building upon our earlier work, we conducted labo-
ratory and field studies to characterize the microbial

processes associated with decomposing zooplankton
carcasses over short (hours) and long (days) time
scales. In the laboratory, we quantified the bacterial
abundance, exoenzymatic activities and production
associated with carcasses of different zooplankton spe-
cies and in the surrounding water. We also examined
the changes in bacterial community composition dur-
ing the decomposition process. Furthermore, we con-
ducted field experiments to investigate the carcass
decomposition process in a eutrophic lake and in an
oligotrophic lake. This information will improve our
understanding of the contribution of different types of
zooplankton carcasses to water column microbial
activities under contrasting environmental conditions.

MATERIALS AND METHODS

Sampling sites. The study was conducted in August
2007. Zooplankton and epilimnion water were col-
lected from Lake Stechlin (53°09'03" N, 13°01'40" E)
and Lake Dagow (53°09'01" N, 13°03'60" E) in north-
eastern Germany. Although Lake Dagow is connected
to Lake Stechlin via a small outflow, the 2 lakes are very
different in their nutrient status (Table 1): Lake Stechlin
is a deep, oligotrophic lake (Casper 1996, Allgaier &
Grossart 2006) whereas Lake Dagow is a shallow, eu-
trophic lake (Casper 1996, Glissman et al. 2004) with
seasonal hypoxic events (Gonsiorczyk et al. 1998). Both
lakes exhibit thermal stratification in summer. At the
time of the study, surface temperatures were 21 + 1°C.
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Table 1. Hydrologic conditions of Lake Stechlin and Lake Dagow at the time of sampling

Secchi depth (m) NH,-N (mg 1Y) PO,-P (mg 1) Chl a (mg 1'%
Lake Stechlin 8 0.007 0.006 0.002
Lake Dagow 1.5 2.059 0.193 0.004

Short-term laboratory experiment. Individuals of the
cladoceran species Daphnia cucullata (~1.7 mm) and the
copepod species Eudiaptomus gracilis (~1.5 mm) were
collected from Lake Stechlin for the short-term
experiment. Both were the numerically dominant spe-
cies at the time of the study. Live individuals were gen-
tly concentrated on a nylon mesh, killed by brief expo-
sure (a few seconds) to 10% acetic acid, and then
immediately rinsed with 5 pm filtered Lake Stechlin
water to fully remove the acid. These carcasses were
then transferred to sterile containers, each with 40 ml of
5 pm filtered lake water (20 carcasses per container; 12
containers per species). The water was pre-filtered
through a 5 pym sieve to retain natural bacterial assem-
blages while removing larger organisms that might prey
on the bacteria or the carcasses; however, this filtration
could not remove small bacterivorous protozoans (see
discussion). Additional carcasses were collected at the
beginning of the experiments for initial measurements of
bacterial abundance, production, community composi-
tion, and exoenzymatic activities. The containers with
carcasses were incubated on a shaker in the dark at 20 +
1°C. At 6, 12, 24 and 36 h, 3 containers from each species
were sacrificed for the measurement of carcass-
associated bacterial abundance, production, community
composition, and exoenzymatic activities.

Long-term laboratory experiment. Daphnia cucul-
lata, Eudiaptomus gracilis and Diaphanosoma brachy-
urum (~1 mm) from Lake Stechlin were chosen for the
long-term experiment for the same reason as in the
short-term experiment. Fresh carcasses were prepared
as described previously and transferred to sterile con-
tainers, each with 80 ml of 5 pm filtered lake water (40
carcasses per container; 9 containers per species). The
containers were incubated on a shaker at 20 + 1°C in
the dark. An additional set of containers with D. cucul-
lata prepared in the same manner was incubated at
6°C to study the effect of temperature on the measured
parameters. For controls, 5 pm filtered lake water with-
out carcasses was incubated in the same manner.
Additional carcasses and water were collected for ini-
tial measurements of bacterial abundance, production,
community composition, and exoenzymatic activities.
Three containers from each species and the controls
were sacrificed on Days 1.5, 3, and 7 for the measure-
ment of carcass-associated and ambient bacterial
abundance, production, community composition, and
exoenzymatic activities.

Bacterial abundance, production and exoenzy-
matic activities. For carcass-associated bacterial
abundance, 5 carcasses from each container were
transferred into a glass tissue grinder. We took great
care to minimize the amount of incidental surround-
ing water being included; nonetheless, a small
amount of the ambient bacteria could have been
transferred with the carcasses. Washing the carcasses
in 0.2 pm filtered lake water could have reduced the
amount of incidental ambient bacteria, but that would
have also caused a loss of carcass-associated bacteria,
particularly during the later stages of the decomposi-
tion when the carcasses became very fragile. Dark-
field microscopic observations (Tang et al. 2006a,b)
confirmed that carcass-associated bacteria generally
occurred in much higher concentrations than ambient
bacteria; therefore, the error due to the small amount
of water included should be relatively small. The car-
casses were homogenized in 1 ml of 0.2 pm filtered
lake water with a Teflon pestle, and the homogenate
was filtered onto a 0.2 pm black Nuclepore polycar-
bonate membrane. The pestle and grinder were
rinsed twice with 0.2 pm filtered lake water onto the
same filter. SYBR Gold (10 pl stock in 141 pl Moviol
including 1 pl ascorbic acid) was applied directly onto
the filter, and the bacteria were counted under an
epifluorescence microscope (Lunau et al. 2005). SYBR
Gold was preferred for carcass-associated bacteria
because it gave an intense fluorescence signal of the
bacteria against the copepod detritus in the back-
ground. For ambient bacteria, 1 ml of the surround-
ing water was filtered and stained with DAPI before
counting under an epifluorescence microscope (Porter
& Feig 1980).

Rates of bacterial protein production (BPP) were
determined using bacterial incorporation of *C-
leucine (*C-Leu) according to Simon & Azam (1989).
Five carcasses from each container were homogenized
with a tissue grinder in 5 ml of 0.2 pm filtered lake
water; a 3 ml aliquot of the bacterial suspension was
transferred to a vial. Replicate vials and a formalin-
killed control were incubated at the experimental tem-
peratures in the dark for 1 h with “C-Leu (312 mCi
mmol !, Amersham) at a final concentration of 50 nmol
I"!. This concentration ensured saturation of uptake
systems of both ambient and carcass-associated bacte-
ria based on pre-determined uptake kinetics. Samples
were radio-assayed in a scintillation counter (Beck-
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man) and measured disintegrations per minute (DPM)
were converted into *C-Leu uptake and then into pro-
tein production according to Simon & Azam (1989). To
further convert protein production into carbon produc-
tion, a conversion factor of 0.86 was used (Simon &
Azam 1989). Standard deviation of triplicate measure-
ments was usually <15 %. Measured BPP was normal-
ized to the bacterial abundance of the corresponding
replicate to obtain cell-specific BPP.

Extracellular protease and lipase activities were
respectively estimated from the hydrolysis of the fluo-
rogenic protein analog L-leucine-methyl coumarinyl
amide (Leu-MCA) (Hoppe 1983) and the lipid analog
4-methylumbelliferyl heptanoate (MUF-Hep) (Willi-
ams & Jochem 2006). Because this method requires
the addition of saturating concentrations of artificial
substrates, the measurements represented the poten-
tial rather than the actual enzymatic activities. Enzy-
matic activity of ambient bacteria was measured from
aliquots of incubation water from each of the contain-
ers. Three to 5 carcasses from each container were
homogenized to determine either Leu-MCA or MUF-
Hep hydrolysis by carcass-associated bacteria. Con-
trols were prepared for each time point by adding
formalin to additional aliquots or homogenates to stop
the enzymatic activities. The aliquots or homogenates
were incubated with 60 pl of 5 mM stock solution of
Leu-MCA or MUF-Hep (0.1 mM final concentration)
in the dark for 1 h at the experimental temperatures
(20 or 6°C). Fluorescence was measured on a fluo-
rometer (Kontron) at 380 nm excitation/440 nm emis-
sion for Leu-MCA, and 365 nm excitation/445 nm
emission for MUF-Hep. Calibration curves were pre-
pared by measuring the fluorescence over a range of
MCA and MUF standard concentrations. Rates of
Leu-MCA and MUF-Hep hydrolysis were normalized
to the bacterial counts of the corresponding replicate
to determine cell-specific rates.

Data were analyzed for significant effects due to
time and treatments using ANCOVA. In cases where
the requirement of normal distribution was not met,
data were natural log-transformed prior to ANCOVA.
Level of significance was set at p = 0.05.

DGGE analysis. For carcass-associated bacteria, 10
carcasses from 1 of the replicates were transferred into
a sterile 2 ml Eppendorf vial and stored at —20°C until
DNA extraction. For ambient bacteria, a 5 ml aliquot of
water from the same replicate was filtered onto a
0.2 pm polycarbonate filter and stored in the same
manner until extraction. Bacterial DNA was extracted
using the MoBio PowerSoil DNA isolation kit following
the manufacturer's instruction. 16S rRNA gene frag-
ments of bacteria were amplified using the universal
primers 341f-GC and 907r (Muyzer & Ramsing 1995).
An equal amount of DNA (~500 ng) was loaded in each

lane and the denaturing gradient ranged from 40 to
70% (urea/formamide) in a 7% polyacrylamide gel.
Running time of DGGE gels was 20 h. Thereafter,
DGGE gels were stained with SYBRGold (Molecular
Probes) for 30 min, destained with Milli-Q water for
10 min and illuminated on a UV table (Biometra). To
test for significant differences in DGGE banding pat-
terns between groups of samples, ANOSIM (Clarke &
Green 1988) was applied using the software PRIMER 6
version 6.1.9 (PRIMER-E). We compared bacterial
DGGE banding patterns of attached and free-living
bacteria between treatments with different copepod
species and between different time points separately.
ANOSIM generated a test statistic (R) which indicated
the degree of separation between groups. A score of 1
indicated complete separation whereas a score of 0
indicated no separation. Further, a significance level
was calculated based on maximally 999 (or all possible)
permutations of the data set. We used the similarity
matrix based on the dice similarity index calculated
from the presence/absence of DGGE bands by using
the software GelCompare II version 3.5 (Applied
Maths) and UPGMA. The global value referred to the
entire data set, and subsets were compared using pair-
wise comparisons.

Lake Stechlin and Lake Dagow field experiments.
For the Lake Stechlin field experiment, fresh car-
casses of Daphnia cucullata and Eudiaptomus gracilis
were prepared as described above, and transferred to
73 ml glass containers filled with 44 pm filtered Lake
Stechlin water (50 carcasses per container; 6 contain-
ers per species). Additional carcasses were collected
for initial measurements of bacterial abundance and
production, and carcass carbon and nitrogen contents
(see below). The cap closure of the glass containers
had a 25 x 25 mm?, 44 um nylon screen that allowed
exchange of materials between the containers and the
lake. The glass containers were suspended in the
epilimnion of Lake Stechlin (3 m depth). On Days 1
and 2, 3 containers for each species were sacrificed
for the measurement of carcass-associated bacterial
abundance, BPP, and carcass carbon and nitrogen
contents. For carcass carbon and nitrogen contents, 29
to 30 carcasses from each container were transferred
to a tin capsule, freeze-dried immediately, and stored
at room temperature until used. Blank capsules with a
small drop of water from the container were included
to correct for background carbon and nitrogen.
Organic carbon and nitrogen contents of the carcasses
were measured on an autoanalyzer (Carlo-Erba
EA 1108; detection limits: 0.003 mg C, 0.00035 mg N).
For comparison, we conducted a second field experi-
ment in eutrophic Lake Dagow. The experimental
set-up was the same as in the Lake Stechlin field
experiment.
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RESULTS
Laboratory experiments

ANCOVA results for the laboratory experiments are
summarized in Table 2. In the short-term laboratory
experiment, carcass-associated bacterial abundance
increased markedly after 12 h, and was significantly
higher and more variable for Daphnia cucullata than
for Eudiaptomus gracilis (Fig. 2A, Table 2). The BPP of
carcass-associated bacteria was initially very low and
increased significantly over time, but was not signifi-
cantly different between zooplankton species (Fig. 2B,
Table 2). Cell-specific protease activity was signifi-
cantly higher in D. cucullata than in E. gracilis car-
casses, and decreased significantly with time in both
treatments (Fig. 2C, Table 2). Dice similarity of DGGE
banding patterns revealed that bacterial communities
associated with carcasses of E. gracilis and D. cucullata
dramatically changed after 1 d of incubation (data not
shown). There was no significant difference in the bac-
terial communities between the studied carcass types
(data not shown), indicating that similar bacteria

rapidly grew on both E. gracilis and D. cucullata car-
casses.

In the long-term experiment, carcass-associated bac-
terial abundance changed significantly with time, and
peaked after 1.5 d at 20°C (Fig. 3A, Table 2), although
the differences among zooplankton species were not
significant (Table 2). These peaks coincided with peaks
in ambient bacterial abundances (Fig. 3B). During this
time, BPP was greatly enhanced in the carcass treat-
ments relative to the control (Fig. 4A), but was not sig-
nificantly different among zooplankton species (Table
2). In the 6°C treatment, carcass-associated bacterial
abundance and BPP increased more slowly and peaked
at lower levels relative to the 20°C treatment (Figs. 3A
& 4B); ambient bacterial abundances remained rather
steady until Day 3, and increased to >107 bacteria ml™!
by Day 7 in both treatment and control groups (Fig. 3B).
Carcass-associated cell-specific protease and lipase ac-
tivities increased significantly over time (Table 2) and
became highly variable toward the end of the experi-
ment (Fig. 5A,C), although there were no significant
differences among zooplankton species, or between 20
and 6°C for the Daphnia cucullata treatment. In the am-

Table 2. Summary of ANCOVA results. BPP: Bacterial protein production

Experiment Sample type Treatment Dependent variable Fireatment DPtreatment Fiime Ptime
Short-term Carcasses Zooplankton Bacterial abundance 4.553 0.042 50.078 0.000
laboratory Cell-specific BPP 0.000 0.999 15.984 0.000
Cell-specific protease activity 7.097 0.013 34.296 0.000

Long-term Carcasses at 20°C Zooplankton Bacterial abundance 1.343 0.275 5.594 0.024
laboratory Cell-specific BPP 1.272 0.296  61.648 0.000
Cell-specific protease activity 0.406 0.671 38.655 0.000

Cell-specific lipase activity 0.255 0.777  47.135 0.000

Ambient water at Zooplankton Bacterial abundance® 1.938 0.161 21.741 0.000

20°C Cell-specific BPP 1.598 0.218 2.451 0.127

Cell-specific protease activity 1.161 0.326 9.800 0.004

Cell-specific lipase activity 2.227 0.124  28.426 0.000

Long-term Daphnia cucullata 20 vs. 6°C Bacterial abundance® 8.053 0.008 4.783 0.036
laboratory carcasses Cell-specific BPP 0.117 0.734  27.890 0.000
Cell-specific protease activity 0.793 0.381 21.139 0.000

Cell-specific lipase activity 0.831 0.370 19.102 0.000

D. cucullata ambient 20 vs. 6°C Bacterial abundance® 7.776 0.009 0.222 0.641

water Cell-specific BPP 8.215 0.007 8.588 0.006

Cell-specific protease activity 8.501 0.007 7.133 0.012

Cell-specific lipase activity 4.464 0.043 8.194 0.008

Stechlin field Carcasses Zooplankton Bacterial abundance 11.603 0.003 26.207 0.000
expt Cell-specific BPP 0.823 0.379 5.905 0.028
Carcass carbon 75.038 0.000 81.608 0.000

Carcass nitrogen 3.996 0.064 11.653 0.004

Dagow Carcasses Zooplankton Bacterial abundance 1.556 0.229 29.485 0.000
field expt Cell-specific BPP 0.594 0.453 9.764 0.007
Carcass carbon 0.060 0.810  44.336 0.000

Carcass nitrogen 0.730 0.406 4.973 0.041

Field expt Eudiaptomus gracilis ~ Stechlin vs. Bacterial abundance 16.299 0.001 49.935 0.000
carcasses Dagow Carcass carbon 18.183 0.001 65.219 0.000

“Data were log transformed to meet the normality assumption
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bient water, cell-specific protease and lipase activities
also increased significantly over time (Table 2), but
remained much lower than those associated with
carcasses (Fig. 5B,D). The ambient cell-specific enzy-
matic activity for the D. cucullata treatment was sig-
nificantly lower at 6 than at 20°C (Table 2).

We calculated enhancement factors for the cell-spe-
cific enzymatic activities and BPP by dividing the mean
rate associated with the carcasses by that in the ambi-
ent water. At 20°C, the enhancement factor for pro-
tease and lipase activities ranged between 1.1 to 7.3,
whereas it ranged between 2.2 to 28.9 at 6°C (Table 3).
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Fig. 3. Long-term laboratory experiment. Bacterial abun-
dances (means + SDs) (A) associated with zooplankton car-
casses and (B) in ambient water. There was only 1 set of mea-
surements of ambient bacterial abundance at time O.
ANCOVA results are provided in Table 2. Bac: bacterium

The enhancement factors for BPP were less than or
close to 1 in the first 1.5 d, and increased to as high as
11.0 at 20°C and 20.8 at 6°C (Table 3).

ANOSIM of DGGE banding patterns revealed that
bacterial communities associated with carcasses were
significantly different from those in the ambient water
(Table 4). Bacterial communities on the carcasses sig-
nificantly changed after 1 d of incubation (Table 4),
indicating rapid growth of specific bacteria on all types
of carcasses.

Field experiments

ANCOVA results for the field experiments are sum-
marized in Table 2. Carcass-associated bacterial abun-
dances increased significantly faster with Daphnia
cucullata than with Eudiaptomus gracilis in Lake
Stechlin (Fig. 6A, Table 2), but not in Lake Dagow
(Fig. 6B, Table 2). Initial BPP rates of the carcass-asso-
ciated bacteria were nearly undetectable in all cases;



Tang et al.: Microbial activities associated with zooplankton carcasses 95

120

o A
o
m 1001 o Daphnia cucullata
T Diaphanosoma brachyurum
8 _IC 80 4 Eudiaptomus gracilis
g \n B8 Daphnia cucullata (6°C)
S &
B o 60
oo
22 401
(6]
—
©
(@] 20 1 %

0 P

0 15
Time (d)

30

E Control (20°C)
mm Control (6°C)

25 1

20 A

15

10

Ambient BPP
(fgC bac™ h™)

Time (d)

Fig. 4. Long-term laboratory experiment. Cell-specific bacterial protein production (BPP; means + SDs) (A) associated with zoo-
plankton carcasses and (B) in ambient water. There was only 1 set of measurements of ambient BPP at time 0. ANCOVA results
are provided in Table 2. Bac: bacterium

by Day 1, BPP rates increased to ~60 fg C bacterium™!
h™! in the D. cucullata treatment and ~100 fg C bac-
terium™ h™! in the E. gracilis treatment in both lakes
(Fig. 6C,D). BPP remained at >47 fg C bacterium! h™!
for both species in both lakes after 2 d (Fig. 6). There
was no significant difference between zooplankton
species in terms of BPP (Table 2).
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Carcass carbon and nitrogen contents decreased
significantly over time in both field experiments
(Fig. 7A,B, Table 2). In Lake Stechlin, the average loss
rates over the 2 d incubation period for Daphnia cucul-
lata carcasses were 0.42 ng C d™' and 0.05 pg N d™}; the
loss rate for Eudiaptomus gracilis carcasses was signif-
icantly higher for carbon (0.52 png C d!) but not for
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Table 3. Enhancement factors (= rate associated with carcasses+rate in ambient water) for cell-specific protease and lipase
activities and bacterial protein production (BPP) rates in the long-term laboratory experiment. Cell-specific enzymatic activities
for Day 0 were not measured

Day Daphnia cucullata Diaphanosoma brachyurum Eudiaptomus gracilis Daphnia cucullata (6°C)
Cell-specific protease activity

1.5 1.51 2.78 5.33 2.22
3 1.26 1.14 1.25 2.51
7 2.41 5.01 3.64 22.53
Cell-specific lipase activity

1.5 1.93 2.93 7.26 2.38
3 1.84 2.52 2.01 3.31
7 3.02 5.43 6.96 28.94
Cell-specific BPP

0 0.80 0.77 0.51 0.66
1.5 1.18 1.44 0.61 1.67
3 3.41 2.44 2.40 1.73
7 3.85 11.03 8.56 20.79

Table 4. Results of ANOSIM for all samples of the long-term laboratory experiment. Similarities between attached and free-living
bacteria, as well as between days, were calculated separately for all pairwise comparisons. #>observed: Number of permuted
statistics 2global R

Tested Groups R PR) Possible Actual #>observed
permutations permutations
Attached/free- Global 0.341 0.001 >9999999 999 0
living bacteria Attached vs. free-living 0.333 0.001 >9999999 999 0
Time (d) Global 0.181 0.001 >9999999 999 0
3vs. 0 0.398 0.001 8008 999 0
3vs. 7 -0.040 0.720 92378 999 715
3vs. 1 -0.027 0.670 1144 066 999 670
0vs. 7 0.419 0.005 8008 999 4
Ovs. 1 0.663 0.001 27132 999 0
7 vs. 1 0.034 0.270 1144066 999 266

nitrogen (0.09 ug N d!; Table 2). In Lake Dagow, car-
casses of D. cucullata lost 0.57 ng C d™! and 0.03 pg N
d™!; carcasses of E. gracilis lost 0.64 png C d~! and
0.09 pg N d!. No significant differences in carbon or
nitrogen loss rates were detected between zooplank-
ton species in Lake Dagow (Table 2). Comparison
between lakes showed that E. gracilis carcasses lost
carbon at a significantly higher rate in Lake Dagow
(Table 2). When normalized to the initial values, the
observed loss rates were equivalent to 26 to 43 % C d~!
and 26 to 32% N d7, or a half-life of 1.16 to 1.92 d in
the 2 field experiments.

DISCUSSION

In the 2 laboratory experiments, carcass-associated
bacterial abundance at 20°C peaked after 1.5 d and
then decreased. This time trajectory is almost identical
to our previous observations with other zooplankton

species (Tang et al. 2006a,b). This recurring pattern
indicates the existence of some mechanism(s) that
regulate bacterial abundance. One possible mecha-
nism is grazing by bacterivorous protozoans. Although
the experimental water was pre-filtered through a
5 pm filter, small bacterivorous protozoans could have
passed through and entered the containers. Detrital
aggregates have been shown to attract bacterivorous
protozoans after the initial build-up of bacteria, the for-
mer grazing on the bacteria and altering bacterial com-
munity composition (Caron 1987, Ploug & Grossart
2000, Kierboe et al. 2004). Ciliates have also been
observed to hover around naturally occurring copepod
carcasses, presumably feeding on the bacteria (Tang et
al. 2006b). Another possibility is viral lysis, which is
also dependent on bacterial density (Wommack et al.
1992). Using the carcass-associated bacterial abun-
dance data for the first 1.5 d (before substantial loss of
bacteria to emigration or mortality) of the Daphnia
cucullata treatments at 20 and 6°C, we calculated a Q;,
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Fig. 6. Field experiments. Bacterial abundances associated with zooplankton carcasses suspended in (A) Lake Stechlin and (B)

Lake Dagow; Cell-specific bacterial production associated with zooplankton carcasses suspended in (C) Lake Stechlin and (D

Lake Dagow. Bacterial protein production was near 0 on Day 0. Data are shown as means + SDs. ANCOVA results are
provided in Table 2. Bac: bacterium

of 2.4 for bacterial growth rate as a proxy for the
decomposition process. This calculation should be
regarded as an approximation of the true Qg because
(1) only a fraction of the decomposed carcass biomass
would have been converted to bacterial cell mass, and
(2) an unknown fraction of the bacterial population
could have been lost to emigration and mortality.
Nonetheless, the calculated Q;o was within the com-
mon Q;q values (1.2 to 4.8) for aquatic bacterial growth
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Fig. 7. Field experiments. Carbon and nitrogen contents (means + SDs) of zooplankton carcasses suspended in (A) Lake Stechlin
and (B) Lake Dagow. ANCOVA results are provided in Table 2

and production (Lovell & Konopka 1985, Apple et al.
2006).

When we combined data from the 2 experiments, the
overall trajectory of cell-specific enzymatic activities
was a mirror image of that of bacterial abundances: it
decreased markedly in the first 36 h and then
increased again. This pattern may indicate the pres-
ence of 2 fractions of proteins and lipids within the car-
casses: a more labile fraction that was quickly utilized
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by bacteria initially, upon the depletion of which the
enzymatic activity decreased; and a second, more
refractory fraction that was slowly digested over a
longer time, yielding a second phase of increase in the
enzymatic activity. Reinfelder et al. (1993), who fol-
lowed the decomposition of copepod carcasses at 15°C,
also identified 2 protein pools based on loss kinetics: a
rapidly depleted pool with a half-life of 1.1 d, and a
slowly depleted pool with a half-life of 5.5 d. Unfortu-
nately, they did not have concurrent measurements of
bacterial abundance or enzymatic activities. A future
study combining measurements of bacterial abun-
dance, enzymatic activities, and detailed analysis of
protein and lipid compositions of the carcasses will be
able to verify our suggestion.

The range of cell-specific protease activity was
higher than the usual cell-specific protease activity for
pelagic free-living bacteria, but comparable to that of
bacteria attached to particles (Smith et al. 1995, Rie-
mann et al. 2000, Grossart et al. 2007). Contrary to
other studies, the observed cell-specific lipase activity
in the present study was comparable to or slightly
higher than that of protease, although their overall
temporal trends and enhancement factors were simi-
lar. There are, however, examples of higher abun-
dance and activity of lipolytic than of proteolytic bacte-
ria in aquatic environments (Podgérska & Mudryk
2003, Mudryk & Skoérczewski 2006). Indeed, it is com-
monly observed that a higher percentage of the total
lipase activity than of total protease activity in lake
water columns is due to extracellular enzymes pro-
duced by bacteria (Chrést & Siuda 2002). Consistent
with our earlier study (Tang et al. 2006b), we observed
here that BPP and exoenzymatic activities were
enhanced within the carcasses relative to the ambient
water. More importantly, we showed that BPP and
exoenzymatic activity associated with the carcasses
were enhanced on a per cell basis; i.e. carcass-associ-
ated bacteria were more productive and enzymatically
active than ambient bacteria.

The abundance of bacteria associated with clado-
ceran carcasses increased significantly faster than that
of bacteria associated with copepod carcasses within
the first 36 h, although the difference between clado-
cerans and copepods dissipated over a longer time
period. Cladoceran carcasses also showed a higher
degree of fragmentation (visual observation). These
results suggest that cladoceran carcasses were initially
more prone to bacterial action than copepod carcasses,
which were subsequently corroborated by our field
experiments (see below). ANOSIM of DGGE banding
patterns revealed that the zooplankton carcasses were
rapidly colonized by specific bacteria. Based on cluster
analysis using the Dice correlation index, ambient bac-
teria in the presence of zooplankton carcasses more

closely resembled carcass-associated bacteria than
bacteria in the controls, indicating the release of bacte-
ria from decomposing carcasses to the surrounding
water. Contrasting bacterial community compositions
at 20 and 6°C indicate that environmental variables
such as temperature were also crucial for the establish-
ment of specific bacterial communities on the car-
casses and in the ambient water.

In the field experiments, the carcass-associated bac-
terial abundances increased with time, but remained
lower than those in the laboratory experiments after
2 d. Because there was free water exchange between
the containers and the lakes, loss of bacteria to emigra-
tion and predation was expected to be higher. The esti-
mated half-lives for carcass carbon and nitrogen were
comparable to those reported by Reinfelder et al.
(1993) for proteins of marine copepod carcasses (aver-
age of 1.1 d at 15°C). Using *C-labeled copepod car-
casses, Lee & Fisher (1992) estimated a carbon loss rate
of 11 to 22% over the first 2 d. Our carbon loss rates
were substantially higher, which may be because our
incubation was conducted in a semi-open system, and
small particulate matter might have been lost from the
carcasses more readily. Lee & Fisher (1992) also
reported carbon leaching from the carcasses in the first
24 h even when microbial activity was inhibited by
HgCl,, which is likely a result of autolysis within the
tissues. However, this leached carbon appeared to be
rapidly consumed when bacteria were present (Lee &
Fisher 1992). Autolysis of zooplankton upon death and
the subsequent release of organic carbon is still largely
an unexplored topic. Because ambient bacteria could
respond to locally elevated dissolved organic carbon
and colonize the source within minutes (Blackburn et
al. 1998, Kiegrboe et al. 2002), autolysis could play an
important role in initiating bacterial colonization of the
carcasses.

In Lake Stechlin, carcass-associated bacterial abun-
dance increased faster in the Daphnia cucullata than in
the Eudiaptomus gracilis treatment, indicating that the
former was more prone to bacterial colonization, which
is also consistent with our laboratory observations.
Paradoxically, the carcass carbon loss rate was actually
lower for D. cucullata, suggesting less efficient break-
down of its carcass by bacteria. On the other hand, BPP
was not different between the 2 zooplankton species,
meaning that bacteria were growing at similar rates
within the 2 types of carcasses. Thus, the apparent
inconsistency between the 2 species in the bacterial
abundance data, the carbon data and the BPP data
implies that (1) the bacteria associated with E. gracilis
carcasses had larger cell sizes, or (2) there was a higher
bacterial loss in the E. gracilis treatment. Cell size dif-
ference was not obvious in our samples. Although both
zooplankton species were exposed to the same in situ
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condition, it is likely that emigration (passive or active)
and mortality (predation or viral lysis) could differ
between the species. This difference may also explain
the uncoupling between the bacterial abundance data
and the BPP data in the experiments. In Lake Dagow,
carcass decomposition appeared to be less influenced
by zooplankton species because no species-specific
differences were detected in any of the decomposition
parameters.

Comparison between lakes shows that Eudiaptomus
gracilis carcasses were decomposed faster, in terms of
changes in bacterial abundance and carbon content, in
the eutrophic Lake Dagow than in the oligotrophic
Lake Stechlin. This suggests that a higher ambient
nutrient concentration would accelerate the decompo-
sition of copepod carcasses, but its effect on Daphnia
carcasses is less obvious. In addition to carbon, bacte-
ria also require nitrogen and phosphorus for growth.
The higher ambient concentrations of inorganic nitro-
gen and phosphorus in Lake Dagow might have
allowed the bacteria to utilize copepod carcass carbon
more effectively.

We observed in this and our previous studies that
mainly the exoskeleton remained at the end of the
decomposition. The exoskeleton of crustacean zoo-
plankton is made up primarily of chitin. While chiti-
nolytic bacterial activity is commonly found in lakes
and estuaries (e.g. Kirchman & White 1999, Brzezin-
ska & Donderski 2006), degradability of chitin in the
natural environment depends on particle size, tem-
perature and co-limiting factors (Hood & Meyers
1977). In situ incubation of purified chitin particles
usually showed a loss rate of <1% d~! (Hood & Mey-
ers 1977, Kirchner 1995, Kirchman & White 1999).
Indeed, chemical analysis of whole crustaceans
showed that chitin was selectively preserved over
8 wk (Baas et al. 1995). Massive die-off of crustaceans
during the mid-summer decline, together with the low
degradability of the exoskeleton, may inject a large
amount of chitin to the bottom sediment where fungi
and other microbes can remineralize the materials
(LeCleir et al. 2004).

Cladocerans and copepods often dominate the zoo-
plankton communities in freshwater and marine sys-
tems, and carcasses of both taxa have been observed in
natural environments. The traditional view of zoo-
plankton population dynamics tends to emphasize only
mortality due to predation, whereas research into non-
consumptive mortality may lead not only to better
understanding of the regulation of zooplankton popu-
lations, but also to new insights into microbial pro-
cesses within the systems. Our results suggest that
zooplankton production could be directly linked to
bacterial production through nonconsumptive zoo-
plankton mortality.
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